760
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Electrospun Polymer-Inorganic Nanostructured Materials and Their Applications

&
Pages 493-541 | Received 21 Jun 2019, Accepted 01 Oct 2019, Published online: 22 Oct 2019

References

  • Balzer, C.; Armstrong, M.; Shan, B.; Huang, Y.; Liu, J.; Mu, B. Modeling Nanoparticle Dispersion in Electrospun Nanofibers. Langmuir 2018, 34, 1340–1346. DOI: 10.1021/acs.langmuir.7b03726.
  • Zhang, C. L.; Yu, S. H. Nanoparticles Meet Electrospinning: Recent Advances and Future Prospects. Chem. Soc. Rev. 2014, 43, 4423–4448. DOI: 10.1039/c3cs60426h.
  • Chen, C.; Tang, Y.; Vlahovic, B.; Yan, F. Electrospun Polymer Nanofibers Decorated with Noble Metal Nanoparticles for Chemical Sensing. Nanoscale Res. Lett. 2017, 12, 451–466. DOI: 10.1186/s11671-017-2216-4.
  • Wang, X.; Yu, J.; Sun, G.; Ding, B. Electrospun Nanofibrous Materials, a Versatile Medium for Effective Oil/Water Separation. Mater. Today 2016, 19, 403–414. DOI: 10.1016/j.mattod.2015.11.010.
  • Miguel, S. P.; Figueira, D. R.; Simoes, D.; Ribeiro, M. P.; Coutinho, P.; Ferreira, P.; Correia, I. J. Electrospun Polymeric Nanofibres as Wound Dressings, a Review. Colloids Surf. B Biointerfaces 2018, 169, 60–71. DOI: 10.1016/j.colsurfb.2018.05.011.
  • Ali, A. A. New Generation of Super Absorber Nano-Fibroses Hybrid Fabric by Electro-Spinning. J. Mater. Process. Technol. 2008, 199, 193–198. DOI: 10.1016/j.jmatprotec.2007.08.016.
  • Son, H. Y.; Ryu, J. H.; Lee, H.; Nam, Y. S. Bioinspired Templating Synthesis of Metal − Polymer Hybrid Nanostructures within 3D Electrospun Nanofiber. ACS Appl. Mater. Interfaces 2013, 5, 6381–6390. DOI: 10.1021/am401550p.
  • Chae, S.; Park, H.; Yoon, J.; Lee, C. H.; Ahn, D. J.; Kim, J.‐M. Polydiacetylene Supramolecules in Electrospun Microfibers: Fabrication, Micropatterning, and Sensor Applications. Adv. Mater. 2007, 19, 521–524. DOI: 10.1002/adma.200602012.
  • Kuriki, K.; Koike, Y.; Okamoto, Y. Plastic Optical Fiber Lasers and Amplifiers Containing Lanthanide Complexes. Chem. Rev. 2002, 102, 2347–2356. DOI: 10.1021/cr010309g.
  • Nair, S.; Hsiao, E.; Kim, S. H. Melt-Welding and Improved Electrical Conductivity of Nonwoven Porous Nanofiber Mats of Poly (3,4-Ethylenedioxythiophene) Grown on Electrospun Polystyrene Fiber Template. Chem. Mater. 2009, 21, 115–121. DOI: 10.1021/cm8029449.
  • Nakazawa, M.; Shi, Y.; Matsuura, Y.; Iwai, K.; Miyagi, M. Hollow Polycarbonate Fiber for Er, YAG Laser Light Delivery. Opt. Lett. 2006, 31, 1373–1375. DOI: 10.1364/OL.31.001373.
  • Yuan, W.; Stefani, A.; Bang, O. Tunable Polymer Fiber Bragg Grating (FBG) Inscription, Fabrication of dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors. IEEE Photon. Technol. Lett. 2012, 24, 401–403. DOI: 10.1109/LPT.2011.2179927.
  • Wang, J.; Yao, H. B.; He, D.; Zhang, C. L.; Yu, S. H. Facile Fabrication of Gold Nanoparticles-Poly(Vinyl Alcohol) Electrospun Water-Stable Nanofibrous Mats, Efficient Substrate Materials for Biosensors. ACS Appl. Mater. Interfaces 2012, 4, 1963–1971. DOI: 10.1021/am300391j.
  • Yao, S.; Wang, X.; Liu, X.; Wang, R.; Deng, C.; Cui, F. Effects of Ambient Relative Humidity and Solvent Properties on the Electrospinning of Pure Hyaluronic Acid Nanofibers. J. Nanosci. Nanotechnol. 2013, 13, 4752–4758. DOI: 10.1166/jnn.2013.7197.
  • Theron, S. A.; Zussman, E.; Yarin, A. L. Experimental Investigation of the Governing Parameters in the Electrospinning of Polymer Solutions. Polymer 2004, 45, 2017–2030. DOI: 10.1016/j.polymer.2004.01.024.
  • Zhang, H.; Han, J.; Yang, B. Structural Fabrication and Functional Modulation of Nanoparticle–Polymer Composites. Adv. Funct. Mater. 2010, 20, 1533–1550. DOI: 10.1002/adfm.201000089.
  • Mahapatra, A.; Garg, N.; Nayak, B. P.; Mishra, B. G.; Hota, G. Studies on the Synthesis of Electrospun PAN-Ag Composite Nanofibers for Antibacterial Application. J. Appl. Polym. Sci. 2012, 124, 1178–1185. DOI: 10.1002/app.35076.
  • Kim, C.; Kim, Y. A.; Kim, J. H.; Kataoka, M.; Endo, M. Self-Assembled Palladium Nanoparticles on Carbon Nanofibers. Nanotechnology 2008, 19, 145602. DOI: 10.1088/0957-4484/19/14/145602.
  • Li, Z.; Huang, H.; Shang, T.; Yang, F.; Zheng, W.; Wang, C.; Manohar, S. K. Facile Synthesis of Single-Crystal and Controllable Sized Silver Nanoparticles on the Surfaces of Polyacrylonitrile Nanofibers. Nanotechnology 2006, 17, 917. DOI: 10.1088/0957-4484/17/3/050.
  • Shi, Q.; Vitchuli, N.; Nowak, J.; Noar, J.; Caldwell, J. M.; Breidt, F.; Bourham, M.; McCord, M.; Zhang, X. One-Step Synthesis of Silver Nanoparticle-Filled Nylon 6 Nanofibers and Their Antibacterial Properties. J. Mater. Chem. 2011, 21, 10330–10335. DOI: 10.1039/c1jm11492a.
  • Puiggalí-Jou, A.; Cejudo, A.; del Valle, L. J.; Alemán, C. Smart Drug Delivery from Electrospun Fibers through Electro-Responsive Polymeric Nanoparticles. ACS Appl. Bio Mater. 2018, 1, 1594–1605. DOI: 10.1021/acsabm.8b00459.
  • Pant, H. R.; Pandeya, D. R.; Nam, K. T.; Baek, W. I.; Hong, S. T.; Kim, H. Y. Photocatalytic and Antibacterial Properties of a TiO2/Nylon-6 Electrospun Nanocomposite Mat Containing Silver Nanoparticles. J. Hazard. Mater. 2011, 189, 465–471. DOI: 10.1016/j.jhazmat.2011.02.062.
  • Pascariu Dorneanu, P.; Airinei, A.; Homocianu, M.; Olaru, N. Photophysical and Surface Characteristics of Electrospun Polysulfone/Nickel Fibers. Mater. Res. Bull. 2015, 64, 306–311. DOI: 10.1016/j.materresbull.2015.01.012.
  • Kim, Y. B.; Cho, D.; Park, W. H. Enhancement of Mechanical Properties of TiO2 Nanofibers by Reinforcement with Polysulfone Fibers. Mater. Lett. 2010, 64, 189–191. DOI: 10.1016/j.matlet.2009.10.038.
  • Wan, H.; Wang, N.; Yang, J.; Si, Y.; Chen, K.; Ding, B.; Sun, G.; El-Newehy, M.; Al-Deyab, S. S.; Yu, J. Hierarchically Structured Polysulfone/Titania Fibrous Membranes with Enhanced Air Filtration Performance. J. Colloid. Interface. Sci. 2014, 417, 18–26. DOI: 10.1016/j.jcis.2013.11.009.
  • Li, H.; Li, C.; Zhang, C.; Bai, J.; Xu, T.; Sun, W. Well Dispersed Copper Nanorods Grown on the Surface Functionalized PAN Fibers and Its Antibacterial Activity. J. Appl. Polym. Sci. 2014, 131, 41011. DOI: 10.1002/app.41011.
  • Lee, H. U.; Park, S. Y.; Lee, S. C.; Seo, J. H.; Son, B.; Kim, H.; Yun, H. J.; Lee, G. W.; Lee, S. M.; Nam, B.; et al. Highly Photocatalytic Performance of Flexible 3 Dimensional (3D) ZnO Nanocomposite. Appl. Catal. B Environ. 2014, 144, 83–89. DOI: 10.1016/j.apcatb.2013.06.030.
  • Guo, J.; Niu, Q.; Yuan, Y.; Maitlo, I.; Nie, J.; Ma, G. Electrospun Core–Shell Nanofibers Derived Fe–S/N Doped Carbon Material for Oxygen Reduction Reaction. Appl. Surf. Sci. 2017, 416, 118–123. DOI: 10.1016/j.apsusc.2017.04.135.
  • Yu, D. G.; Zhou, J.; Chatterton, N. P.; Li, Y.; Huang, J.; Wang, X. Polyacrylonitrile Nanofibers Coated with Silver Nanoparticles Using a Modified Coaxial Electrospinning Process. Int. J. Nanomed. 2012, 7, 5725–5732. DOI: 10.2147/IJN.S37455.
  • Wang, Y.; Huang, L.; Tang, J.; Wang, Y.; Li, X.; Ma, W. Luminescent Polyacrylonitrile (PAN) Electrospinning Nanofibers Encapsulating Silica Nanoparticles Carried Ternary Europium Complex. Int. J. Electrochem. Sci. 2016, 11, 2058–2065.
  • Wang, P.; Zhang, L.; Xia, Y.; Tong, L.; Xu, X.; Ying, Y. Polymer Nanofibers Embedded with Aligned Gold Nanorods, a New Platform for Plasmonic Studies and Optical Sensing. Nano Lett. 2012, 12, 3145–3150. DOI: 10.1021/nl301055f.
  • Andre, R. S.; Pavinatto, A.; Mercante, L. A.; Paris, E. C.; Mattoso, L. H. C.; Correa, D. S. Improving the Electrochemical Properties of Polyamide 6/Polyaniline Electrospun Nanofibers by Surface Modification with ZnO Nanoparticles. RSC Adv. 2015, 5, 73875–73881. DOI: 10.1039/C5RA15588F.
  • Kondawar, S.; Patil, P.; Agrawal, S. Chemical Vapour Sensing Properties of Electrospun Nanofibres of Polyaniline/ZnO Nanocomposites. Adv. Funct. Mater. 2014, 5, 389–395. DOI: 10.5185/amlett.2014.amwc.1037.
  • Sharma, H.; Jamkar, D.; Kondawar, S. Electrospun Nanofibres of Conducting Polyaniline/Al-SnO2 Composites for Hydrogen Sensing Applications. Procedia Mater. Sci. 2015, 10, 186–194. DOI: 10.1016/j.mspro.2015.06.040.
  • Xu, T.; Jin, W.; Wang, Z.; Cheng, H.; Huang, X.; Guo, X.; Ying, Y.; Wu, Y.; Wang, F.; Wen, Y.; Yang, H. Electrospun CuO-Nanoparticles-Modified Polycaprolactone@Polypyrrole Fibers, an Application to Sensing Glucose in Saliva. Nanomaterials 2018, 8, 133–146. DOI: 10.3390/nano8030133.
  • Kim, Y. J.; Ahn, C. H.; Lee, M. B.; Choi, M. S. Characteristics of Electrospun PVDF/SiO2 Composite Nanofiber Membranes as Polymer Electrolyte. Mater. Chem. Phys. 2011, 127, 137–142. DOI: 10.1016/j.matchemphys.2011.01.046.
  • Lu, S.; Yu, J.; Cheng, Y.; Wang, Q.; Barras, A.; Xu, W.; Szunerits, S.; Cornu, D.; Boukherroub, R. Preparation of Silver Nanoparticles/Polydopamine Functionalized Polyacrylonitrile Fiber Paper and Its Catalytic Activity for the Reduction 4-Nitrophenol. Appl. Surf. Sci. 2017, 411, 163–169. DOI: 10.1016/j.apsusc.2017.03.120.
  • Yar, A.; Haspulat, B.; Üstün, T.; Eskizeybek, V.; Avcı, A.; Kamış, H.; Achour, S. Electrospun TiO2/ZnO/PAN Hybrid Nanofiber Membranes with Efficient Photocatalytic Activity. RSC Adv. 2017, 7, 29806–29814. DOI: 10.1039/C7RA03699J.
  • Tong, Y.; Lu, X.; Sun, W.; Nie, G.; Yang, L.; Wang, C. Electrospun Polyacrylonitrile Nanofibers Supported Ag/Pd Nanoparticles for Hydrogen Generation from the Hydrolysis of Ammonia Borane. J. Power Sources 2014, 261, 221–226. DOI: 10.1016/j.jpowsour.2014.03.051.
