1,248
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Chromogenic Polymers and Their Packaging Applications: A Review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 442-492 | Received 17 Mar 2019, Accepted 01 Oct 2019, Published online: 14 Oct 2019

References

  • Kamila, S. Introduction, Classification and Applications of Smart Materials: An Overview. Am. J. Appl. Sci. 2013, 10, 876. DOI: 10.3844/ajassp.2013.876.880.
  • Varadan, V. K.; Varadan, V. V. Microsensors, Microelectromechanical Systems (MEMS), and Electronics for Smart Structures and Systems. Smart Mater. Struct. 2000, 9, 953. DOI: 10.1088/0964-1726/9/6/327.
  • Sengupta, A.; Behera, J. Smart Chromic Colorants Draw Wide Attention for the Growth of Future Intelligent Textile Materials. J. Adv. Res. Manuf. Mater. Sci. Metallurg. Eng. 2014, 1, 89–112.
  • Li, Q. Intelligent Stimuli-Responsive Materials: From Well-Defined Nanostructures to Applications. John Wiley & Sons: Hoboken, 2013. DOI: 10.1002/9781118680469.
  • Loutfi, A.; Coradeschi, S.; Mani, G. K.; Shankar, P.; Rayappan, J. B. B. Electronic Noses for Food Quality: A Review. J. Food Eng. 2015, 144, 103–111. DOI: 10.1016/j.jfoodeng.2014.07.019.
  • Ferrara, M.; Bengisu, M. Intelligent Design with Chromogenic Materials. J. Int. Color Assoc. 2014, 13, 54–66.
  • Elyasian, I. Smart Materials and New Technologies. International Conference on Modern Research in Civil Engineering, Architectural, and Urban Development; SID Publications, IRIB International center: Tehran, 2015.
  • Feliciano, L. Color Changing Plastics for Food Packaging. Ohio State University: Ohio, 2009; pp. 1–13.
  • Ferrara, M.; Bengisu, M. Materials That Change Color. Springer: Cham, 2014; pp. 9–60. DOI: 10.1007/978-3-319-00290-3.
  • Mortimer, R. J.; Dyer, A. L.; Reynolds, J. Electrochromic Organic and Polymeric Materials for Display Applications. Display 2006, 27, 2–18. DOI: 10.1016/j.displa.2005.03.003.
  • Chowdhury, M.; Joshi, M.; Butola, B. Photochromic and Thermochromic Colorants in Textile Applications. J. Eng. Fiber Fabr. 2014, 9, 107–123. DOI: 10.1177/155892501400900113.
  • Pardo, R.; Zayat, M.; Levy, D. Photochromic Organic–Inorganic Hybrid Materials. Chem. Soc. Rev. 2011, 40, 672–687. DOI: 10.1039/c0cs00065e.
  • Wang, L.; Bisoyi, H. K.; Zheng, Z.; Gutierrez-Cuevas, K. G.; Singh, G.; Kumar, S.; Bunning, T. J.; Li, Q. Stimuli-Directed Self-Organized Chiral Superstructures for Adaptive Windows Enabled by Mesogen-Functionalized Graphene. Mater. Today 2017, 20, 230–237. DOI: 10.1016/j.mattod.2017.04.028.
  • Zhang, J.; Zou, Q.; Tian, H. Photochromic Materials: More than Meets the Eye. Adv. Mater. 2013, 25, 378–399. DOI: 10.1002/adma.201201521.
  • Wang, L.; Li, Q. Photochromism into Nanosystems: Towards Lighting up the Future Nanoworld. Chem. Soc. Rev. 2018, 47, 1044–1097. DOI: 10.1039/C7CS00630F.
  • Dai, L. Intelligent Macromolecules for Smart Devices: From Materials Synthesis to Device Applications. Springer: Cham, 2004. DOI: 10.1007/b97517.
  • Zola, R. S.; Bisoyi, H. K.; Wang, H.; Urbas, A. M.; Bunning, T. J.; Li, Q. Dynamic Control of Light Direction Enabled by Stimuli-Responsive Liquid Crystal Gratings. Adv. Mater. 2019, 31, 1806172. DOI: 10.1002/adma.201806172.
  • Suhag, N.; Singh, S. Types of Chromism & Its Applications in Fashion & Textile Designing. Int. J. Enhanc. Res. Sci. 2015, 4, 28–36.
  • Durasevic, V.; Osterman, D. P.; Sutlovic, A. From Murex Purpura to Sensory Photochromic Textiles. In Textile Dyeing; P. Hauser, Eds. InTech: Rijeka, 2011. DOI: 10.5772/21335.
  • Henock, D. Literature Overview of Smart Textiles. University of Borås: Borås, 2011.
  • Irie, M.; Uchida, K. J. Synthesis and Properties of Photochromic Diarylethenes with Heterocyclic Aryl Groups. Bull. Chem. Soc. Jpn. 1998, 71, 985–996. DOI: 10.1246/bcsj.71.985.
  • Fleischmann, C.; Lievenbrück, M.; Ritter, H. Polymers and Dyes: Developments and Applications. Polymers 2015, 7, 717–746. DOI: 10.3390/polym7040717.
