888
Views
2
CrossRef citations to date
0
Altmetric
Review

Synthetic strategies, properties, and applications of unsaturated main-chain metallopolymers prepared by olefin metathesis polymerization

ORCID Icon, , &
Pages 415-455 | Received 17 Apr 2020, Accepted 06 Jul 2020, Published online: 07 Aug 2020

References

  • Arimoto, F. S.; Haven, A. C. Derivatives of Dicyclopentadienyliron1. J. Am. Chem. Soc. 1955, 77, 6295–6297. DOI: 10.1021/ja01628a068.
  • Wang, Y.; Astruc, D.; Abd-El-Aziz, A. S. Metallopolymers for Advanced Sustainable Applications. Chem. Soc. Rev. 2019, 48, 558–636. DOI: 10.1039/C7CS00656J.
  • Gu, H. B.; Mu, S. D.; Qiu, G. R.; Liu, X.; Zhang, L.; Yuan, Y. F.; Astruc, D. Redox-Stimuli-Responsive Drug Delivery Systems with Supramolecular Ferrocenyl-Containing Polymers for Controlled Release. Coordin. Chem. Rev. 2018, 364, 51–85. DOI: 10.1016/j.ccr.2018.03.013.
  • Zhao, L.; Liu, X.; Zhang, L.; Qiu, G. R.; Astruc, D.; Gu, H. B. Metallomacromolecules Containing Cobalt Sandwich Complexes: Synthesis and Functional Materials Properties. Coordin. Chem. Rev. 2017, 337, 34–79. DOI: 10.1016/j.ccr.2017.02.009.
  • Astruc, D. Why is Ferrocene So Exceptional? Eur. J. Inorg. Chem. 2017, 2017, 6–29. DOI: 10.1002/ejic.201600983.
  • Dong, Q. C.; Meng, Z. G.; Ho, C. L.; Guo, H. G.; Yang, W. Y.; Manners, I.; Xu, L. L.; Wong, W. Y. A Molecular Approach to Magnetic Metallic Nanostructures from Metallopolymer Precursors. Chem. Soc. Rev. 2018, 47, 4934–4953. DOI: 10.1039/c7cs00599g.
  • Yan, Y.; Zhang, J. Y.; Ren, L. X.; Tang, C. B. Metal-Containing and Related Polymers for Biomedical Applications. Chem. Soc. Rev. 2016, 45, 5232–5263. DOI: 10.1039/c6cs00026f.
  • Zhu, T.; Sha, Y.; Yan, J.; Pageni, P.; Rahman, M. A.; Yan, Y.; Tang, C. Metallo-Polyelectrolytes as a Class of Ionic Macromolecules for Functional Materials. Nat. Commun. 2018, 9, 4329. DOI: 10.1038/s41467-018-06475-9.
  • Gallei, M.; Ruttiger, C. Recent Trends in Metallopolymer Design: Redox-Controlled Surfaces, Porous Membranes, and Switchable Optical Materials Using Ferrocene-Containing Polymers. Chem. Eur. J. 2018, 24, 10006–10021. DOI: 10.1002/chem.201800412.
  • Abd-El-Aziz, A. S.; Agatemor, C.; Etkin, N. Antimicrobial Resistance Challenged with Metal-based Antimicrobial Macromolecules. Biomaterials 2017, 118, 27–50. DOI: 10.1016/j.biomaterials.2016.12.002.
  • Wei, P. F.; Yan, X. Z.; Huang, F. H. Supramolecular Polymers Constructed by Orthogonal Self-Assembly Based on Host-Guest and Metal-Ligand Interactions. Chem. Soc. Rev. 2015, 44, 815–832. DOI: 10.1039/c4cs00327f.
  • Albada, B.; Metzler-Nolte, N. Organometallic-Peptide Bioconjugates: Synthetic Strategies and Medicinal Applications. Chem. Rev. 2016, 116, 11797–11839. DOI: 10.1021/acs.chemrev.6b00166.
  • Noor, F.; Wustholz, A.; Kinscherf, R.; Metzler-Nolte, N. A Cobaltocenium-Peptide Bioconjugate Shows Enhanced Cellular Uptake and Directed Nuclear Delivery. Angew. Chem. Int. Ed. Engl. 2005, 44, 2429–2432. DOI: 10.1002/anie.200462519.
  • van Staveren, D. R.; Metzler-Nolte, N. Bioorganometallic Chemistry of Ferrocene. Chem. Rev. 2004, 104, 5931–5985. DOI: 10.1021/cr0101510.
  • Zhu, T.; Zhang, J.; Tang, C. Metallo-Polyelectrolytes: Correlating Macromolecular Architectures with Properties and Applications. Trends Chem. 2020, 2, 227–240. DOI: 10.1016/j.trechm.2019.12.004.