  • Song, J.; Wang, C.; Chen, M.; Regina, V. R.; Wang, C.; Meyer, R. L.; Xie, E.; Dong, M.; Besenbacher, F. Safe and Effective Ag Nanoparticles Immobilized Antimicrobial Nano-Nonwovens. Adv. Eng. Mater. 2012, 14, B240–B246. DOI: 10.1002/adem.201180085.
  • Lee, M. W.; An, S.; Joshi, B.; Latthe, S. S.; Yoon, S. S. Highly Efficient Wettability Control via Three-Dimensional (3D) Suspension of Titania Nanoparticles in Polystyrene Nanofibers. ACS Appl. Mater. Interfaces 2013, 5, 1232–1239. DOI: 10.1021/am303008s.
  • De Vrieze, S.; Daels, N.; Lambert, K.; Decostere, B.; Hens, Z.; Van Hulle, S.; De Clerck, K. Filtration Performance of Electrospun Polyamide Nanofibres Loaded with Bactericides. Text. Res. J. 2012, 82, 37–44. DOI: 10.1177/0040517511416273.
  • Zhu, J.; Wei, S.; Chen, X.; Karki, A. B.; Rutman, D.; Young, D. P.; Guo, Z. Electrospun Polyimide Nanocomposite Fibers Reinforced with Core-Shell Fe-FeO Nanoparticles. J. Phys. Chem. C 2010, 114, 8844–8580. DOI: 10.1021/jp1020033.
  • Luo, C.; Wang, X.; Wang, J.; Pan, K. One-Pot Preparation of Polyimide/Fe3O4 Magnetic Nanofibers with Solvent Resistant Properties. Compos. Sci. Technol. 2016, 133, 97–103. DOI: 10.1016/j.compscitech.2016.07.021.
  • Li, X.; Wang, N.; Fan, G.; Yu, J.; Gao, J.; Sun, G.; Ding, B. Electreted Polyetherimide–Silica Fibrous Membranes for Enhanced Filtration of Fine Particles. J. Colloid. Interface Sci. 2015, 439, 12–20. DOI: 10.1016/j.jcis.2014.10.014.
  • Serbezeanu, D.; Popa, A. M.; Sava, I.; Carja, I. D.; Amberg, M.; Rossi, R. M.; Fortunato, G. Design and Synthesis of Polyimide – Gold Nanofibers with Tunable Optical Properties. Eur. Polym. J. 2015, 64, 10–20. DOI: 10.1016/j.eurpolymj.2014.12.006.
  • Xu, W.; Ding, Y.; Jiang, S.; Chen, L.; Liao, X.; Hou, H. Polyimide/BaTiO3/MWCNTs Three-Phase Nanocomposites Fabricated by Electrospinning with Enhanced Dielectric Properties. Mater. Lett. 2014, 135, 158–161. DOI: 10.1016/j.matlet.2014.07.157.
  • Ding, Y.; Wu, Q.; Zhao, D.; Ye, W.; Hanif, M.; Hou, H. Flexible PI/BaTiO3 Dielectric Nanocomposite Fabricated by Combining Electrospinning and Electrospraying. Eur. Polym. J. 2013, 49, 2567–2571. DOI: 10.1016/j.eurpolymj.2013.05.016.
  • Sung, Y. K.; Ahn, B. W.; Kang, T. J. Magnetic Nanofibers with Core (Fe3O4) Nanoparticle Suspension)/Sheath (Poly Ethylene Terephthalate) Structure Fabricated by Coaxial Electrospinning. J. Magn. Magn. Mater. 2012, 324, 916–922. DOI: 10.1016/j.jmmm.2011.03.004.
  • Yousef, A.; El-Halwany, M. M.; Barakat, N. A. M.; Al Maghrabi, M. N.; Kim, H. Y. CuO-Doped TiO2 Nanofibers as Potential Photocatalyst and Antimicrobial Agent. J. Ind. Eng. Chem. 2015, 26, 251–258. DOI: 10.1016/j.jiec.2014.11.036.
  • Ning, J.; Zhang, X.; Yang, H.; Xu, Z. L.; Wei, Y. M. Preparation of Porous PVDF Nanofiber Coated with Ag NPs for Photocatalysis Application. Fibers Polym. 2016, 17, 21–29. DOI: 10.1007/s12221-016-5705-7.
  • Lee, C.; Wood, D.; Edmondson, D.; Yao, D.; Erickson, A. E.; Tsao, C. T.; Revia, R. A.; Kim, H.; Zhang, M. Electrospun Uniaxially-Aligned Composite Nanofibers as Highly-Efficient Piezoelectric Material. Ceram. Int. 2016, 42, 2734–2740. DOI: 10.1016/j.ceramint.2015.10.170.
  • Pascariu Dorneanu, P.; Cojocaru, C.; Olaru, N.; Samoila, P.; Airinei, A.; Sacarescu, L. Electrospun PVDF Fibers and a Novel PVDF/CoFe2O4 Fibrous Composite as Nanostructured Sorbent Materials for Oil Spill Cleanup. App. Surf. Sci. 2017, 424, 389–396. DOI: 10.1016/j.apsusc.2017.01.177.
  • Gupta, K. K.; Kundan, A.; Mishra, P. K.; Srivastava, P.; Mohanty, S.; Singh, N. K.; Mishra, A.; Maiti, P. Polycaprolactone Composites with TiO2 for Potential Nanobiomaterials, Tunable Properties Using Different Phases. Phys. Chem. Chem. Phys. 2012, 14, 12844–12853. DOI: 10.1039/c2cp41789h.
  • Kim, H. J.; Pant, H. R.; Kim, J. H.; Choi, N. J.; Kim, C. S. Fabrication of Multifunctional TiO2–Fly Ash/Polyurethane Nanocomposite Membrane via Electrospinning. Ceram. Int. 2014, 40, 3023–3029. DOI: 10.1016/j.ceramint.2013.10.005.
  • Sheikh, F. A.; Kanjwal, M. A.; Saran, S.; Chung, W. J.; Kim, H. Polyurethane Nanofibers Containing Copper Nanoparticles as Future Materials. Appl. Surf. Sci. 2011, 257, 3020–3026. DOI: 10.1016/j.apsusc.2010.10.110.
  • Tijing, L. D.; Ruelo, M. T.; Amarjargal, A.; Pant, H. R.; Park, C. H.; Kim, C. S. One-Step Fabrication of Antibacterial (Silver Nanoparticles/Poly(Ethylene Oxide))-Polyurethane Bicomponent Hybrid Nanofibrous Mat by Dual-Spinneret Electrospinning. Mater. Chem. Phys. 2012, 134, 557–561. DOI: 10.1016/j.matchemphys.2012.03.037.
  • Sardar, S.; Kar, P.; Remita, H.; Liu, B.; Lemmens, P.; Pal, S. K.; Ghosh, S. Enhanced Charge Separation and FRET at Heterojunctions between Semiconductor Nanoparticles and Conducting Polymer Nanofibers for Efficient Solar Light Harvesting. Sci. Rep. 2015, 5, 1–14. DOI: 10.1038/srep17313.
  • Hassan, M. S.; Amna, T.; Kim, H. Y.; Khil, M. S. Enhanced Bactericidal Effect of Novel CuO/TiO2 Composite Nanorods and a Mechanism Thereof. Compos. Part. B. Eng. 2013, 45, 904–910. DOI: 10.1016/j.compositesb.2012.09.009.
  • Bhatia, P.; Yadav, P.; Gupta, B. D. Surface Plasmon Resonance Based Fiber Optic Hydrogen Peroxide Sensor Using Polymer Embedded Nanoparticles. Sens. Actuators B Chem. 2013, 182, 330–335. DOI: 10.1016/j.snb.2013.03.021.
  • Miao, Y. E.; Wang, R.; Chen, D.; Liu, Z.; Liu, T. Electrospun Self-Standing Membrane of Hierarchical SiO2@γ-AlOOH (Boehmite) Core/Sheath Fibers for Water Remediation. ACS Appl. Mater. Interfaces 2012, 4, 5353–5359. DOI: 10.1021/am3012998.
  • Shehata, N.; Samir, E.; Gaballah, S.; Hamed, A.; Elrasheedy, A. Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers as Optical Sensors for Radicals. Sensors 2016, 16, 1371–1378. DOI: 10.3390/s16091371.
  • Fang, X.; Ma, H.; Xiao, S.; Shen, M.; Guo, R.; Cao, X.; Shi, X. Facile Immobilization of Gold Nanoparticles into Electrospun Polyethyleneimine/Polyvinyl Alcohol Nanofibers for Catalytic Applications. J. Mater. Chem. 2011, 21, 4493–4501. DOI: 10.1039/c0jm03987j.
  • Dasari, A.; Quiros, J.; Herrero, B.; Boltes, K.; García-Calvo, E.; Rosal, R. Antifouling Membranes Prepared by Electrospinning Polylactic Acid Containing Biocidal Nanoparticles. J. Memb. Sci. 2012, 405, 134–140. DOI: 10.1016/j.memsci.2012.02.060.
  • Almajhdi, F. N.; Fouad, H.; Khalil, K. A.; Awad, H. M.; Mohamed, S. H. S.; Elsarnagawy, T.; Albarrag, A. M.; Al-Jassir, F. F.; Abdo, H. S. In-Vitro Anticancer and Antimicrobial Activities of PLGA/Silver Nanofiber Composites Prepared by Electrospinning. J. Mater. Sci. Mater. Med. 2014, 25, 1045–1053. DOI: 10.1007/s10856-013-5131-y.
  • Gupta, K. K.; Mishra, P. K.; Srivastava, P.; Gangwar, M.; Nath, G.; Maiti, P. N. Hydrothermal in Situ Preparation of TiO2 Particles onto Poly(Lactic Acid) Electrospun Nanofibres. Appl. Surf. Sci. 2013, 264, 375–382. DOI: 10.1016/j.apsusc.2012.10.029.
  • Sumitha, M. S.; Shalumon, K. T.; Sreeja, V. N.; Jayakumar, R.; Nair, S. V.; Menon, D. Biocompatible and Antibacterial Nanofibrous Poly(ε-Caprolactone)-Nanosilver Composite Scaffolds for Tissue Engineering Applications. J. Macromol. Sci. 2012, 49, 131–138. DOI: 10.1080/10601325.2012.642208.
  • Ahmadpoor, P.; Nateri, A. S.; Motaghitalab, V. The Optical Properties of PVA/TiO2 Composite Nanofibers. J. Appl. Polym. Sci. 2013, 130, 78–85. DOI: 10.1002/app.39147.
  • Celebioglu, A.; Topuz, F.; Yildiz, Z.; Uyar, T. One-Step Green Synthesis of Antibacterial Sliver Nanoparticles Embedded in Electrospun Cyclodextrin Electrospun Fibers. Carbohydr. Polym. 2019, 207, 471–479. DOI: 10.1016/j.carbpol.2018.12.008.
  • Jatol, A.; Kim, I.; Ni, Q. Cellulose Acetate Nanofibers Embedded with Ag NPs Anchored TiO2 Nanoparticles for Long Term Excellent Antibacterial Applications. Carbohydr. Polym. 2019, 207, 640–649. DOI: 10.1016/j.carbpol.2018.12.029.
  • Mousavi, S.; Shahraki, F.; Aliabadi, M.; Haji, A.; Deuber, F.; Adlhart, C. Nanofiber Immobilized CeO2/Dendrimer Nanoparticles, an Efficient Photocatalyst in the Visible and the UV. Appl. Surf. Sci. 2019, 479, 608–618. DOI: 10.1016/j.apsusc.2019.02.119.
  • Shen, K.; Hu, Q.; Chen, L.; Shen, J. Preparation of Chitosan Bicomponent Nanofibers Filled with Hydroxyapatite Nanoparticles via Electrospinning. J. Appl. Polym. Sci. 2010, 115, 2683–2690. DOI: 10.1002/app.29832.
  • Abdelgawad, A. M.; Hudson, S. M.; Rojas, O. J. Antimicrobial Wound Dressing Nanofiber Mats from Multicomponent (Chitosan/silver-NPs/Polyvinyl Alcohol) Systems. Carbohydr. Polym. 2014, 100, 166–178. DOI: 10.1016/j.carbpol.2012.12.043.
  • Fouda, M. M. G.; El-Aassar, M. R.; Al-Deyab, S. S. Antimicrobial Activity of Carboxymethyl Chitosan/Polyethylene Oxide Nanofibers Embedded Silver Nanoparticles. Carbohydr. Polym. 2013, 92, 1012–1017. DOI: 10.1016/j.carbpol.2012.10.047.
  • Cai, N.; Li, C.; Han, C.; Luo, X.; Shen, L.; Xue, Y.; Yu, F. Tailoring Mechanical and Antibacterial Properties of Chitosan/Gelatin Nanofiber Membranes with Fe3O4 Nanoparticles for Potential Wound Dressing Application. Appl. Surf. Sci. 2016, 369, 492–500. DOI: 10.1016/j.apsusc.2016.02.053.
  • Zhuang, X.; Cheng, B.; Kang, W.; Xu, X. Electrospun Chitosan/Gelatin Nanofibers Containing Silver Nanoparticles. Carbohydr. Polym. 2010, 82, 524–527. DOI: 10.1016/j.carbpol.2010.04.085.