  • Wang, H.; Bisoyi, K.; Wang, L.; Urbas, A. M.; Bunning, T. J.; Li, Q. Photochemically and Thermally Driven Full-Color Reflection in a Self-Organized Helical Superstructure Enabled by a Halogen-Bonded Chiral Molecular Switch. Angew. Chem. Int. Ed. 2018, 57, 1627–1631. DOI: 10.1002/anie.201712781.
  • Finlayson, C. E.; Baumberg, J. Polymer Opals as Novel Photonic Materials. Polym. Int. 2013, 62, 1403–1407. DOI: 10.1002/pi.4582.
  • Seeboth, A.; Loetzsch, D.; Ruhmann, R. Piezochromic Polymer Materials Displaying Pressure Changes in Bar-Ranges. Materials 2012, 1, 139–142. DOI: 10.5923/j.materials.20110102.23.
  • Tsivgoulis, G. New Photochromic Materials. Hum. Capital and Mobility (European) 1995, 2, 1–6.
  • Lukkassen, D.; Meidell, A. Advanced Materials and Structures and Their Fabrication Processes. Narvik University College: Narvik, 2003.
  • Ahn, D. J.; Chae, E. H.; Lee, G. S.; Shim, H. Y.; Chang, T. E.; Ahn, K. D.; Kim, J. M. Colorimetric Reversibility of Polydiacetylene Supramolecules Having Enhanced Hydrogen-Bonding under Thermal and pH Stimuli. J. Am. Chem. Soc. 2003, 125, 8976–8977. DOI: 10.1021/ja0299001.
  • Liu, G.; Pu, S.; Zheng, C.; Le, Z.; Luo, M. B. Electron-Withdrawing Substituent Position Effect on the Optoelectronic Properties of New Photochromic Diarylethenes. Phys. Scr. 2007, T129, 278–283. DOI: 10.1088/0031-8949/2007/T129/062.
  • Pu, S.; Yang, T.; Xu, J.; Shen, L.; Li, G.; Xiao, Q.; Chen, B. Syntheses and Optoelectronic Properties of Four Photochromic Dithienylethenes. Tetrahedron 2005, 61, 6623–6629. DOI: 10.1016/j.tet.2005.04.044.
  • Würthner, F.; Stolte, M. Naphthalene and Perylene Diimides for Organic Transistors. Chem. Commun. 2011, 47, 5109–5115. DOI: 10.1039/C1CC10321K.
  • Berberich, M.; Würthner, F. Tuning the Redox Properties of Photochromic Diarylethenes by Introducing Electron-Withdrawing Substituents. Asian J. Org. Chem. 2013, 2, 250–256. DOI: 10.1002/ajoc.201200179.
  • Brizio, A. P. D. R.; Prentice, C. Use of Smart Photochromic Indicator for Dynamic Monitoring of the Shelf Life of Chilled Chicken Based Products. Meat Sci. 2014, 96, 1219–1226. DOI: 10.1016/j.meatsci.2013.11.006.
  • Mai, N.; Audorff, H.; Reichstein, W.; Haarer, D.; Olafsdottir, G.; Bogason, S. G.; Kreyenschmidt, J.; Arason, S. Performance of a Photochromic Time–Temperature Indicator under Simulated Fresh Fish Supply Chain Conditions. Int. J. Food Sci. Tech. 2011, 46, 297–304. DOI: 10.1111/j.1365-2621.2010.02475.x.
  • Kreyenschmidt, J.; Christiansen, H.; Hübner, A.; Raab, V.; Petersen, B. A Novel Photochromic Time–Temperature Indicator to Support Cold Chain Management. Int. J. Food Sci. Tech. 2010, 45, 208–215. DOI: 10.1111/j.1365-2621.2009.02123.x.
  • Seeboth, A.; Klukowska, A.; Ruhmann, R.; Lötzsch, D. Thermochromic Polymer Materials. Chinese J. Polym. Sci. 2007, 25, 123–135. DOI: 10.1142/S0256767907001923.
  • Kiri, P.; Hyett, G.; Binions, R. Solid State Thermochromic Materials. Adv. Mater. Let. 2010, 1, 86–105. DOI: 10.5185/amlett.2010.8147.
  • Gu, Y.; Cao, J.; Wu, J.; Chen, L.-Q. Thermodynamics of Strained Vanadium Dioxide Single Crystals. J. Appl. Phys. 2010, 108, 083517. DOI: 10.1063/1.3499349.
  • Seeboth, A.; Lötzsch, D.; Ruhmann, R.; Muehling, O. Thermochromic Polymers Function by Design. Chem. Rev. 2014, 114, 3037–3068. DOI: 10.1021/cr400462e.
  • Crano, J. C.; Guglielmetti, R. J. Organic Photochromic and Thermochromic Compounds: Volume 2: Physicochemical Studies, Biological Applications, and Thermochromism. Springer: New York, 2002. DOI: 10.1007/b114211.
  • Aegerter, M. A.; Mennig, M. Sol-Gel Technologies for Glass Producers and Users. Springer: New York, 2013. DOI: 10.1007/978-0-387-88953-5.
  • Guzman, G. Sol-Gel Technologies for Glass Producers and Users, Springer: New York, 2004; pp. 271–276. DOI: 10.1007/978-0-387-88953-5_35.