  • Martínez-Rodríguez, M. A.; Garza-Navarro, M. A.; Moreno-Cortez, I. E.; Lucio-Porto, R.; González-González, V. A. Silver/Polysaccharide-Based Nanofibrous Materials Synthesized from Green Chemistry Approach. Carbohydr. Polym. 2016, 136, 46–53. DOI: 10.1016/j.carbpol.2015.09.014.
  • Pazos, E.; Sleep, E.; Rubert Perez, C. M.; Lee, S. S.; Tantakitti, F.; Stupp, S. I. Nucleation and Growth of Ordered Arrays of Silver Nanoparticles on Peptide Nanofibers, Hybrid Nanostructures with Antimicrobial Properties. J. Am. Chem. Soc. 2016, 138, 5507–5551. DOI: 10.1021/jacs.6b01570.
  • Zhang, L.; Aboagye, A.; Kelkar, A.; Lai, C.; Fong, H. Carbon Nanofibers from Electrospun Polyacrylonitrile and Their Applications. J. Mater. Sci. 2014, 49, 463–480. DOI: 10.1007/s10853-013-7705-y.
  • Patel, S.; Hota, G. Iron Oxide Nanoparticle-Immobilized PAN Nanofibers, Synthesis and Adsorption Studies. RSC Adv. 2016, 6, 15402–15414. DOI: 10.1039/C5RA20345G.
  • Zhang, H. D.; Yan, X.; Zhang, Z. H.; Yu, G. F.; Han, W. P.; Zhang, J. C.; Long, Y. Z. Electrospun PEDOT, PSS/PVP Nanofibres for CO Gas Sensing with Quartz Crystal Microbalance Technique. Int. J. Polym. Sci. 2016, 16, 1–6. DOI: 10.1155/2016/3021353.
  • Nasirian, S.; Moghaddam, H. M. Polyaniline Assisted by TiO2, SnO2 Nanoparticles as a Hydrogen Gas Sensor at Environmental Conditions. Appl. Surf. Sci. 2015, 328, 395–404. DOI: 10.1016/j.apsusc.2014.12.051.
  • Li, J.; Li, H.; Hu, H.; Zhao, Y.; Wang, Q. Preparation and Application of Polymer Nano-Fiber Doped with Nano-Particles. Opt. Mater. 2015, 40, 49–56. DOI: 10.1016/j.optmat.2014.11.045.
  • Cui, W. W.; Tang, D. Y.; Gong, Z. L. Electrospun Poly(Vinylidene Fluoride)/Poly(Methyl Methacrylate) Grafted TiO2 Composite Nanofibrous Membrane as Polymer Electrolyte for Lithium-Ion Batteries. J. Power Sources 2013, 223, 206–213. DOI: 10.1016/j.jpowsour.2012.09.049.
  • Huang, W.; Liu, B.; Chen, Z.; Wang, H.; Ren, L.; Jiao, J.; Zhuang, L.; Luo, J.; Jiang, L. Fabrication of Magnetic Nanofibers by Needleless Electrospinning from a Self-Assembling Polymer Ferrofluid Cone Array. Nanomaterials 2017, 7, 277–212. DOI: 10.3390/nano7090277.
  • Ahn, B. W.; Kang, T. J. Preparation and Characterization of Magnetic Nanofibers with Iron Oxide Nanoparticles and Poly(Ethylene Terephthalate). J. Appl. Polym. Sci. 2012, 125, 1567–1575. DOI: 10.1002/app.34953.
  • Li, P.; Liu, C.; Song, Y.; Niu, X.; Liu, H.; Fan, Y. Influence of Fe3O4 Nanoparticles on the Preparation of Aligned PLGA Electrospun Fibers Induced by Magnetic Field. J. Nanomater. 2013, 483569, 1–9. DOI: 10.1155/2013/483569.
  • Song, C.; Wang, X. X.; Zhang, J.; Nie, G. D.; Luo, W. L.; Fu, J.; Ramakrishna, S.; Long, Y. Z. Electric Field-Assisted in Situ Precise Deposition of Electrospun γ-Fe2O3/Polyurethane Nanofibers for Magnetic Hyperthermia. Nanoscale Res. Lett. 2018, 13, 1–12. DOI: 10.1186/s11671-018-2707-y.
  • Andrew, J. S.; Clarke, D. R. Enhanced Ferroelectric Phase Content of Polyvinylidene Difluoride Fibers with the Addition of Magnetic Nanoparticles. Langmuir 2008, 24, 8435–8438. DOI: 10.1021/la801617q.
  • Wang, N.; Si, Y.; Wang, N.; Sun, G.; El-Newehy, M.; Al-Deyab, S. S.; Ding, B. Multilevel Structured Polyacrylonitrile/Silica Nanofibrous Membranes for High-Performance Air Filtration. Sep. Purif. Technol. 2014, 126, 44–51. DOI: 10.1016/j.seppur.2014.02.017.
  • Jin, Y.; Yang, D.; Kang, D.; Jiang, X. Fabrication of Necklace-like Structures via Electrospinning. Langmuir 2010, 26, 1186–1190. DOI: 10.1021/la902313t.
  • Atabey, E.; Wei, S.; Zhang, X.; Gu, H.; Yan, X.; Huang, Y.; Shao, L.; He, Q.; Zhu, J.; Sun, L.; et al. Fluorescent Electrospun Polyvinyl Alcohol/CdSe@ZnS Nanocomposite Fibers. J. Compos. Mater. 2013, 47, 3175–3185. DOI: 10.1177/0021998312463107.
  • Wang, S.; Sun, Z.; Yan, E.; Sun, L.; Huang, N.; Zang, W.; Ni, L.; Wang, Q.; Gao, Y. Spectrum Control of Poly(p-Phenylene Vinylene) Nanofibers Fabricated by Electrospinning with Highly Photoluminescent ZnS Quantum Dots. Int. J. Electrochem. Sci. 2014, 9, 549–561.
  • Li, M.; Zhang, Z.; Cao, T.; Sun, Y.; Liang, P.; Shao, C.; Liu, Y. Electrospinning Preparation and Photoluminescence Properties of Poly(Methyl Methacrylate)/Eu3+ Ions Composite Nanofibers and Nanoribbons. Mater. Res. Bull. 2012, 47, 321–327. DOI: 10.1016/j.materresbull.2011.11.029.
  • Tang, S.; Shao, C.; Liu, Y.; Mu, R. Electrospun Nanofibers of Poly(Acrylonitrile)/Eu3+ and Their Photoluminescence Properties. J. Phys. Chem. Solids 2010, 71, 273–278. DOI: 10.1016/j.jpcs.2009.12.076.
  • Pant, H. R.; Pant, B.; Pokharel, P.; Kim, H. J.; Tijing, L. D.; Park, C. H.; Lee, D. S.; Kim, H. Y.; Kim, C. S. Photocatalytic TiO2–RGO/Nylon-6 Spider-Wave-like Nano-Nets via Electrospinning and Hydrothermal Treatment. J. Membr. Sci. 2013, 429, 225–234. DOI: 10.1016/j.memsci.2012.11.025.
  • Daels, N.; Radoicic, M.; Radetic, M.; Hulle, S. V.; De Clerck, K. Functionalization of Electrospun Polymer Nanofibre Membranes with TiO2 Nanoparticles in View of Dissolved Organic Matter Photodegradation. Sep. Purif. Technol. 2014, 133, 282–290. DOI: 10.1016/j.seppur.2014.06.040.
  • Cossich, E.; Bergamasco, R.; Pessoa de Amorim, M. T.; Martins, P. M.; Marques, J.; Tavares, C. J.; Lanceros-Mendez, S.; Sencadas, V. Development of Electrospun Photocatalytic TiO2-Polyamide-12 Nanocomposites. Mater. Chem. Phys. 2015, 164, 91–97. DOI: 10.1016/j.matchemphys.2015.08.029.
  • Vild, A.; Teixeira, S.; Kühn, K.; Cuniberti, G.; Sencadas, V. Orthogonal Experimental Design of Titanium Dioxide—Poly(Methyl Methacrylate) Electrospun Nanocomposite Membranes for Photocatalytic Applications. J. Environ. Chem. Eng. 2016, 4, 3151–3158. DOI: 10.1016/j.jece.2016.06.029.
  • Zhu, Z.; Zhang, Y.; Shang, Y.; Wen, Y. Electrospun Nanofibers Containing TiO2 for the Photocatalytic Degradation of Ethylene and Delaying Postharvest Ripening of Bananas. Food Bioprocess Technol. 2019, 12, 281–287. DOI: 10.1007/s11947-018-2207-1.
  • Zhu, Z.; Zhang, Y.; Zhang, Y.; Shang, Y.; Zhang, X.; Wen, Y. Preparation of PAN@TiO2 Nanofibers for Fruit Packaging Materials with Efficient Photocatalytic Degradation of Ethylene. Materials 2019, 12, 1–10. DOI: 10.3390/ma12060896.
  • Shi, Y.; Yang, D.; Li, Y.; Qu, J.; Yu, Z. Z. Fabrication of PAN@TiO2/Ag Nanofibrous Membrane with High Visible Light Response and Satisfactory Recyclability for Dye Photocatalytic Degradation. Appl. Surf. Sci. 2017, 426, 622–629. DOI: 10.1016/j.apsusc.2017.06.302.
  • Sedghi, R.; Moazzami, H. R.; Davarani, S. S. H.; Nabid, M. R.; Keshtkar, A. R. A One Step Electrospinning Process for the Preparation of Polyaniline Modified TiO2/Polyacrylonitrile Nanocomposite with Enhanced Photocatalytic Activity. J. Alloys Compd. 2017, 695, 1073–1079. DOI: 10.1016/j.jallcom.2016.10.232.
  • Huang, Q. L.; Huang, Y.; Xiao, C. F.; You, Y. W.; Zhang, C. X. Electrospun Ultrafine Fibrous PTFE-Supported ZnO Porous Membrane with Self-Cleaning Function for Vacuum Membrane Distillation. J. Membr. Sci. 2017, 534, 73–82. DOI: 10.1016/j.memsci.2017.04.015.
  • Yousef, A.; Barakat, N. A. M.; Al-Deyab, S. S.; Nirmala, R.; Pant, B.; Kim, H. Y. Encapsulation of CdO/ZnO NPs in PU Electrospun Nanofibers as Novel Strategy for Effective Immobilization of the Photocatalysts. Colloids Surf. A Physicochem. Eng. Aspects 2012, 401, 8–16. DOI: 10.1016/j.colsurfa.2012.02.033.
  • Ognibene, G.; Cristaldi, D. A.; Fiorenza, R.; Blanco, I.; Cicala, G.; Scirè, S.; Fragalà, M. E. Photoactivity of Hierarchically Nanostructured ZnO–PES Fibre Mats for Water Treatments. RSC Adv. 2016, 6, 42778–42785. DOI: 10.1039/C6RA06854E.
  • Ding, Q.; Miao, Y. E.; Liu, T. Morphology and Photocatalytic Property of Hierarchical Polyimide/ZnO Fibers Prepared via a Direct Ion-Exchange Process. ACS Appl. Mater. Interfaces 2013, 5, 5617–5622. DOI: 10.1021/am4009488.
  • Khan, M. Q.; Kharaghani, D.; Ullah, S.; Waqas, M.; Abbasi, A. M. R.; Saito, Y.; Zhu, C.; Kim, I. S. Self-Cleaning Properties of Electrospun PVA/TiO2 and PVA/ZnO Nanofibers Composites. Nanomaterials 2018, 8, 644–611. DOI: 10.3390/nano8090644.
  • Xiao, S.; Shen, M.; Guo, R.; Wang, S.; Shi, X. Immobilization of Zerovalent Iron Nanoparticles into Electrospun Polymer Nanofibers: Synthesis, Characterization, and Potential Environmental Applications. J. Phys. Chem. C 2009, 113, 18062–18068. DOI: 10.1021/jp905542g.
  • Xiao, S.; Shen, M.; Guo, R.; Huang, Q.; Wang, S.; Shi, X. Fabrication of Multiwalled Carbon Nanotube-Reinforced Electrospun Polymer Nanofibers Containing Zero-Valent Iron Nanoparticles for Environmental Applications. J. Mater. Chem. 2010, 20, 5700–5708. DOI: 10.1039/c0jm00368a.
  • Torkamani, F.; Azizian, S. Green and Simple Synthesis of Ag Nanoparticles Loaded onto Cellulosic Fiber as Efficient and Low-Cost Catalyst for Reduction of 4-Nitrophenol. J. Mol. Liq. 2016, 214, 270–275. DOI: 10.1016/j.molliq.2015.12.071.
  • Shalaby, T. I.; El-Kady, M. F.; El Halem, A.; Zaki, M.; El-Kholy, S. M. Preparation and Application of Magnetite Nanoparticles Immobilized Cellulose Acetate Nanofibers for Lead Removal from Polluted Water. Water Sci. Technol. Water Supply 2017, 17, 176–187. DOI: 10.2166/ws.2016.124.
  • Zhou, Z.; Peng, X.; Zhong, L.; Wu, L.; Cao, X.; Sun, R. C. Electrospun Cellulose Acetate Supported Ag@AgCl Composites with Facet-Dependent Photocatalytic Properties on Degradation of Organic Dyes under Visible-Light Irradiation. Carbohydr. Polym. 2016, 136, 322–328. DOI: 10.1016/j.carbpol.2015.09.009.
  • Wang, S.-D.; Ma, Q.; Liu, H.; Wang, K.; Ling, L.-Z.; Zhang, K.-Q. Robust Electrospinning Cellulose Acetate@TiO2 Ultrafine Fibers for Dyeing Water Treatment by Photocatalytic Reactions. RSC Adv. 2015, 5, 40521–40530. DOI: 10.1039/C5RA03797B.
  • Olaru, N.; Calin, G.; Olaru, L. Zinc Oxide Nanocrystals Grown on Cellulose Acetate Butyrate Nanofiber Mats and Their Potential Photocatalytic Activity for Dye Degradation. Ind. Eng. Chem. Res. 2014, 53, 17968–17975. DOI: 10.1021/ie503139a.
  • Kamal, T.; Khan, S. B.; Asiri, A. M. Synthesis of Zero-Valent Cu Nanoparticles in the Chitosan Coating Layer on Cellulose Microfibers. Evaluation of Azo Dyes Catalytic Reduction. Cellulose 2016, 23, 1911–1923. DOI: 10.1007/s10570-016-0919-9.
  • Lombardi, M.; Palmero, P.; Sangermano, M.; Varesano, A. Electrospun Polyamide-6 Membranes Containing Titanium Dioxide as Photocatalyst. Polym. Int. 2011, 60, 234–239. DOI: 10.1002/pi.2932.
  • Jiang, Z.; Tijing, L. D.; Amarjargal, A.; Park, C. H.; An, K. J.; Shon, H. K.; Kim, C. S. Removal of Oil from Water Using Magnetic Bicomponent Composite Nanofibers Fabricated by Electrospinning. Compos. Part. B Eng. 2015, 77, 311–318. DOI: 10.1016/j.compositesb.2015.03.067.
  • Song, B.; Zhu, J.; Fan, H. Magnetic Fibrous Sorbent for Remote and Efficient Oil Adsorption. Mar. Pollut. Bull. 2017, 120, 159–164. DOI: 10.1016/j.marpolbul.2017.05.011.
  • Wu, J.; Wang, N.; Zhao, Y.; Jiang, L. Simple Synthesis of Smart Magnetically Driven Fibrous Films for Remote Controllable Oil Removal. Nanoscale 2015, 7, 2625–2632. DOI: 10.1039/C4NR05721J.
  • Pascariu Dorneanu, P.; Cojocaru, C.; Samoila, P.; Olaru, N.; Airinei, A.; Rotaru, A. Novel Fibrous Composites Based on Electrospun PSF and PVDF Ultrathin Fibers Reinforced with Inorganic Nanoparticles: Evaluation as Oil Spill Sorbents. Polym. Adv. Technol. 2018, 29, 1435–1446. DOI: 10.1002/pat.4255.
  • Cojocaru, C.; Pascariu Dorneanu, P.; Airinei, A.; Olaru, N.; Samoila, P.; Rotaru, A. Design and Evaluation of Electrospun Polysulfone Fibers and Polysulfone/NiFe2O4 Nanostructured Composite as Sorbents for Oil Spill Cleanup. J. Taiwan. Inst. Chem. Eng. 2017, 70, 267–281. DOI: 10.1016/j.jtice.2016.11.005.
  • Barroso-Solares, S.; Zahedi, M. G.; Pinto, J.; Nanni, G.; Fragouli, D.; Athanassiou, A. Oil Removal from Water-Oil Emulsions Using Magnetic Nanocomposite Fibrous Mats. RSC Adv. 2016, 6, 71100–71107. DOI: 10.1039/C6RA12246A.
  • Wang, L.; Yang, S.; Wang, J.; Wang, C.; Chen, L. Fabrication of Superhydrophobic TPU Film for Oil–Water Separation Based on Electrospinning Route. Mater. Lett. 2011, 65, 869–872. DOI: 10.1016/j.matlet.2010.12.024.
  • Obaid, M.; Tolba, G. M. K.; Motlak, M.; Fadali, O. A.; Khalil, K. A.; Almajid, A. A.; Kim, B.; Barakat, N. A. M. Effective Polysulfone-Amorphous SiO2 NPs Electrospun Nanofiber Membrane for High Flux Oil/Water Separation. Chem. Eng. J. 2015, 279, 631–638. DOI: 10.1016/j.cej.2015.05.028.
  • Shang, Y.; Si, Y.; Raza, A.; Yang, L.; Mao, X.; Ding, B.; Yu, J. An in Situ Polymerization Approach for the Synthesis of Superhydrophobic and Superoleophilic Nanofibrous Membranes for Oil-Water Separation. Nanoscale 2012, 4, 7847–7854. DOI: 10.1039/c2nr33063f.
  • Krasian, T.; Punyodom, W.; Worajittiphon, P. A Hybrid of 2D Materials (MoS2 and WS2) as an Effective Performance Enhancer for Poly(Lactic Acid) Fibrous Mats in Oil Adsorption and Oil/Water Separation. Chem. Eng. J. 2019, 369, 563–575. DOI: 10.1016/j.cej.2019.03.092.
  • Lee, J. A.; Aliev, A. E.; Bykova, J. S.; De Andrade, M. J.; Kim, D.; Sim, H. J.; Lepró, X.; Zakhidov, A. A.; Lee, J. B.; Spinks, G. M.; et al. Woven‐Yarn Thermoelectric Textiles. Adv. Mater. 2016, 28, 5038–5044. DOI: 10.1002/adma.201600709.
  • Jin, S.; Sun, T.; Fan, Y.; Wang, L.; Zhu, M.; Yang, J.; Jiang, W. Synthesis of Freestanding PEDOT:PSS/PVA@Ag NPs Nanofiber Film for High-Performance Flexible Thermoelectric Generator. Polymer 2019, 167, 102–108. DOI: 10.1016/j.polymer.2019.01.065.
  • Wu, J.; Sun, Y.; Xu, W.; Zhang, Q. Investigating Thermoelectric Properties of Doped Polyaniline Nanowires. Synth. Met. 2014, 189, 177–182. DOI: 10.1016/j.synthmet.2014.01.007.
  • Bae, E. J.; Kang, Y. H.; Jang, K. S.; Cho, S. Y. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment. Sci. Rep. 2016, 6, 18805–18813. DOI: 10.1038/srep18805.
  • Hu, X.; Chen, G.; Wang, X. An Unusual Coral-like Morphology for Composites of Poly(3,4-Ethylenedioxythiophene)/Carbon Nanotube and the Enhanced Thermoelectric Performance. Compos. Sci. Technnol. 2017, 144, 43–50. DOI: 10.1016/j.compscitech.2017.03.018.
  • Wang, Y.; Wang, S.; Fang, J.; Ding, L. X.; Wang, H. A Nano-Silica Modified Polyimide Nanofiber Separator with Enhanced Thermal and Wetting Properties for High Safety Lithium-Ion Batteries. J. Membr. Sci. 2017, 537, 248–254. DOI: 10.1016/j.memsci.2017.05.023.
  • Yanilmaz, M.; Lu, Y.; Dirican, M.; Fu, K.; Zhang, X. Nanoparticle-on-Nanofiber Hybrid Membrane Separators for Lithium-Ion Batteries via Combining Electrospraying and Electrospinning Techniques. J. Membr. Sci. 2014, 456, 57–65. DOI: 10.1016/j.memsci.2014.01.022.
  • Zhang, F.; Ma, X.; Cao, C.; Li, J.; Zhu, Y. Poly(Vinylidene Fluoride)/SiO2 Composite Membranes Prepared by Electrospinning and Their Excellent Properties for Nonwoven Separators for Lithium-Ion Batteries. J. Power Sources 2014, 251, 423–431. DOI: 10.1016/j.jpowsour.2013.11.079.
  • Liu, X.; Song, K.; Lu, C.; Huang, Y.; Duan, X.; Li, S.; Ding, Y. Electrospun PU@GO Separators for Advanced Lithium Ion Batteries. J. Membr. Sci. 2018, 555, 1–6. DOI: 10.1016/j.memsci.2018.03.027.
  • Liang, X.; Yang, Y.; Jin, X.; Huang, Z.; Kang, F. The High Performances of SiO2/Al2O3-Coated Electrospun Polyimide Fibrous Separator for Lithium-Ion Battery. J. Membr. Sci. 2015, 493, 1–7. DOI: 10.1016/j.memsci.2015.06.016.
  • Huang, J.; Zhang, B.; Xie, Y. Y.; Lye, W. W. K.; Xu, Z. L.; Abouali, S.; Garakani, M. A.; Huang, J. Q.; Zhang, T. Y.; Huang, B.; Kim, J. K. Electrospun Graphitic Carbon Nanofibers with in-Situ Encapsulated Co-Ni Nanoparticles as Freestanding Electrodes for Li-O2 Batteries. Carbon 2016, 100, 329–336. DOI: 10.1016/j.carbon.2016.01.012.
  • Liu, Y.; Yan, X.; Lan, J.; Yu, Y.; Yang, X.; Lin, Y. Phase-Separation Induced Hollow/Porous Carbon Nanofibers Containing in-Situ Generated Ultrafine SnOx as Anode Materials for Lithium-Ion Batteries. Mater. Chem. Front. 2017, 1, 1331–1337. DOI: 10.1039/C6QM00377J.
  • Wu, N.; Cao, Q.; Wang, X.; Li, S.; Li, X.; Deng, H. In Situ Ceramic Fillers of Electrospun Thermoplastic Polyurethane/Poly(Vinylidene Fluoride) Based Gel Polymer Electrolytes for Li-Ion Batteries. J. Power Sources 2011, 196, 9751–9756. DOI: 10.1016/j.jpowsour.2011.07.079.
  • Chen, W.; Liu, Y.; Ma, Y.; Yang, W. Improved Performance of Lithium Ion Battery Separator Enabled by Co-Electrospinnig Polyimide/Poly(Vinylidene Fluorideco-Hexafluoropropylene) and the Incorporation of TiO2-(2-Hydroxyethyl Methacrylate). J. Power Sources 2015, 273, 1127–1135. DOI: 10.1016/j.jpowsour.2014.10.026.
  • Sethupathy, M.; Pandey, P.; Manisankar, P. Evaluation of Photovoltaic Efficiency of Dye-Sensitized Solar Cells Fabricated with Electrospun PVDF-PAN-Fe2O3 Composite Membrane. J. Appl. Polym. Sci. 2014, 131, 41107. DOI: 10.1002/app.41107.
  • Yousef, A.; Akhtar, M. S.; Barakat, N. A. M.; Motlak, M.; Yang, O. B.; Kim, H. Y. Effective NiCu NPs-Doped Carbon Nanofibers as Counter Electrodes for Dye-Sensitized Solar Cells. Electrochim. Acta 2013, 102, 142–148. DOI: 10.1016/j.electacta.2013.04.013.
  • Samir, E.; Salah, M.; Hajjiah, A.; Shehata, N.; Fathy, M.; Hamed, A. Electrospun PVA Polymer Embedded with Ceria Nanoparticles as Silicon Solar Cells Rear Surface Coaters for Efficiency Improvement. Polymers 2018, 10, 609. DOI: 10.3390/polym1006060.
  • Thomas, M.; Rajiv, S. Dye-Sensitized Solar Cells Based on an Electrospun Polymer Nanocomposite Membrane as Electrolyte. New J. Chem. 2019, 43, 4444–4454. DOI: 10.1039/C8NJ05505J.
  • Shi, Q.; Vitchuli, N.; Nowak, J.; Caldwell, J. M.; Breidt, F.; Bourham, M.; Zhang, X.; McCord, M. Durable Antibacterial Ag/Polyacrylonitrile (Ag/PAN) Hybrid Nanofibers Prepared by Atmospheric Plasma Treatment and Electrospinning. Eur. Polym. J. 2011, 47, 1402–1409. DOI: 10.1016/j.eurpolymj.2011.04.002.
  • Shi, Y.; Li, Y.; Zhang, J.; Yu, Z.; Yang, D. Electrospun Polyacrylonitrile Nanofibers Loaded with Silver Nanoparticles by Silver Mirror Reaction. Mater. Sci. Eng. C 2015, 51, 346–355. DOI: 10.1016/j.msec.2015.03.010.
  • Patel, S.; Konar, M.; Sahoo, H.; Hota, G. Surface Functionalization of Electrospun PAN Nanofibers with ZnO–Ag Heterostructure Nanoparticles, Synthesis and Antibacterial Study. Nanotechnology 2019, 30, 205704. DOI: 10.1088/1361-6528/ab045d.
  • Wu, S.; Wang, J.; Jin, L.; Li, Y.; Wang, Z. Effects of Polyacrylonitrile/MoS2 Composite Nanofibers on the Growth Behavior of Bone Marrow Mesenchymal Stem Cells. ACS Appl. Nano Mater. 2018, 1, 337–343. DOI: 10.1021/acsanm.7b00188.
  • Ge, J. C.; Kim, J. Y.; Yoon, S. K.; Choi, N. J. Fabrication of Low-Cost and High-Performance Coal Fly Ash Nanofibrous Membranes via Electrospinning for the Control of Harmful Substances. Fuel 2019, 237, 236–244. DOI: 10.1016/j.fuel.2018.09.068.