  • Liu, Y.; Mills, E. N.; Composto, R. J. Tuning Optical Properties of Gold Nanorods in Polymer Films through Thermal Reshaping. J. Mater. Chem. 2009, 19, 2704–2709. DOI: 10.1039/B901782H.
  • Baughman, R. Crystal and Molecular Structure of Some Synthetic Hydroxamic Acids. Chem. Bio. Hydro. Acids 1982, 1, 72–82. DOI: 10.1159/000430632.
  • Li, K.; Zhang, Q.; Wang, H.; Li, Y. Red, Green, Blue (RGB) Electrochromic Fibers for the New Smart Color Change Fabrics. ACS Appl. Mater. Interfaces 2014, 6, 13043–13050. DOI: 10.1021/am502929p.
  • Mortimer, R. J. Electrochromic Materials. Chem. Soc. Rev. 1997, 26, 147–156. DOI: 10.1039/CS9972600147.
  • Somani, P. R.; Radhakrishnan, S. Electrochromic Materials and Devices: present and Future. Mater. Chem. Phys. 2003, 77, 117–133. DOI: 10.1016/S0254-0584(01)00575-2.
  • Arman, S. Electrochromic Materials for Display Applications: An Introduction. J. New Mater. Electrochem. Syst. 2001, 173–180.
  • Bamfield, P. Chromic Phenomena: Technological Applications of Colour Chemistry. Royal Society of Chemistry: London, 2010. DOI: 10.1039/9781849731034.
  • Fang, Q.; Yamamoto, T. Preparation of a New Polymer Containing Photoluminescent Pyrazoline Unit in the Main Chain. J. Polym. Sci. A Polym. Chem. 2004, 42, 2686–2697. DOI: 10.1002/pola.20136.
  • Sniechowski, M. Structure and dynamics of conducting poly(aniline) based compounds. Ph.D. dissertation, AGH University of Science and Technology, Kraków, Poland, 2006.
  • Zhang, X.; Wu, S.; Gao, Z.; Lee, C.; Lee, S.; Kwong, H.-L. Pyrazoline Derivatives for Blue Color Emitter in Organic Electroluminescent Devices. Thin Solid Films 2000, 371, 40–46. DOI: 10.1016/S0040-6090(00)00976-7.
  • Ho, S. M. A Review on Thin Films on Indium Tin Oxide Coated Glass Substrate. Asian J. Chem. 2016, 28, 469–472. DOI: 10.14233/ajchem.2016.19579.
  • Żmija, J.; Małachowski, M. New Organic Electrochromic Materials and Theirs Applications. J. Achiev. Mater. Manuf. Eng. 2011, 48, 14–23.
  • Kaur, N.; Kumar, S. Colorimetric Metal Ion Sensors. Tetrahedron 2011, 48, 9233–9264. DOI: 10.1016/j.tet.2011.09.003.
  • Selektor, S.; Shokurov, A. Conjugated Compounds in Supramolecular Informational Systems: A Review. Prot. Met. Phys. Chem. Surf. 2015, 51, 171–203. DOI: 10.1134/S2070205115020161.
  • De Campos Ventura-Camargo, B.; Marin-Morales, M. A. Azo Dyes: Characterization and Toxicity–A Review. Text. Light Ind. Sci. Technol. 2013, 2, 85–103.
  • Han, J.; Burgess, K. Fluorescent Indicators for Intracellular pH. Chem. Rev. 2010, 110, 2709–2728. DOI: 10.1021/cr900249z.
  • Van der Schueren, L.; De Clerck, K. Coloration and Application of pH-Sensitive Dyes on Textile Materials. Color Technol 2012, 128, 82–90. DOI: 10.1111/j.1478-4408.2011.00361.x.
  • Roberts, D. R.; Holder, S. J. Mechanochromic Systems for the Detection of Stress, Strain and Deformation in Polymeric Materials. J. Mater. Chem. 2011, 21, 8256–8268. DOI: 10.1039/C0JM04237D.
  • Luo, M.; Zhou, X. Organic Small-Molecule Mechanofluorochromic Materials. RSC Smart Mater 2014, 8, 7–71. DOI: 10.1002/chin.201623243.
  • Zhang, X.; Wei, Y.; Chi, Z.; Xu, J. Organic-Inorganic Complex Mechanofluorochromic Materials. ChemInform 2014, 46, 72–113. DOI: 10.1002/chin.201550203.
  • Seki, T.; Tokodai, N.; Omagari, S.; Nakanishi, T.; Hasegawa, Y.; Iwasa, T.; Taketsugu, T.; Ito, H. Luminescent Mechanochromic 9-Anthryl Gold (I) isocyanide Complex with an Emission Maximum at 900 nm after Mechanical Stimulation. J. Am. Chem. Soc. 2017, 139, 6514–6517. DOI: 10.1021/jacs.7b00587.
  • Prampolini, G.; Bellina, F.; Biczysko, M.; Cappelli, C.; Carta, L.; Lessi, M.; Pucci, A.; Ruggeri, G.; Barone, V. Computational Design, Synthesis, and Mechanochromic Properties of New Thiophene-Based π-Conjugated Chromophores. Chem. Eur. J. 2013, 19, 1996–2004. DOI: 10.1002/chem.201203672.
  • Jiang, Y. An Outlook Review: Mechanochromic Materials and Their Potential for Biological and Healthcare Applications. Mater. Sci. Eng. C 2014, 45, 682–689. DOI: 10.1016/j.msec.2014.08.027.
  • Li, L. L.; Sun, H.; Fang, C. J.; Yuan, Q.; Sun, L. D.; Yan, C. H. Mesostructured Hybrids Containing Potential Donors and Acceptors with Molecular-Scale and Meso-Scale Segregation and Ordering: Toward the Development of Smart Materials through Hierarchical Self-Assembly. Chem. Mater. 2009, 21, 4589–4597. DOI: 10.1021/cm9016535.
  • Calvino, C.; Neumann, L.; Weder, C.; Schrettl, S. Approaches to Polymeric Mechanochromic Materials. J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 640–652. DOI: 10.1002/pola.28445.
  • Ribi, H. Methods and compositions for preparing consumables with optical shifting properties. U.S. patent 20030103905A1, June 5, 2003.
  • Odom, S. A.; Caruso, M. M.; Finke, A. D.; Jackson, A. C.; Moore, J. S.; Sottos, N. R.; White, S. R. System for visual indication of mechanical damage. U.S. patent 8846404B2, September 30, 2014.
  • Suslick, K. S. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons: New York, 1998; Vol. 26, pp. 517–541. DOI: 10.1002/0471238961.herbduke.a01.pub2.
  • Xu, B.; Qi, Q.; Zhang, J.; Tian, W. Mechanofluorochromic Mechanism. RSC Smart Materials 2014, 8, 236–262. DOI: 10.1039/9781782623229-00001.
  • Chan, E. P.; Walish, J. J.; Urbas, A. M.; Thomas, E. L. Mechanochromic Photonic Gels. Adv. Mater. 2013, 25, 3934–3947. DOI: 10.1002/adma.201300692.
  • Lee, J.; Chang, H. T.; An, H.; Ahn, S.; Shim, J.; Kim, J. M. A Protective Layer Approach to Solvatochromic Sensors. Nat. Commun 2013, 4, 2461. DOI: 10.1038/ncomms3461.
  • Rankin, J. M.; Zhang, Q.; LaGasse, M. K.; Zhang, Y.; Askim, J. R.; Suslick, K. S. Solvatochromic Sensor Array for the Identification of Common Organic Solvents. Analyst 2015, 140, 2613–2617. DOI: 10.1039/c4an02253j.
  • Marini, A.; Muñoz-Losa, A.; Biancardi, A.; Mennucci, B. What is Solvatochromism? J. Phys. Chem. B 2010, 114, 17128–17135. DOI: 10.1021/jp1097487.
  • Nigam, S.; Rutan, S. Principles and Applications of Solvatochromism. Appl. Spectrosc. 2001, 55, 362–370. DOI: 10.1366/0003702011953702.
  • Kleemann, M.; Suisalu, A.; Kikas, J. Polymer Film Doped with a Solvatochromic Dye for Humidity Measurement, Optical Materials and Applications. Opt. Mater. Appl. 2006, 5956, 59460N. DOI: 10.1117/12.639189.
  • Sun, C.; Zhang, Y.; Fan, Y.; Li, Y.; Li, J. Mannose–Escherichia coli Interaction in the Presence of Metal Cations Studied in Vitro by Colorimetric Polydiacetylene/Glycolipid Liposomes. J. Inorg. Biochem. 2004, 98, 925–930. DOI: 10.1016/j.jinorgbio.2004.03.006.
  • Charych, D. H.; Nagy, J. O.; Spevak, W.; Bednarski, M. D. Direct Colorimetric Detection of a Receptor-Ligand Interaction by a Polymerized Bilayer Assembly. Science 1993, 261, 585–588. DOI: 10.1126/science.8342021.
  • Liu, J.; He, P.; Yan, J.; Fang, X.; Peng, J.; Liu, K.; Fang, Y. An Organometallic Super-Gelator with Multiple-Stimulus Responsive Properties. Adv. Mater. 2008, 20, 2508–2511. DOI: 10.1002/adma.200703195.
  • Beckham, H.; Rubner, M. On the Origin of Thermochromism in Cross-Polymerized Diacetylene-Functionalized Polyamides. Macromolecules 1993, 26, 5198–5201. DOI: 10.1021/ma00071a034.
  • Berkeley Lab. Colorimetric and Fluorescent Sensors for Rapid and Direct Detection of Influenza, E. coli and Other Analytes, 2009. http://www.lbl.gov/tt/techs/lbnl0965.html.
  • Cernohous, J. J.; Koecher, S. D.; Hansen, R. G.; Bommarito, G. M. Polydiacetylene polymer compositions and methods of manufacture. U.S. Patent 7,816,472, October 19, 2010.
  • Fuchs, A.; Anne, V. C. TTI indicator with Balanced Photochemical Processes. U.S. Patent 8,403,558, March 26, 2013.
  • Evans, R. A.; Nino, M. Photochromic Polymer. U.S. Patent 9,217,812, December 22, 2015.