  • Lan, S.; Lu, Y.; Li, C.; Zhao, S.; Liu, N.; Sheng, X. Sesbania Gum-Supported Hydrophilic Electrospun Fibers Containing Nanosilver with Superior Antibacterial Activity. Nanomaterials 2019, 9, 592. DOI: 10.3390/nano9040592.
  • Makaremi, M.; Lim, C. X.; Pasbakhsh, P.; Lee, S. M.; Goh, K. L.; Chang, H.; Chan, E. S. Electrospun Functionalized Polyacrylonitrile–Chitosan Bi-Layer Membranes for Water Filtration Applications. RSC Adv. 2016, 6, 53882–53893. DOI: 10.1039/C6RA05942B.
  • Xiao, Y.; Cao, Y.; Xin, B.; Liu, Y.; Chen, Z.; Lin, L.; Sun, Y. Fabrication and Characterization of Electrospun Cellulose/Polyacrylonitrile Nanofibers with Cu(II) Ions. Cellulose 2018, 25, 2955–2963. DOI: 10.1007/s10570-018-1784-5.
  • Shrestha, B. K.; Shrestha, S.; Tiwari, A. P.; Kim, J. I.; Ko, S. W.; Kim, H. J.; Park, C. H.; Kim, C. S. Bio-Inspired Hybrid Scaffold of Zinc Oxide-Functionalized Multi-Wall Carbon Nanotubes Reinforced Polyurethane Nanofibers for Bone Tissue Engineering. Mater. Des. 2017, 133, 69–81. DOI: 10.1016/j.matdes.2017.07.049.
  • Hassan, M. S.; Amna, T.; Sheikh, F. A.; Al-Deyab, S. S.; Choi, K. E.; Hwang, I. H.; Khil, M. S. Bimetallic Zn/Ag Doped Polyurethane Spider Net Composite Nanofibers, a Novel Multipurpose Electrospun Mat. Ceram. Int. 2013, 39, 2503–2510. DOI: 10.1016/j.ceramint.2012.09.009.
  • Maharjan, B.; Joshi, M. K.; Tiwari, A. P.; Park, C. H.; Kim, C. S. In-Situ Synthesis of AgNPs in the Natural/Synthetic Hybrid Nanofibrous Scaffolds: Fabrication, Characterization and Antimicrobial Activities. J. Mech. Behav. Biomed. Mater. 2017, 65, 66–76. DOI: 10.1016/j.jmbbm.2016.07.034.
  • Tijing, L. D.; Ruelo, M. T. G.; Amarjargal, A.; Pant, H. R.; Park, C. H.; Kim, D. W.; Kim, C. S. Antibacterial and Superhydrophilic Electrospun Polyurethane Nanocomposite Fibers Containing Tourmaline Nanoparticles. Chem. Eng. J. 2012, 197, 41–48. DOI: 10.1016/j.cej.2012.05.005.
  • Augustine, R.; Malik, H. N.; Singhal, D. K.; Mukherjee, A.; Malakar, D.; Kalarikkal, N.; Thomas, S. Electrospun Polycaprolactone/ZnO Nanocomposite Membranes as Biomaterials with Antibacterial and Cell Adhesion Properties. J. Polym. Res. 2014, 21, 1–17. DOI: 10.1007/s10965-013-0347-6.
  • Augustine, R.; Kalarikkal, N.; Thomas, S. Electrospun PCL Membranes Incorporated with Biosynthesized Silver Nanoparticles as Antibacterial Wound Dressings. Appl. Nanosci. 2016, 6, 337–344. DOI: 10.1007/s13204-015-0439-1.
  • Ruckh, T. T.; Oldinski, R. A.; Carroll, D. A.; Mikhova, K.; Bryers, J. D.; Popat, K. C. Antimicrobial Effects of Nanofiber Poly(Caprolactone) Tissue Scaffolds Releasing Rifampicin. J. Mater. Sci. Mater. Med. 2012, 23, 1411–1420. DOI: 10.1007/s10856-012-4609-3.
  • Münchow, E. A.; Albuquerque, M. T. P.; Zero, B.; Kamocki, K.; Piva, E.; Gregory, R. L.; Bottino, M. C. Development and Characterization of Novel ZnO-Loaded Electrospun Membranes for Periodontal Regeneration. Dent. Mater. 2015, 31, 1038–1051. DOI: 10.1016/j.dental.2015.06.004.
  • Münchow, E. A.; Pankajakshan, D.; Albuquerque, M. T.; Kamocki, K.; Piva, E.; Gregory, R. L.; Bottino, M. C. Synthesis and Characterization of CaO-Loaded Electrospun Matrices for Bone Tissue Engineering. Clin. Oral Invest. 2016, 20, 1921–1933. DOI: 10.1007/s00784-015-1671-5.
  • Toniatto, T. V.; Rodrigues, B. V. M.; Marsi, T. C. O.; Ricci, R.; Marciano, F. R.; Webster, T. J.; Lobo, A. O. Nanostructured Poly (Lactic Acid) Electrospun Fiber with High Loadings of TiO2 Nanoparticles, Insights into Bactericidal Activity and Cell Viability. Mater. Sci. Eng. C 2017, 71, 381–385. DOI: 10.1016/j.msec.2016.10.026.
  • Adomaviciute, E.; Pupkeviciute, S.; Juskaite, V.; Zilius, M.; Stanys, S.; Pavilonis, A.; Briedis, V. Formation and Investigation of Electrospun PLA Materials with Propolis Extracts and Silver Nanoparticles for Biomedical Applications. J. Nanomater. 2017, 2017, 1–11. DOI: 10.1155/2017/8612819.
  • Ibrahim, H. M.; El-Zairy, E. M. R. Carboxymethylchitosan Nanofibers Containing Silver Nanoparticles: Preparation, Characterization and Antibacterial Activity. J. Appl. Pharm. Sci. 2016, 6, 043–048. DOI: 10.7324/JAPS.2016.60706.
  • Manjumeena, R.; Elakkiya, T.; Duraibabu, D.; Ahamed, A. F.; Kalaichelvan, P. T.; Venkatesan, R. Green’ Biocompatible Organic–Inorganic Hybrid Electrospun Nanofibers for Potential Biomedical Applications. J. Biomater. Appl. 2015, 29, 1039–1055. DOI: 10.1177/0885328214550011.
  • Zhang, Z.; Wu, Y.; Wang, Z.; Zou, X.; Zhao, Y.; Sun, L. Fabrication of Silver Nanoparticles Embedded into Polyvinyl Alcohol (Ag/PVA) Composite Nanofibrous Films through Electrospinning for Antibacterial and Surface-Enhanced Raman Scattering (SERS) Activities. Mater. Sci. Eng. C 2016, 69, 462–469. DOI: 10.1016/j.msec.2016.07.015.
  • Zhao, Y.; Zhou, Y.; Wu, X.; Wang, L.; Xu, L.; Wei, S. A Facile Method for Electrospinning of Ag Nanoparticles/Poly (Vinyl Alcohol)/Carboxymethyl-Chitosan Nanofibers. Appl. Surf. Sci. 2012, 258, 8867–8873. DOI: 10.1016/j.apsusc.2012.05.106.
  • Celebioglu, A.; Aytac, Z.; Umu, O. C. O.; Dana, A.; Tekinay, T.; Uyar, T. One-Step Synthesis of Size-Tunable Ag Nanoparticles Incorporated in Electrospun PVA/Cyclodextrin Nanofibers. Carbohydr. Polym. 2014, 99, 808–816. DOI: 10.1016/j.carbpol.2013.08.097.
  • Dubey, P.; Bhushan, B.; Sachdev, A.; Matai, I.; Kumar, S. U.; Gopinath, P. Silver‐Nanoparticle‐Incorporated Composite Nanofibers for Potential Wound-Dressing Applications. J. Appl. Polym. Sci. 2015, 132, 1–12. DOI: 10.1002/app.42473.
  • Lee, S. J.; Heo, D. N.; Moon, J. H.; Ko, W. K.; Lee, J. B.; Bae, M. S.; Park, S. W.; Kim, J. E.; Lee, D. H.; Kim, E. C.; et al. Electrospun Chitosan Nanofibers with Controlled Levels of Silver Nanoparticles. Preparation, Characterization and Antibacterial Activity. Carbohyd. Polym. 2014, 111, 530–537. DOI: 10.1016/j.carbpol.2014.04.026.
  • Liao, H.; Qi, R.; Shen, M.; Cao, X.; Guo, R.; Zhang, Y.; Shi, X. Improved Cellular Response on Multiwalled Carbon Nanotube-Incorporated Electrospun Polyvinyl Alcohol/Chitosan Nanofibrous Scaffolds. Colloid. Surf. B 2011, 84, 528–535. DOI: 10.1016/j.colsurfb.2011.02.010.
  • Islam, M. S.; Yeum, J. H. Electrospun Pullulan/Poly(Vinyl Alcohol)/Silver Hybrid Nano-Fibers, Preparation and Property Characterization for Antibacterial Activity. Colloids. Surf. A 2013, 436, 279–286. DOI: 10.1016/j.colsurfa.2013.07.001.
  • Silva, J. M.; Barud, H. S.; Meneguin, A. B.; Constantino, V. R. L.; Ribeiro, S. J. L. Inorganic-Organic Bio-Nanocomposite Films Based on Laponite and Cellulose Nanofibers (CNF). Appl. Clay Sci. 2019, 168, 428–435. DOI: 10.1016/j.clay.2018.12.003.
  • Gouda, M.; Aljaafari, A.; Al-Omair, M. A. Functional Electrospun Cellulosic Nanofiber Mats for Antibacterial Bandages. Fibers Polym. 2017, 18, 2379–2386. DOI: 10.1007/s1222.
  • Zhao, G.; He, J.; Zhang, C.; Zhou, J.; Chen, X.; Wang, T. Highly Dispersed Pt Nanoparticles on Mesoporous Carbon Nanofibers Prepared by Two Templates. J. Phys. Chem. C 2008, 112, 1028–1033. DOI: 10.1021/jp075116x.
  • Li, H.; Huck, W. Polymers in Nanotechnology. Curr. Opin. Solid State Mater. Sci. 2002, 6, 3–8. DOI: 10.1016/S1359-0286(02)00008-6.
  • Ganjkhanlou, Y.; Moghaddam, A. B.; Hosseini, S.; Nazari, T.; Gazmeh, A.; Badraghi, J. Application of Image Analysis in the Characterization of Electrospun Nanofibers. Iran J. Chem. Chem. Eng. 2014, 33, 37–45.
  • Önal, G.; Erdal, M. O.; Dincer, K. Investigation of Electrical Conductivity of Polyacrylonitrile (PAN) Nanofibers/Nano Particul (Ag, Cu, CNT and GNR). Nano Hybrids Compos. 2017, 16, 20–25.www.scientific.net/NHC.16.20. DOI: 10.4028/.
  • Issa, A. A.; Al-Maadeed, M. A.; Luyt, A. S.; Ponnamma, D.; Hassan, M. K. Physico-Mechanical, Dielectric, and Piezoelectric Properties of PVDF Electrospun Mats Containing Silver Nanoparticles. C. J. Carbon Res. 2017, 3, 30–16. DOI: 10.3390/c3040030.
  • Li, Y.; Porwal, H.; Huang, Z.; Zhang, H.; Bilotti, E.; Peijs, T. Enhanced Thermal and Electrical Properties of Polystyrene-Graphene Nanofibers via Electrospinning. J. Nanomater. 2016, 2016, 1–8. DOI: 10.1155/2016/4624976.
  • Akhtar, F.; Andersson, L.; Ogunwumi, S.; Hedin, N.; Bergström, L. Structuring Adsorbents and Catalysts by Processing of Porous Powders. J. Eur. Ceram. Soc. 2014, 34, 1643–1666. DOI: 10.1016/j.jeurceramsoc.2014.01.008.
  • Sarkar, A. K.; Saha, A.; Tarafder, A.; Panda, A. B.; Pal, S. Efficient Removal of Toxic Dyes via Simultaneous Adsorption and Solar Light Driven Photodegradation Using Recyclable Functionalized Amylopectin–TiO2–Au Nanocomposite. ACS Sustain. Chem. Eng. 2016, 4, 1679–1688. DOI: 10.1021/acssuschemeng.5b01614.
  • Hassan, H. S.; Elkady, M. F.; Farghali, A. A.; Salem, A. M.; Abd El-Hamid, A. I. Fabrication of Novel Magnetic Zinc Oxide Cellulose Acetate Hybrid Nano-Fiber to Be Utilized for Phenol Decontamination. J. Taiwan Inst. Chem. Eng. 2017, 78, 307–316. DOI: 10.1016/j.jtice.2017.06.021.
  • Xiao, S.; Xu, W.; Ma, H.; Fang, X. Size-Tunable Ag Nanoparticles Immobilized in Electrospun Nanofibers: synthesis, Characterization, and Application for Catalytic Reduction of 4-Nitrophenol. RSC Adv. 2012, 2, 319–327. DOI: 10.1039/C1RA00127B.
  • Kayaci, F.; Akgun, C. O.; Biyikli, N.; Uyar, T. Surface-Decorated ZnO Nanoparticles and ZnO Nanocoating on Electrospun Polymeric Nanofibers by Atomic Layer Deposition for Flexible Photocatalytic Nanofibrous Membranes. RSC Adv. 2013, 3, 6817–6820. DOI: 10.1039/c3ra40359a.
  • Pascariu, P.; Olaru, L.; Matricala, A. L.; Olaru, N. Photocatalytic Activity of ZnO Nanostructures Grown on Electrospun CAB Ultrafine Fibers. Appl. Surf. Sci. 2018, 455, 61–69. DOI: 10.1016/j.apsusc.2018.05.119.
  • Baruah, S.; Thanachayanont, C.; Dutta, J. Growth of ZnO Nanowires on Nonwoven Polyethylene Fibers. Sci. Technol. Adv. Mater. 2008, 9, 1–8. DOI: 10.1088/1468-6996/9/2/025009.
  • Wang, Q.; Gao, D.; Gao, C.; Wei, Q.; Cai, Y.; Xu, J.; Liu, X.; Xu, Y. Removal of a Cationic Dye by Adsorption/Photodegradation Using Electrospun PAN/O-MMT Composite Nanofibrous Membranes Coated with TiO2. Int. J. Photoenergy 2012, 2012, 1–8. DOI: 10.1155/2012/680419.
  • Koysuren, O.; Koysuren, H. N. Photocatalytic Activities of Poly(Methyl Methacrylate)/Titanium Dioxide Nanofiber Mat. J. Macromol. Sci. A 2017, 54, 80–84. DOI: 10.1080/10601325.2017.1261619.
  • Chang, Z. J. “Firecracker-Shaped” ZnO/Polyimide Hybrid Nanofibers via Electrospinning and Hydrothermal Process. Chem. Commun. 2011, 47, 4427–4429. DOI: 10.1039/c0cc05634k.
  • Kamal, T.; Anwar, Y.; Khan, S. B.; Chani, M. T. S.; Asiri, A. M. Dye Adsorption and Bactericidal Properties of TiO2/Chitosan Coating Layer. Carbohydr. Polym. 2016, 148, 153–160. DOI: 10.1016/j.carbpol.2016.04.042.
  • Liao, Y.; Loh, C.-H.; Tian, M.; Wang, R.; Fane, A. G. Progress in Electrospun Polymeric Nanofibrous Membranes for Water Treatment: Fabrication, Modification and Applications. Prog. Polym. Sci. 2018, 77, 69–94. DOI: 10.1016/j.progpolymsci.2017.10.003.
  • Lee, E.-J.; An, A. K.; Hadi, P.; Lee, S.; Woo, Y. C.; Shon, H. K. Advanced Multi-Nozzle Electrospun Functionalized Titanium Dioxide/Polyvinylidene Fluoride-co-Hexafluoropropylene (TiO2/PVDF-HFP) Composite Membranes for Direct Contact Membrane Distillation. J. Membr. Sci. 2017, 524, 712–720. DOI: 10.1016/j.memsci.2016.11.069.
  • Jang, W.; Yun, J.; Jeon, K.; Byun, H. PVdF/Graphene Oxide Hybrid Membrane via Electrospinning for Water Treatment Application. RSC Adv. 2015, 5, 46711–46717. DOI: 10.1039/C5RA04439A.
  • Ghaffar, A.; Zhang, L.; Zhu, X.; Chen, B. Porous PVdF/GO Nanofibrous Membranes for Selective Separation 2 and Recycling of Charged Organic Dyes from Water. Environ. Sci. Technol. 2018, 52, 4265–4274. DOI: 10.1021/acs.est.7b06081.
  • Lee, J.; Yoon, J.; Kim, J. H.; Lee, T.; Byun, H. Electrospun PAN–GO Composite Nanofibers as Water Purification Membranes. J. Appl. Polym. Sci. 2017, 135, 1–9. DOI: 10.1002/app.45858.
  • Hou, J.; Yun, J.; Kim, S.; Byun, H. Highly Controlled Integration of Graphene Oxide into PAN Nanofiber Membranes. Appl. Sci. 2019, 9, 962. DOI: 10.3390/app9050962.
  • Haddad, M. Y.; Alharbi, H. F. Enhancement of Heavy Metal Ion Adsorption Using Electrospun Polyacrylonitrile Nanofibers Loaded with ZnO Nanoparticles. J. Appl. Polym. Sci. 2019, 136, 1–11. DOI: 10.1002/app.47209.
  • Malik, H.; Qureshi, U. A.; Muqeet, M.; Mahar, R. B.; Ahmed, F.; Khatri, Z. Removal of Lead from Aqueous Solution Using Polyacrylonitrile/Magnetite Nanofibers. Environ. Sci. Pollut. Res. 2018, 25, 3557–3564. DOI: 10.1007/s11356-017-0706-7.
  • Pi, H.; Wang, R.; Ren, B.; Zhang, X.; Wu, J. Facile Fabrication of Multi-Structured SiO2@PVDF-HFP Nanofibrous Membranes for Enhanced Copper Ions Adsorption. Polymers 2018, 10, 1385–1315. DOI: 10.3390/polym10121385.
  • Taha, A. A.; Wu, Y.; Wang, H.; Li, F. Preparation and Application of Functionalized Cellulose Acetate/Silica Composite Nanofibrous Membrane via Electrospinning for Cr (VI) Ion Removal from Aqueous Solution. J. Environ. Manage. 2012, 112, 10–16. DOI: 10.1016/j.jenvman.2012.05.031.
  • Gebru, K. A.; Das, C. Removal of Pb (II) and Cu (II) Ions from Wastewater Using Composite Electrospun Cellulose Acetate/Titanium Oxide (TiO2) Adsorbent. J. Water Process. Eng. 2017, 16, 1–13. DOI: 10.1016/j.jwpe.2016.11.008.
  • Hallaji, H.; Keshtkar, A. R.; Moosavian, M. A. A. Novel Electrospun PVA/ZnO Nanofiber Adsorbent for U(VI), Cu(II) and Ni(II) Removal from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2015, 46, 109–118. DOI: 10.1016/j.jtice.2014.09.007.
  • Wu, S. J.; Li, E. T.; Wu, Y. N.; Xu, R.; Li, G. T. Preparation of Novel Poly(Vinyl Alcohol)/SiO2 Composite Nanofiber Membranes with Mesostructure and Their Application for Removal of Cu2+ from Waste Water. Chem. Commun. 2010, 46, 1694–1696. DOI: 10.1039/b925296g.
  • Najafabadi, H. H.; Irani, M.; Rad, L. R.; Haratameh, A. H.; Haririan, I. Removal of Cu2+, Pb2+, Cr6+ from Aqueous Solutions Using a Chitosan/Graphene Oxide Composite Nanofibrous Adsorbent. RSC Adv. 2015, 5, 16532–16539. DOI: 10.1039/C5RA01500F.
  • Aliabadi, M. Removal of Pb(II) and Cr(VI) Ions from Aqueous Solutions Using Chitosan/Cobalt Ferrite Nanofibrous Adsorbent. Fibers Polym. 2016, 17, 1162–1170. DOI: 10.1007/s12221-016-6555-z.
  • Razzaz, A.; Ghorban, S.; Hosayni, L.; Irani, M.; Aliabadi, M. Chitosan Nanofibers Functionalized by TiO2 Nanoparticles for the Removal of Heavy Metal Ions. J. Taiwan Inst. Chem. Eng. 2016, 58, 333–343. DOI: 10.1016/j.jtice.2015.06.003.
  • Bozorgpour, F.; Ramandi, H. F.; Jafari, P.; Samadi, S.; Yazd, S. S.; Aliabad, M. Removal of Nitrate and Phosphate Using Chitosan/Al2O3/Fe3O4 Composite Nanofibrous Adsorbent, Comparison with Chitosan/Al2O3/Fe3O4 Beads. Int. J. Biol. Macromol. A 2016, 93, 557–565. DOI: 10.1016/j.ijbiomac.2016.09.015.
  • Habiba, U.; Afifi, A. M.; Salleh, A.; Ang, B. C. Chitosan/(Polyvinyl Alcohol)/Zeolite Electrospun Composite Nanofibrous Membrane for Adsorption of Cr6+, Fe3+ and Ni2+. J. Hazard. Mater. 2017, 322, 182–194. DOI: 10.1016/j.jhazmat.2016.06.028.
  • Bhaumik, M.; Choi, H. J.; McCrindle, R. I.; Maity, A. Composite Nanofibers Prepared from Metallic Iron Nanoparticles and Polyaniline, High Performance for Water Treatment Applications. J. Colloid. Interface Sci. 2014, 425, 75–82. DOI: 10.1016/j.jcis.2014.03.031.
  • Liu, Z.; Liu, J.; Gardner, W. S.; Shank, G. C.; Ostrom, N. E. The Impact of Deepwater Horizon Oil Spill on Petroleum Hydrocarbons in Surface Waters of the Northern Gulf of Mexico. Deep‐Sea Res. II Top. Stud. Oceanogr. 2016, 129, 292–300. DOI: 10.1016/j.dsr2.2014.01.013.
  • Anisuddin, S.; Al-Hashar, N.; Tasheen, S. Prevention of Oil Spill in Seawater Using Locally Available Materials. Arab. J. Sci. Eng. 2005, 30, 143–152.
  • ITOPF. The International Tanker Owners Pollution Federation Limited Oil Tanker Spill 16. http://www.itopf.com/fileadmin/data/Documents/Company_Lit/Oil_Spill_Stats_2016.pdf. Accessed March 26, 2019
  • Ceylan, D.; Dogu, S.; Karacik, B.; Yakan, S. D.; Okay, O. S.; Okay, O. Evaluation of Butyl Rubber as Sorbent Material for the Removal of Oil and Polycyclic Aromatic Hydrocarbons from Seawater. Environ. Sci. Technol. 2009, 43, 3846–3852. DOI: 10.1021/es900166v.
  • Choi, H. M.; Moreau, J. P. Oil Sorption Behavior of Various Sorbents Studied by Sorption Capacity Measurement and Environmental Scanning Electron Microscopy. Microsc. Res. Tech. 1993, 25, 447–455. DOI: 10.1002/jemt.1070250516.
  • Choi, H. M.; Cloud, R. M. Natural Sorbents in Oil Spill Cleanup. Environ. Sci. Technol. 1992, 26, 772–776. DOI: 10.1021/es00028a016.
  • Deschamps, G.; Caruel, H.; Borredon, M. E.; Bonnin, C.; Vignoles, C. Oil Removal from Water by Selective Sorption on Hydrophobic Cotton Fibers. 1. Study of Sorption Properties and Comparison with Other Cotton Fiber-Based Sorbents. Environ. Sci. Technol. 2003, 37, 1013–1015. DOI: 10.1021/es020061s.
  • Lim, T. T.; Huang, X. Evaluation of Kapok (Ceiba Pentandra (L.) Gaertn.) as a Natural Hollow Hydrophobic–Oleophilic Fibrous Sorbent for Oil Spill Cleanup. Chemosphere 2007, 66, 955–963. DOI: 10.1016/j.chemosphere.2006.05.062.
  • Annunciado, T. R.; Sydenstricker, T. H.; Amico, S. C. Experimental Investigation of Various Vegetable Fibers as Sorbent Materials for Oil Spills. Mar. Pollut. Bull. 2005, 50, 1340–1346. DOI: 10.1016/j.marpolbul.2005.04.043.
  • Radetic, M.; Ilic, V.; Radojevic, D.; Miladinovic, R.; Jocic, D.; Jovancic, P. Efficiency of Recycled Wool-Based Nonwoven Material for the Removal of Oils from Water. Chemosphere 2008, 70, 525–530. DOI: 10.1016/j.chemosphere.2007.07.005.
  • Reneker, D. H.; Chun, L. Nanometer Diameter Fibres of Polymer Produced by Electrospinning. Nanotechnology 1996, 7, 216–223. DOI: 10.1088/0957-4484/7/3/009.
  • Wu, J.; Wang, N.; Wang, L.; Dong, H.; Zhao, Y.; Jiang, L. Electrospun Porous Structure Fibrous Film with High Oil Adsorption Capacity. ACS Appl. Mater. Interfaces 2012, 4, 3207–−3212. DOI: 10.1021/am300544d.
  • Xin, Y.; Qi, X.; Tian, H.; Guo, C.; Li, X.; Lin, J.; Wang, C. Full-Fiber Piezoelectric Sensor by Straight PVDF/Nanoclay Nanofibers. Mater. Lett. 2016, 164, 136–139. DOI: 10.1016/j.matlet.2015.09.117.
  • Pascariu Dorneanu, P.; Airinei, A.; Olaru, N.; Fifere, N.; Doroftei, C.; Iacomi, F. Preparation and Characterization of Some Electrospun Polysulfone Nanocomposites Reinforced with Ni Doped SnO2 Nanoparticles. Eur. Polym. J. 2017, 91, 326–336. DOI: 10.1016/j.eurpolymj.2017.04.004.
  • Wang, Y.; Jia, W.; Strout, T.; Ding, Y.; Lei, Y. Characterization and Sensitive Gas Sensing of Conductive Core-Sheath TiO2-PEDOT Nanocables. Sensors 2009, 9, 6752–6763. DOI: 10.3390/s90906752.
  • Ji, S. H.; Cho, J. H.; Jeong, Y. H.; Paik, J. H.; Yun, J. D.; Yun, J. S. Flexible Lead-Free Piezoelectric Nanofiber Composites Based on BNT-ST and PVDF for Frequency Sensor Applications. Sens. Actuators A 2016, 247, 316–322. DOI: 10.1016/j.sna.2016.06.011.