  • Prusik, T.; Smith, D. E.; Taylor, D. H.; Arnold, R. H. Dual-Function Heat Indicator and Method of Manufacture. U.S. patent 13/893,317, February 13, 2014.
  • Lucht, B. L.; William, B. E. Low Temperature Irreversible Thermochromic Compositions. U.S. Patent 12/437,473, November 12, 2009.
  • Parker, R. J. E. S.; Steven, P. B. Thermochromic Indicator. U.S. Patent 8,911,861, December 16, 2014.
  • Atkinson, P.; Kruest, J.; Agrawal, A.; Cronin, J. P.; Adams, L. L.; Tonazzi, J. C. L. Intelligent label device and method. U.S. Patent 9,471,862, October 18, 2016.
  • Chandrasekhar, P. Complimentary Polymer Electrochromic Device. U.S. Patent 9,274,395, March 1, 2016.
  • Karmhag, R.; Greger, G. Manufacturing of Curved Electrochromic devices. U.S. Patent 7,808,692, October 5, 2010.
  • Corzani, I.; Klofta, T. J.; Joseph, L.; Tee, J. J. Wetness Indicator Compositions Comprising Leuco Dyes. U.S. Patent 15/565,832, April 26, 2018.
  • Junger, M. C.; Kim, J. G. pH Sensitive Indicator Device. U.S. patent 12/353,779, July 23, 2009.
  • Brinton, W. F.; Eric, E. Test kit for Measuring Volatile Ammonia in Biological Sample. U.S. Patent 6,391,262, May 21, 2002.
  • Hickenboth, C. R.; Cynthia, K.; Matthew, J. K. Polymer Compositions Containing Mechanochromic Polymers. U.S. Patent 9,040,648, May 26, 2015.
  • Potisek, S. L.; Davis, D. A.; White, S. R.; Sottos, N. R.; Moore, J. S. Self-Assessing Mechanochromic Materials. U.S. Patent 8,236,914, Aug 7, 2012.
  • Hickenboth, C. R.; Gregory, J. M.; Elizabeth, F. Coating Composition Having Mechanochromic Crystals. U.S. Patent 9,133,362, September 15, 2015.
  • Martin, S. M.; John, G. M.; Erica, M. P. Optical Indicator for Detecting Bacterial Pathogens. U.S. Patent 8,247,220, August 21, 2012.
  • Macdonald, J. G.; Bagwell, A. S.; Huang, Y.; Kim, J.; Martin, S. M. Solvatochromic Visual Indicator and the Use of the Same. U.S. Patent 7,829,181, November 9, 2010.
  • Lye, J.; John, G. M.; Ning, W. Solvatochromatic Bacterial Detection. U.S. Patent 7,282,349, October 16, 2007.
  • Zehnder, D. W.; John, R. S. Molecular Indicator and Process of Synthesizing. U.S. Patent 12/674,239. March 3, 2011.
  • Baker, C. O.; Chris, B.; Lola, R. Functionalized Polymer Biosensor. U.S. Patent 13/279,509, April 12, 2012.
  • Keith, W.; Asadeh, N. Polymer Based Biosensor. U.S. Patent 20090260995A1, October 22, 2009.
  • Huang, X. W.; Zou, X. B.; Shi, J. Y.; Li, Z. H.; Zhao, J. W. Review: Colorimetric Sensor Arrays Based on Chemo-Responsive Dyes for Food Odor Visualization. Trends Food Sci. Technol. 2018, 81, 90–107. DOI: 10.1016/j.tifs.2018.09.001.
  • Ghaani, M.; Cozzolino, C. A.; Castelli, G.; Farris, S. An Overview of the Intelligent Packaging Technologies in the Food Sector. Trends Food Sci. Technol. 2016, 51, 1–11. DOI: 10.1016/j.tifs.2016.02.008.
  • Wang, S.; Liu, X.; Yang, M.; Zhang, Y.; Xiang, K.; Tang, R. Review of Time Temperature Indicators as Quality Monitors in Food Packaging. Packag. Technol. Sci. 2015, 28, 839–867. DOI: 10.1002/pts.2148.
  • Pavelková, A. Time Temperature Indicators as Devices Intelligent Packaging. Acta Univ. Agric. Silvic. Mendelianae Brun. 2013, 61, 245–251. DOI: 10.11118/actaun201361010245.
  • Feiler, L.; Raimann, T. Time Temperature Indicator Comprising Indolenin Based Spiropyrans Containing a n-acetylamido or n-acetylester Side Chain. U.S. Patent EP2291382B1, December 14, 2011.
  • Optical Society of America. New Color-Changing Technology Has Potential Packaging, Military, Aerospace Applications. Science Daily 2007, 25, 9553–9561.
  • Pursiainen, O. L. J.; Baumberg, J. J.; Winkler, H.; Viel, B.; Spahn, P.; Ruhl, T. Nanoparticle-Tuned Structural Color from Polymer Opals. Opt. Express 2007, 15, 9553–9561. DOI: 10.1364/OE.15.009553.
  • Herzer, N.; Guneysu, H.; Davies, D. J.; Yildirim, D.; Vaccaro, A. R.; Broer, D. J.; Bastiaansen, C. W.; Schenning, A. P. Printable Optical Sensors Based on H-Bonded Supramolecular Cholesteric Liquid Crystal Networks. J. Am. Chem. Soc. 2012, 134, 7608–7611. DOI: 10.1021/ja301845n.
  • Purkayastha, S.; Biswal, A. K.; Saha, S. Responsive Systems in Food Packaging. J. Package. Technol. Res. 2017, 1, 53–64. DOI: 10.1007/s41783-017-0007-0.
  • PrintPack Company. Photochromic intelligent packaging, 2016. https://www.printpack.com.
  • Goh, T. K.; Guntari, S. N.; Ochs, C. J.; Blencowe, A.; Mertz, D.; Connal, L. A.; Such, G. K.; Qiao, G. G.; Caruso, F. Nanoengineered Films via Surface-Confined Continuous Assembly of Polymers. Small 2011, 7, 2863–2867. DOI: 10.1002/smll.201101368.
  • Guntari, S. N.; Goh, T. K.; Blencowe, A.; Wong, E. H.; Caruso, F.; Qiao, G. G. Factors Influencing the Growth and Topography of Nanoscale Films Fabricated by ROMP-Mediated Continuous Assembly of Polymers. Polym. Chem. 2013, 4, 68–75. DOI: 10.1039/C2PY20692G.
  • Tan, S.; Cui, J.; Fu, Q.; Nam, E.; Ladewig, K.; Ren, J. M.; Wong, E. H.; Caruso, F.; Blencowe, A.; Qiao, G. G. Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles. ACS Appl. Mater. Interfaces 2016, 8, 6219–6228. DOI: 10.1021/acsami.5b11186.
  • Seeboth, A.; Ruhmann, R.; Mühling, O. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control. Materials 2010, 3, 5143–5168. DOI: 10.3390/ma3125143.
  • Ramakers, B. E.; van den Heuvel, M.; Tsichlis i Spithas, N.; Brinkhuis, R. P.; van Hest, J. C.; LöWik, D. W. Polymerization-Induced Color Changes of Polydiacetylene-Containing Liposomes and Peptide Amphiphile Fibers. Langmuir 2012, 28, 2049–2055. DOI: 10.1021/la203836y.
  • Lee, S.; Kim, J. Y.; Chen, X.; Yoon, J. Recent Progress in Stimuli-Induced Polydiacetylenes for Sensing Temperature, Chemical and Biological Targets. Chem. Commun. 2016, 52, 9178–9196. DOI: 10.1039/C6CC03584A.
  • Wang, D. E.; Zhang, Y.; Li, T.; Tu, Q.; Wang, J. Self-Immolative Trigger-Initiated Polydiacetylene Probe for β-Glucuronidase Activity. RSC Adv 2014, 4, 16820–16823. DOI: 10.1039/c4ra01816h.
  • Jung, S. H.; Jang, H.; Lim, M. C.; Kim, J. H.; Shin, K. S.; Kim, S. M.; Kim, H. Y.; Kim, Y. R.; Jeon, T. J. Chromatic Biosensor for Detection of Phosphinothricin Acetyltransferase by Use of Polydiacetylene Vesicles Encapsulated within Automatically Generated Immunohydrogel Beads. Anal. Chem. 2015, 87, 2072–2078. DOI: 10.1021/ac501795x.
  • Wacharasindhu, S.; Montha, S.; Boonyiseng, J.; Potisatityuenyong, A.; Phollookin, C.; Tumcharern, G.; Sukwattanasinitt, M. Tuning of Thermochromic Properties of Polydiacetylene toward Universal Temperature Sensing Materials through Amido Hydrogen Bonding. Macromolecules 2010, 43, 716–724. DOI: 10.1021/ma902282c.
  • Verstraete, L.; Hirsch, B. E.; Greenwood, J.; De Feyter, S. Confined Polydiacetylene Polymerization Reactions for Programmed Length Control. Chem. Commun. 2017, 53, 4207–4210. DOI: 10.1039/C7CC00885F.
  • Warczak, M.; Gryszel, M.; Jakešová, M.; Đerek, V.; Głowacki, E. D. Organic Semiconductor Perylenetetracarboxylic Diimide (PTCDI) Electrodes for Electrocatalytic Reduction of Oxygen to Hydrogen Peroxide. Chem. Commun. 2018, 54, 1960–1963. DOI: 10.1039/C7CC08471D.
  • Warczak, M. G.; Jakešová, M.; Đerek, V.; Głowacki, E. D. Photoinduced Reversible Phase Transition of Azobenzene-Containing Polydiacetylene Crystals. Chem. Commun 2018, 52, 14059–14062. DOI: 10.1039/C6CC08606C.
  • Park, S.; Lee, G. S.; Cui, C.; Ahn, D. J. Simple Detection of Food Spoilage Using Polydiacetylene/Poly(Vinyl Alcohol) Hybrid Films. Macromol. Res. 2016, 24, 380–384. DOI: 10.1007/s13233-016-4040-6.
  • Kim, D. Y.; Lee, S. A.; Jung, D.; Koo, J.; Soo, J. K.; Yu, Y. T.; Lee, C. R.; Jeong, K. U. Topochemical Polymerization of Dumbbell-Shaped Diacetylene Monomers: Relationship Between Chemical Structure, Molecular Packing Structure, and Gelation Property. Soft Matter 2017, 13, 5759–5766. DOI: 10.1039/C7SM01166K.