  • El Fawal, G. F.; Hassan, H. S.; El-Aassar, M. R.; Elkady, M. F. Electrospun Polyvinyl Alcohol Nanofibers Containing Titanium Dioxide for Gas Sensor Applications. Arab. J. Sci. Eng. 2019, 44, 251–257. DOI: 10.1007/s13369-018-3529-z.
  • Patil, P. T.; Anwane, R. S.; Kondawar, S. B. Development of Electrospun Polyaniline/ZnO Composite Nanofibers for LPG Sensing. Procedia Mater. Sci. 2015, 10, 195–204. DOI: 10.1016/j.mspro.2015.06.041.
  • Zheng, T.; Yue, Z.; Wallace, G. G.; Du, Y.; Martins, P.; Mendez, S. L.; Higgins, M. J. Local Probing of Magnetoelectric Properties of PVDF/Fe3O4 Electrospun Nanofibers by Piezoresponse Force Microscopy. Nanotechnology 2017, 28, 065707. DOI: 10.1088/1361-6528/aa5217.
  • Abolhasani, M. M.; Shirvanimoghaddam, K.; Naebe, M. PVDF/Graphene Composite Nanofibers with Enhanced Piezoelectric Performance for Development of Robust Nanogenerators. Compos. Sci. Technol. 2017, 138, 49–56. DOI: 10.1016/j.compscitech.2016.11.017.
  • Wu, C. M.; Chou, M. H. Sound Absorption of Electrospun Polyvinylidene Fluoride/Graphene Membranes. Eur. Polym. J. 2016, 82, 35–45. DOI: 10.1016/j.eurpolymj.2016.07.001.
  • Liu, Z. H.; Pan, C. T.; Su, C. Y.; Lin, L. W.; Chen, Y. J.; Tsai, J. S. A Flexible Sensing Device Based on a PVDF/MWCNT Composite Nanofiber Array with an Interdigital Electrode. Sens. Actuators A 2014, 211, 78–88. DOI: 10.1016/j.sna.2014.03.012.
  • Kondawar, S. B.; Patil, P. T.; Agrawal, S. P. Chemical Vapour Sensing Properties of Electrospun Nanofibers of Polyaniline/ZnO Nanocomposites. Adv. Mater. Lett. 2014, 5, 389–395. DOI: 10.5185/amlett.2014.amwc.1037.
  • Li, Y.; Gong, J.; He, G.; Deng, Y. Fabrication of Polyaniline/Titanium Dioxide Composite Nanofibers for Gas Sensing Application. Mater. Chem. Phys. 2011, 129, 477–482. DOI: 10.1016/j.matchemphys.2011.04.045.
  • Li, P.; Zhang, M.; Liu, X.; Su, Z.; Wei, G. Electrostatic Assembly of Platinum Nanoparticles along Electrospun Polymeric Nanofibers for High Performance Electrochemical Sensors. Nanomaterials 2017, 7, 236. DOI: 10.3390/nano7090236.
  • Li, Y.; Zhang, P.; Ouyang, Z.; Zhang, M.; Lin, Z.; Li, J.; Su, Z.; Wei, G. Nanoscale Graphene Doped with Highly Dispersed Silver Nanoparticles: quick Synthesis, Facile Fabrication of 3D Membrane‐Modified Electrode, and Super Performance for Electrochemical Sensing. Adv. Funct. Mater. 2016, 26, 2122–2134. DOI: 10.1002/adfm.201504533.
  • Ouyang, Z.; Li, J.; Wang, J.; Li, Q.; Ni, T.; Zhang, X.; Wang, H.; Li, Q.; Su, Z.; Wei, G. Fabrication, Characterization and Sensor Application of Electrospun Polyurethane Nanofibers Filled with Carbon Nanotubes and Silver Nanoparticles. J. Mater. Chem. B 2013, 1, 2415–2424. DOI: 10.1039/c3tb20316f.
  • Zhang, P.; Zhao, X.; Zhang, X.; Lai, Y.; Wang, X.; Li, J.; Wei, G.; Su, Z. Electrospun Doping of Carbon Nanotubes and Platinum Nanoparticles into the β-Phase Polyvinylidene Difluoride Nanofibrous Membrane for Biosensor and Catalysis Applications. ACS Appl. Mater. Interfaces 2014, 6, 7563–7571. DOI: 10.1021/am500908v.
  • Zhu, H.; Du, M.; Zhang, M.; Wang, P.; Bao, S.; Fu, Y.; Yao, J. Facile and Green Fabrication of Small, Mono-Disperse and Size-Controlled Noble Metal Nanoparticles Embedded in Water-Stable Polyvinyl Alcohol Nanofibers: High Sensitive, Flexible and Reliable Materials for Biosensors. Sens. Actuators B 2013, 185, 608–619. DOI: 10.1016/j.snb.2013.05.062.
  • Jia, W.; Su, L.; Lei, Y. Pt Nanoflower/Polyaniline Composite Nanofibers Based Urea Biosensor. Biosens. Bioelectron. 2011, 30, 158–164. DOI: 10.1016/j.bios.2011.09.006.
  • Zhu, H.; Du, M. L.; Zhang, M.; Wang, P.; Bao, S. Y.; Wang, L. N.; Fu, Y. Q.; Yao, J. M. Facile Fabrication of AgNPs/(PVA/PEI) Nanofibers, High Electrochemical Efficiency and Durability for Biosensors. Biosens. Bioelectron. 2013, 49, 210–215. DOI: 10.1016/j.bios.2013.04.016.
  • Wang, P.; Zhang, M.; Cai, Y.; Cai, S.; Du, M.; Zhu, H.; Bao, S.; Xie, Q. Facile Fabrication of Palladium Nanoparticles Immobilized on the Water-Stable Polyvinyl Alcohol/Polyehyleneimine Nanofibers via in-Situ Reduction and Their High Electrochemical Activity. Soft. Mater. 2014, 12, 387–395. DOI: 10.1080/1539445X.2014.937493.
  • Pascariu, P.; Tudose, I. V.; Pachiu, C.; Danila, M.; Ionescu, O.; Popescu, M.; Koudoumas, E.; Olaru, N.; Suchea, M. Graphene and TiO2- PVDF Nanocomposites for Potential Applications in Triboelectronics. Presented at the Proceedings of the 41st International Semiconductor Conference (CAS), Sinaia, Romania, Oct 10–12, 2018, 237–240. DOI: 10.1109/SMICND.2018.8539781.
  • Mollá, S.; Compa, V. Polyvinyl Alcohol Nanofiber Reinforced Nafion Membranes for Fuel Cell Applications. J. Membr. Sci. 2011, 372, 191–200. DOI: 10.1016/j.memsci.2011.02.001.
  • Li, W.; Wu, Y.; Wang, J.; Huang, D.; Chen, L.; Yang, G. Hybrid Gel Polymer Electrolyte Fabricated by Electrospinning Technology for Polymer Lithium-Ion Battery. Eur. Polym. J. 2015, 67, 365–372. DOI: 10.1016/j.eurpolymj.2015.04.014.
  • Miao, Y. E.; Yan, J.; Huang, Y.; Fan, W.; Liu, T. Electrospun Polymer Nanofiber Membrane Electrodes and an Electrolyte for Highly Flexible and Foldable All-Solid-State Supercapacitors. RSC Adv. 2015, 5, 26189–26196. DOI: 10.1039/C5RA00138B.
  • Li, Q.; Deng, L.; Kim, J. K.; Zhu, Y. Q.; Holmes, S. M.; Page, M. P.; Eichhorn, S. J. Growth of Carbon Nanotubes on Electrospun Cellulose Fibers for High Performance Supercapacitors. J. Electrochem. Soc. 2017, 164, A3220–A3228. DOI: 10.1149/2.1181713jes.
  • Chee, W. K.; Lim, H. N.; Zainal, Z.; Harrison, I.; Huang, N. M.; Andou, Y.; Chong, K. F.; Pandikumar, A. Electrospun Nanofiber Membranes as Ultrathin Flexible Supercapacitors. RSC Adv. 2017, 7, 12033–12040. DOI: 10.1039/C7RA00406K.
  • Santangelo, S. Electrospun Nanomaterials for Energy Applications. Recent Advances. Appl. Sci. 2019, 9, 1049. DOI: 10.3390/app9061049.
  • Yao, C. J.; Zhang, H. L.; Zhang, Q. Recent Progress in Thermoelectric Materials Based on Conjugated Polymers. Polymers 2019, 11, 107–119. DOI: 10.3390/polym11010107.
  • Dalton, N.; Lynch, R. P.; Collins, M. N.; Culebras, M. Thermoelectric Properties of Electrospun Carbon Nanofibres Derived from Lignin. Int. J. Biol. Macromol. 2019, 121, 472–479. DOI: 10.1016/j.ijbiomac.2018.10.051.
  • Niu, Q.; Gao, K.; Shao, Z. Cellulose Nanofiber/Single-Walled Carbon Nanotube Hybrid Non-Woven Macrofiber Mats as Novel Wearable Supercapacitors with Excellent Stability, Tailorability and Reliability. Nanoscale 2014, 6, 4083–4088. DOI: 10.1039/c3nr05929d.
  • Peng, S.; Li, L.; Han, X.; Sun, W.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F.; Yan, Q.; Chen, J.; Ramakrishna, S. Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution. Angew. Chem. Int. 2014, 53, 12594–12599. DOI: 10.1002/ange.201408876.
  • Xie, J.; Zhao, C.; Lin, Z.; Gu, P.; Zhang, Q. Nanostructured Conjugated Polymers for Energy-Related Applications beyond Solar Cells. Chem. Asian J. 2016, 11, 1489–1511. DOI: 10.1002/asia.201600293.
  • Dasgupta, N. P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H.; Yan, R.; Yang, P. 25th Anniversary Article: semiconductor Nanowires-Synthesis, Characterization, and Applications. Adv. Mater. 2014, 26, 2137–2184. DOI: 10.1002/adma.201305929.
  • Xie, J.; Gu, P.; Zhang, Q. Nanostructured Conjugated Polymers: Toward High-Performance Organic Electrodes for Rechargeable Batteries. ACS Energy Lett. 2017, 2, 1985–1996. DOI: 10.1021/acsenergylett.7b00494.
  • Park, S. H.; Lee, W. J. Hierarchically Mesoporous Carbon Nanofiber/Mn3O4 Coaxial Nanocables as Anodesn Lithium Ion Batteries. J. Power Sources 2015, 281, 301–309. DOI: 10.1016/j.jpowsour.2015.01.156.
  • Lee, J.; Lee, C. L.; Park, K.; Kim, I. D. Synthesis of an Al2O3-Coated Polyimide Nanofiber Mat and Its Electrochemical Characteristics as a Separator for Lithium Ion Batteries. J. Power Sources 2014, 248, 1211–1217. DOI: 10.1016/j.jpowsour.2013.10.056.
  • Yanilmaz, M.; Dirican, M.; Zhang, X. Evaluation of Electrospun SiO2/Nylon 6,6 Nanofiber Membranes as a Hermally-Stable Separator for Lithium-Ion Batteries. Electrochim. Acta 2014, 133, 501–508. DOI: 10.1016/j.electacta.2014.04.109.
  • Zhou, L.; Wu, N.; Cao, Q.; Jing, B.; Wang, X.; Wang, Q.; Kuang, H. A Novel Electrospun PVDF/PMMA Gel Polymer Electrolyte with in Situ TiO2 for Li-Ion Batteries. Solid State Ion. 2013, 249-250, 93–97. DOI: 10.1016/j.ssi.2013.07.019.
  • Li, Q.; Chen, Y.; Lee, D. J.; Li, F.; Kim, H. Preparation of Y-Zeolite/CoCl2 Doped PVDF Composite Nanofiber and Its Application in Hydrogen Production. Energy 2012, 38, 144–150. DOI: 10.1016/j.energy.2011.12.021.
  • Sethupathy, M.; Sethuraman, V.; Manisankar, P. Preparation of PVDF/SiO2 Composite Nanofiber Membrane Using Electrospinning for Polymer Electrolyte Analysis. Soft Nanosci. Lett. 2013, 03, 37–43. DOI: 10.4236/snl.2013.32007.
  • Solarajan, A. K.; Murugadoss, V.; Angaiah, S. Dimensional Stability and Electrochemical Behaviour of ZrO2 Incorporated Electrospun PVdF-HFP Based Nanocomposite Polymer Membrane Electrolyte for Li-Ion Capacitors. Sci. Rep. 2017, 7, 45390. DOI: 10.1038/srep45390.
  • Sethupathy, M.; Ravichandran, S.; Manisankar, P. Preparation of PVdF-PAN-V2O5 Hybrid Composite Membrane by Electrospinning and Fabrication of Dye-Sensitized Solar Cells. Int. J. Electrochem. Sci. 2014, 9, 3166–3180.
  • Fang, C.; Yang, S.; Zhao, X.; Du, P.; Xiong, J. Electrospun Montmorillonite Modified Poly(Vinylidene Fluoride) Nanocomposite Separators for Lithium-Ion Batteries. Mater. Res. Bull. 2016, 79, 1–7. DOI: 10.1016/j.materresbull.2016.02.015.