  • Kim, J. U.; Ghafoor, K.; Ahn, J.; Shin, S.; Lee, S. H.; Shahbaz, H. M.; Shin, H. H.; Kim, S.; Park, J. Kinetic Modeling and Characterization of a Diffusion-Based Time-Temperature Indicator (TTI) for Monitoring Microbial Quality of Non-Pasteurized Angelica Juice. LWT Food Sci. Technol. 2016, 67, 143–150. DOI: 10.1016/j.lwt.2015.11.034.
  • Zabala, S.; Castán, J.; Martínez, C. Development of a Time–Temperature Indicator (TTI) Label by Rotary Printing Technologies. Food Control 2015, 50, 57–64. DOI: 10.1016/j.foodcont.2014.08.007.
  • Kai, H.; Suda, W.; Ogawa, Y.; Nagamine, K.; Nishizawa, M. Intrinsically Stretchable Electrochromic Display by a Composite Film of Poly(3,4-Ethylenedioxythiophene) and Polyurethane. ACS Appl. Mater. Interfaces 2017, 9, 19513–19518. DOI: 10.1021/acsami.7b03124.
  • Shen, J.; Xie, L.; Mao, J.; Jonsson, F.; Zheng, L. R. Intelligent Packaging with Inkjet-Printed Electrochromic Paper display - A Passive Display Infotag. J. Imaging Sci. Technol 2012, 164–167.
  • Vanderroost, M.; Ragaert, P.; Devlieghere, F.; De Meulenaer, B. Intelligent Food Packaging: The Next Generation. Trends Food Sci. Technol. 2014, 39, 47–62. DOI: 10.1016/j.tifs.2014.06.009.
  • Granqvist, C. G.; Arvizu, M. A.; Bayrak Pehlivan, İ.; Qu, H. Y.; Wen, R. T.; Niklasson, G. A. Electrochromic Materials and Devices for Energy Efficiency and Human Comfort in Buildings: A Critical Review. Electrochim. Acta 2018, 259, 1170–1182. DOI: 10.1016/j.electacta.2017.11.169.
  • Roberts, L.; Lines, R.; Reddy, S.; Hay, J. Investigation of Polyviologens as Oxygen Indicators in Food Packaging. Sens. Actuators B Chem 2011, 152, 63–67. DOI: 10.1016/j.snb.2010.09.047.
  • Brockgreitens, J.; Abbas, A. Responsive Food Packaging: recent Progress and Technological Prospects. Comprehensive Reviews in Food Science and Food Safety. 2016, 15, 3–15. DOI: 10.1111/1541-4337.12174.
  • Biji, K. B.; Ravishankar, C. N.; Mohan, C. O.; Srinivasa Gopal, T. K. Smart Packaging Systems for Food Applications: A Review. J. Food Sci. Technol. 2015, 52, 6125–6135. DOI: 10.1007/s13197-015-1766-7.
  • Debeaufort, F.; Voilley, A. Aroma Compound and Water Vapor Permeability of Edible Films and Polymeric Packagings. J. Agric. Food Chem. 1994, 42, 2871–2875. DOI: 10.1021/jf00048a041.
  • Liu, F.; Jiang, Y.; Du, B.; Chai, Z.; Jiao, T.; Zhang, C.; Ren, F.; Leng, X. Design and Characterization of Controlled-Release Edible Packaging Films Prepared with Synergistic Whey-Protein Polysaccharide Complexes. J. Agric. Food Chem. 2013, 61, 5824–5833. DOI: 10.1021/jf4009923.
  • Yoshida, C. M. P.; Maciel, V. B. V.; Mendonça, M. E. D.; Franco, T. T. Chitosan Biobased and Intelligent Films: Monitoring pH Variations. LWT Food Sci. Technol. 2014, 55, 83–89. DOI: 10.1016/j.lwt.2013.09.015.
  • Lim, H. S.; Lee, J. H.; Walish, J. J.; Thomas, E. L. Dynamic Swelling of Tunable Full-Color Block Copolymer Photonic Gels via Counterion Exchange. ACS Nano 2012, 6, 8933–8939. DOI: 10.1021/nn302949n.
  • Pacquit, A.; Frisby, J.; Diamond, D.; Lau, K. T.; Farrell, A.; Quilty, B.; Diamond, D. Development of a Smart Packaging for the Monitoring of Fish Spoilage. Food Chem. 2007, 102, 466–470. DOI: 10.1016/j.foodchem.2006.05.052.
  • Jung, J.; Puligundla, P.; Ko, S. Proof-of-Concept Study of Chitosan-Based Carbon Dioxide Indicator for Food Packaging Applications. Food Chem. 2012, 135, 2170–2174. DOI: 10.1016/j.foodchem.2012.07.090.
  • Silva-Pereira, M. C.; Teixeira, J. A.; Pereira-Júnior, V. A.; Stefani, R. Chitosan/Corn Starch Blend Films with Extract from Brassica Oleraceae (Red Cabbage) as a Visual Indicator of Fish Deterioration. LWT Food Sci. Technol 2015, 61, 258–262. DOI: 10.1016/j.lwt.2014.11.041.
  • Gillanders, R. N.; Arzhakova, O. V.; Hempel, A.; Dolgova, A.; Kerry, J. P.; Yarysheva, L. M.; Bakeev, N. F.; Volynskii, A. L.; Papkovsky, D. B. Phosphorescent Oxygen Sensors Based on Nanostructured Polyolefin Substrates. Anal. Chem. 2010, 82, 466–468. DOI: 10.1021/ac902406w.
  • Kucharski, T. J.; Boulatov, R. The Physical Chemistry of Mechanoresponsive Polymers. J. Mater. Chem. 2011, 21, 8237–8255. DOI: 10.1039/C0JM04079G.
  • Weder, C. Mechanoresponsive Materials. J. Mater. Chem. 2011, 21, 8235–8236. DOI: 10.1039/C1JM90068D.
  • Imato, K.; Kanehara, T.; Ohishi, T.; Nishihara, M.; Yajima, H.; Ito, M.; Takahara, A.; Otsuka, H. Mechanochromic Dynamic Covalent Elastomers: Quantitative Stress Evaluation and Autonomous Recovery. ACS Macro Lett. 2015, 4, 1307–1311. DOI: 10.1021/acsmacrolett.5b00717.
  • Yoshimitsu, S. T. K. Mechanically Induced Luminescence Changes in Molecular Assemblies. Nat. Chem. 2009, 1, 605–610. DOI: 10.1038/nchem.411.
  • Piriya, V. S. A.; Joseph, P.; Daniel, S. C. G. K.; Lakshmanan, S.; Kinoshita, T.; Muthusamy, S. Colorimetric Sensors for Rapid Detection of Various Analytes. Mater. Sci. Eng. C 2017, 78, 1231–1245. DOI: 10.1016/j.msec.2017.05.018.
  • Pires, A. C. D. S.; Soares, N. D. F. F.; Da-Silva, L. H. M.; Da-Silva, M. D. C. H.; De-Almeida, M. V.; Le-Hyaric, M.; Andrade, N. J. D.; Soares, R. F.; Mageste, A. B.; Reis, S. G. A. Colorimetric Biosensor for the Detection of Foodborne Bacteria. Sens. Actuators. B Chem. 2011, 153, 17–23. DOI: 10.1016/j.snb.2010.09.069.
  • Sanchez, J. C.; Trogler, W. C. Polymerization of a Boronate-Functionalized Fluorophore by Double Transesterification: applications to Fluorescence Detection of Hydrogen Peroxide Vapor. J. Mater. Chem. 2008, 18, 5134–5141. DOI: 10.1039/B809674K.
  • Fraunhofer-Gesellschaft. Sensor Determines If Packaged Meat Has Spoiled. ScienceDaily, 2019.
  • Rico-Yuste, A.; González-Vallejo, V.; Benito-Peña, E.; de las Casas Engel, T.; Orellana, G.; Moreno-Bondi, M. C. Furfural Determination with Disposable Polymer Films and Smartphone-Based Colorimetry for Beer Freshness Assessment. Anal. Chem. 2016, 88, 3959–3966. DOI: 10.1021/acs.analchem.6b00167.
  • Buonocore, G. G.; Conte, A.; Corbo, M. R.; Sinigaglia, M.; Del Nobile, M. A. Mono- and Multilayer Active Films Containing Lysozyme as Antimicrobial Agent. Innov. Food Sci. Emerg. Technol 2005, 6, 459–464. DOI: 10.1016/j.ifset.2005.05.006.
  • Realini, C. E.; Marcos, B. Active and Intelligent Packaging Systems for a Modern Society. Meat. Sci. 2014, 98, 404–419. DOI: 10.1016/j.meatsci.2014.06.031.
  • Dainelli, D. Global Legislation for Active and Intelligent Packaging Materials. Woodhead Publishing Series in Food Science. Technology and Nutrition 2015, 183–199. DOI: 10.1016/B978-1-78242-014-9.00008-5.
  • Schaefer, D.; Cheung, W. M. Smart Packaging: Opportunities and Challenges. Procedia. CIRP 2018, 72, 1022–1027. DOI: 10.1016/j.procir.2018.03.240.
  • Mahalik, N. P. Advances in Packaging Methods, Processes and Systems. Challenges 2014, 5, 374–389. DOI: 10.3390/challe5020374.
  • Peelman, N.; Ragaert, P.; De Meulenaer, B.; Adons, D.; Peeters, R.; Cardon, L.; Van Impe, F.; Devlieghere, F. Application of Bioplastics for Food Packaging. Trends Food Sci. Technol 2013, 32, 128–141. DOI: 10.1016/j.tifs.2013.06.003.
  • Fiddes, L. K.; Chang, J.; Yan, N. Electrochemical Detection of Biogenic Amines during Food Spoilage Using an Integrated Sensing RFID Tag. Sens. Actuators B Chem 2014, 202, 1298–1304. DOI: 10.1016/j.snb.2014.05.106.
  • Raghu Das, G. C. Smart Packaging Comes to Market: Brand Enhancement with Electronics 2014–2024 Printed, Flexible, and Organic Electronics Report. IDTechEx 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.