  • Solarajan, A. K.; Murugadoss, V.; Angaiah, S. Montmorillonite Embedded Electrospun PVdF–HFP Nanocomposite Membrane Electrolyte for Li-Ion Capacitors. Appl. Mater. Today 2016, 5, 33–40. DOI: 10.1016/j.apmt.2016.09.002.
  • Peng, S.; Li, L.; Lee, J. K. Y.; Tian, L.; Srinivasan, M.; Adams, S.; Ramakrishna, S. Electrospun Carbon Nanofibers and Their Hybrid Composites as Advanced Materials for Energy Conversion and Storage. Nano. Energy 2016, 22, 361–395. DOI: 10.1016/j.nanoen.2016.02.001.
  • Li, Y.; Lee, D.-K.; Kim, J. Y.; Kim, B.; Park, N.-G.; Kim, K.; Shin, J.-H.; Choi, I.-S.; Ko, M. J. Highly Durable and Flexible Dye-Sensitized Solar Cells Fabricated on Plastic Substrates: PVDF-Nanofiber-Reinforced TiO2 Photoelectrodes. Energy Environ. Sci. 2012, 5, 8950–8957. DOI: 10.1039/c2ee21674d.
  • Vijayakumar, E.; Subramania, A.; Zhaofu, F.; Dyson, P. J. High Performance Dye Sensitized Solar Cell Based on Electrospun Poly(Vinylidene Fluoride-co-Hexafluoropropylene)/Cobalt Sulfide Nanocomposite Membrane Electrolyte. RSC Adv. 2015, 5, 52026–52032. DOI: 10.1039/C5RA04944J.
  • Yang, Y.; Tao, J.; Jin, X.; Qin, Q. Preparation and Characterization of a Microporous Polymer Electrolyte Based on Poly(Vinylidene Fluoride)/Ionic-Liquid-Functionalized SiO2 for Dye-Sensitized Solar Cells. J. Appl. Polym. Sci. 2011, 121, 1566. DOI: 10.1002/app.33746.
  • Chen, J.; Yang, P.; Wang, C.; Zhan, S.; Zhang, L.; Huang, Z.; Li, W.; Wang, C.; Jiang, Z.; Shao, C. Ag Nanoparticles/PPV Composite Nanofibers with High and Sensitive Opto-Electronic Response. Nanoscale Res. Lett. 2011, 6, 1–5. DOI: 10.1186/1556-276X-6-121.
  • Zhang, C. L.; Lv, K. P.; Cong, H. P.; Yu, S. H. Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning. Small 2012, 8, 648–653. DOI: 10.1002/smll.201102230.
  • Ditaranto, N.; Basoli, F.; Trombetta, M.; Cioffi, N.; Rainer, A. Electrospun Nanomaterials Implementing Antibacterial Inorganic Nanophases. Appl. Sci. 2018, 8, 1–16.
  • Pascariu-Dorneanu, P.; Airinei, A.; Olaru, N. Advances in Polymer Nanofibers Containing Metal Oxide Nanoparticles. In Intelligent Polymers for Nanomedicine and Biotechnologies; Aflori, M., Ed.; Boca Raton: CRC Press, Taylor & Francis Group, 2017, pp. 23–44.
  • Pascariu, P.; Airinei, A.; Iacomi, F.; Bucur, S.; Suchea, M. Electrospun TiO2 Based Nanofibers Composites and Their Bio-Related and Environmental Applications. In Functional Nanostructured Interfaces for Environmental and Biomedical Applications; Dinca, V., Suchea , M., Eds.; Amsterdam, Netherlands: Elsevier, 2019, pp. 307–321.
  • El-Aassar, M. R.; El Fawal, G. F.; El-Deeb, N. M.; Hassan, H. S.; Mo, X. Electrospun Polyvinyl Alcohol/Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing. Appl. Biochem. Biotechnol. 2016, 178, 1488–1502. DOI: 10.1007/s12010-015-1962-y.
  • Wahab, J. A.; Kim, I. S.; Ni, Q. Q. A Comparative Study on Synthesis of AgNPs on Cellulose Nanofibers by Thermal Treatment and DMF for Antibacterial Activities. Mater. Sci. Eng. C 2019, 98, 1179–1195. DOI: 10.1016/j.msec.2019.01.017.
  • Missoum, K.; Sadocco, P.; Causio, J.; Belgacem, M. N.; Bras, J. Antibacterial Activity and Biodegradability Assessment of Chemically Grafted Nanofibrillated Cellulose. Mater. Sci. Eng. C 2014, 45, 477–483. DOI: 10.1016/j.msec.2014.09.037.
  • Vasile, C. Polymeric Nanocomposites and Nanocoatings for Food Packaging, a Review. Materials 2018, 11, 1834–1849. DOI: 10.3390/ma11101834.
  • Quirós, J.; Boltes, K.; Rosal, R. Bioactive Applications for Electrospun Fibers. Polym. Rev. 2016, 56, 631–667. DOI: 10.1080/15583724.2015.1136641.
  • Liu, C.; Shen, J.; Liao, C. Z.; Yeung, K. W. K.; Tjong, S. C. Novel Electrospun Polyvinylidene Fluoride-Graphene Oxide-Silver Nanocomposite Membranes with Protein and Bacterial Antifouling Characteristics. Express Polym. Lett. 2018, 12, 365–382. DOI: 10.3144/expresspolymlett.2018.31.
  • Cheng, M.; Wang, H.; Zhang, Z.; Li, N.; Fang, X.; Xu, S. Gold Nanorod-Embedded Electrospun Fibrous Membrane as a Photothermal Therapy Platform. ACS Appl. Mater. Interfaces 2014, 6, 1569–1575. DOI: 10.1021/am405839b.
  • Kutikov, A. B.; Song, J. An Amphiphilic Degradable Polymer/Hydroxyapatite Composite with Enhanced Handling Characteristics Promotes Osteogenic Gene Expression in Bone Marrow Stromal Cells. Acta Biomater. 2013, 9, 8354–8364. DOI: 10.1016/j.actbio.2013.06.013.
  • Ba Linh, N. T.; Min, Y. K.; Lee, B. T. Hybrid Hydroxyapatite Nanoparticles-Loaded PCL/GE Blend Fibers for Bone Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2013, 24, 520–538. DOI: 10.1080/09205063.2012.697696.
  • Bianco, A.; Di Federico, E.; Cacciotti, I. Electrospun Poly(e-Caprolactone)-Based Composites Using Synthesized b-Tricalcium Phosphate. Polym. Adv. Technol. 2011, 22, 1832–1841. DOI: 10.1002/pat.1680.
  • Wang, Y.; Cui, W.; Chou, J.; Wen, S.; Sun, Y.; Zhang, H. Electrospun Nanosilicates-Based Organic/Inorganic Nanofibers for Potential Bone Tissue Engineering. Colloids Surf. B 2018, 172, 90–97. DOI: 10.1016/j.colsurfb.2018.08.032.
  • Xiao, S.; Castro, R.; Maciel, D.; Gonçalves, M.; Shi, X.; Rodrigues, J.; Tomás, H. Fine Tuning of the pH-Sensitivity of Laponite-Doxorubicin Nanohybrids by Polyelectrolyte Multilayer Coating. Mater. Sci. Eng. C 2016, 60, 348–356. DOI: 10.1016/j.msec.2015.11.051.
  • Tomás, H.; Alves, C. S.; Rodrigues, J. A Key Nanoplatform for Biomedical Applications? Nanomedicine 2018, 14, 2407–2420. DOI: 10.1016/j.nano.2017.04.016.
  • Sudakaran, S. V.; Venugopal, J. R.; Vijayakumar, G. P.; Abisegapriyan, S.; Grace, A. N.; Ramakrishna, S. Sequel of MgO Nanoparticles in PLACL Nanofibers for Anti-Cancer Therapy in Synergy with Curcumin/β-Cyclodextrin. Mater. Sci. Eng. C 2017, 71, 620–628. DOI: 10.1016/j.msec.2016.10.050.
  • Ribeiro, N.; Sousa, S. R.; Van Blitterswijk, C. A.; Moroni, L.; Monteiro, F. J. A Biocomposite of Collagen Nanofibers and Nanohydroxyapatite for Bone Regeneration. Biofabrication 2014, 6, 035015. DOI: 10.1088/1758-5082/6/3/035015.
  • Zhang, H.; Fu, Q.; Sun, T.; Chen, F.; Qi, C.; Wu, J.; Cai, Z.; Qian, Q.; Zhu, Y. Amorphous Calcium Phosphate, Hydroxyapatite and Poly (d,l-Lactic Acid) Composite Nanofibers: Electrospinning Preparation, Mineralization and in Vivo Bone Defect Repair. Colloids Surf. B 2015, 136, 27–36. DOI: 10.1016/j.colsurfb.2015.08.015.
  • Kouhi, M.; Morshed, M.; Varshosaz, J.; Fathi, M. H. Poly (ε-Caprolactone) Incorporated Bioactive Glass Nanoparticles and Simvastatin Nanocomposite Nanofibers: Preparation, Characterization and in Vitro Drug Release for Bone Regeneration Applications. Chem. Eng. J. 2013, 228, 1057–1065. DOI: 10.1016/j.cej.2013.05.091.
  • Yang, X.; Li, Y.; Liu, X.; Huang, Q.; Zhang, R.; Feng, Q. Incorporation of Silica Nanoparticles to PLGA Electrospun Fibers for Osteogenic Differentiation of Human Osteoblast-like Cells. Regen. Biomater. 2018, 230, 229–238. DOI: 10.1093/rb/rby014.
  • Hosseini-Nassab, N.; Samanta, D.; Abdolazimi, Y.; Annes, J. P.; Zare, R. N. Electrically Controlled Release of Insulin Using Polypyrrole Nanoparticles. Nanoscale 2017, 9, 143–149. DOI: 10.1039/C6NR08288B.
  • Goyal, R.; Macri, L. K.; Kaplan, H. M.; Kohn, J. Nanoparticles and Nanofibers for Topical Drug Delivery. J. Control Release 2016, 240, 77–92. DOI: 10.1016/j.jconrel.2015.10.049.
  • Bhattarai, R. S.; Bachu, R. D.; Boddu, S. H. S.; Bhaduri, S. Biomedical Applications of Electrospun Nanofibers, Drug and Nanoparticle Delivery. Pharmaceutics 2018, 11, 5. DOI: 10.3390/pharmaceutics11010005.
  • Alhusein, N.; Blagbrough, I. S.; De Bank, P. A. Electrospun Matrices for Localised Controlled Drug Delivery, Release of Tetracycline Hydrochloride from Layers of Polycaprolactone and Poly(Ethylene-co-Vinyl Acetate). Drug Deliv. Transl. Res. 2012, 2, 477–488. DOI: 10.1007/s13346-012-0106-y.
  • Sezer, U. A.; Ozturk, K.; Aru, B.; Demirel, G. Y.; Sezer, S.; Bozkurt, M. R. Zero Valent Zinc Nanoparticles Promote Neuroglial Cell Proliferation: A Biodegradable and Conductive Filler Candidate for Nerve Regeneration. J. Mater. Sci. Mater. Med. 2017, 28, 1–11. DOI: 10.1007/s10856-016-5831-1.
  • Ganesh, N.; Jayakumar, R.; Koyakutty, M.; Mony, U.; Nair, S. V. Embedded Silica Nanoparticles in Poly(Caprolactone) Nanofibrous Scaffolds Enhanced Osteogenic Potential for Bone Tissue Engineering. Tissue Eng. A 2012, 18, 1867–1881. DOI: 10.1089/ten.tea.2012.0167.
  • Kai, D.; Tan, M. J.; Prabhakaran, M. P.; Chan, B. Q. Y.; Liow, S. S.; Ramakrishna, S.; Loh, X. J. Biocompatible Electrically Conductive Nanofibers from Inorganic-Organic Shape Memory Polymers. Colloids Surf. B Biointerfaces 2016, 148, 557–565. DOI: 10.1016/j.colsurfb.2016.09.035.
  • Gong, T.; Li, W.; Chen, H.; Wang, L.; Shao, S.; Zhou, S. Remotely Actuated Shape Memory Effect of Electrospun Composite Nanofibers. Acta Biomater. 2012, 8, 1248–1259. DOI: 10.1016/j.actbio.2011.12.006.
  • Tan, L.; Gan, L.; Hu, J.; Zhu, Y.; Han, J. Functional Shape Memory Composite Nanofibers with Graphene Oxide Filler. Compos. Part A 2015, 76, 115–123. DOI: 10.1016/j.compositesa.2015.04.015.
  • Kelly, C. A.; Naylor, A.; Illum, L.; Shakesheff, K. M.; Howdle, S. M. Supercritical CO2: A Clean and Low Temperature Approach to Blending PDLLA and PEG. Adv. Funct. Mater. 2012, 22, 1684–1691. DOI: 10.1002/adfm.201101889.
  • Sabzi, M.; Ranjbar‐Mohammadi, M.; Zhang, Q.; Kargozar, S.; Leng, J.; Akhtari, T.; Abbasi, R. Designing Triple‐Shape Memory Polymers from a Miscible Polymer Pair through Dual‐Electrospinning Technique. J. Appl. Polym. Sci. 2019, 136, 47471. DOI: 10.1002/app.47471.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.