  • Liu, J.; Xie, C.; Kretzschmann, A.; Koynov, K.; Butt, H. J.; Wu, S. Metallopolymer Organohydrogels with Photo-Controlled Coordination Crosslinks Work Properly below 0 °C. Adv. Mater. 2020, 32, 1908324. DOI: 10.1002/adma.201908324.
  • Wu, Q.; Rauscher, P. M.; Lang, X.; Wojtecki, R. J.; de Pablo, J. J.; Hore, M. J. A.; Rowan, S. J. Poly[n] Catenanes: Synthesis of Molecular Interlocked Chains. Science 2017, 358, 1434–1439. DOI: 10.1126/science.aap7675.
  • Schubert, U. S.; Eschbaumer, C. Macromolecules Containing Bipyridine and Terpyridine Metal Complexes: Towards Metallosupramolecular Polymers. Angew. Chem. Int. Ed. 2002, 41, 2892–2926. DOI: 10.1002/1521-3773(20020816)41:16 < 2892::aid-anie2892 > 3.0.co;2-6.
  • Wu, H.; Zheng, J.; Kjoniksen, A.-L.; Wang, W.; Zhang, Y.; Ma, J. Metallogels: Availability. Adv. Mater. 2019, 31, 1806204. DOI: 10.1002/adma.201806204.
  • Li, Z.; Li, Y.; Zhao, Y.; Wang, H.; Zhang, Y.; Song, B.; Li, X.; Lu, S.; Hao, X. Q.; Hla, S. W.; et al. Synthesis of Metallopolymers and Direct Visualization of the Single Polymer Chain. J. Am. Chem. Soc. 2020, 142, 6196–6205. DOI: 10.1021/jacs.0c00110.
  • Hardy, C. G.; Zhang, J. Y.; Yan, Y.; Ren, L. X.; Tang, C. B. Metallopolymers with Transition Metals in the Side-Chain by Living and Controlled Polymerization Techniques. Prog. Polym. Sci 2014, 39, 1742–1796. DOI: 10.1016/j.progpolymsci.2014.03.002.
  • Hardy, C. G.; Ren, L. X.; Zhang, J. Y.; Tang, C. B. Side-Chain Metallocene-Containing Polymers by Living and Controlled Polymerizations. Isr. J. Chem. 2012, 52, 230–245. DOI: 10.1002/ijch.201100110.
  • Pittman, C. U. The Discovery of Metallocene- and Metallocene-like Addition Polymers. J. Inorg. Organomet. Polym. 2005, 15, 33–55. DOI: 10.1007/s10904-004-2374-6.
  • Gu, H. B.; Ciganda, R.; Gatard, S.; Lu, F.; Zhao, P. X.; Ruiz, J.; Astruc, D. On Metallocene-Containing Macromolecules and Their Applications. J. Organomet. Chem. 2016, 813, 95–102. DOI: 10.1016/j.jorganchem.2016.04.016.
  • Alkan, A.; Wurm, F. R. Water-Soluble Metallocene-Containing Polymers. Macromol. Rapid Commun. 2016, 37, 1482–1493. DOI: 10.1002/marc.201600205.
  • Yan, Y.; Pageni, P.; Kabir, M. P.; Tang, C. Metallocenium Chemistry and Its Emerging Impact on Synthetic Macromolecular Chemistry. Synlett 2016, 27, 984–1005. DOI: 10.1055/s-0035-1561504.
  • Abd-El-Aziz, A. S.; Bernardin, S. Synthesis and Reactivity of Arenes Coordinated to Cyclopentadienyliron Cations. Coordin. Chem. Rev. 2000, 203, 219–267. DOI: 10.1016/S0010-8545(99)00182-4.
  • Neuse, E. W. Polymetallocenylenes-Recent Developments. J. Macro. Sci. A 1981, 16, 3–72. DOI: 10.1080/00222338108082042.
  • Neuse, E. W.; Rosenber, H. Metallocene. Polym. J. Macro. Sci. Rev. Macro. Chem. 1970, 4, 1–145. DOI: 10.1080/15321797008080022.
  • Beto, C. C.; Yang, Y.; Zeman, C. J.; Ghiviriga, I.; Schanze, K. S.; Veige, A. S. Cu-Catalyzed Azide-Pt-Acetylide Cycloaddition: Progress toward a Conjugated Metallopolymer via iClick. Organometallics 2018, 37, 4545–4550. DOI: 10.1021/acs.organomet.8b00737.
  • Musgrave, R. A.; Russell, A. D.; Hayward, D. W.; Whittell, G. R.; Lawrence, P. G.; Gates, P. J.; Green, J. C.; Manners, I. Main-Chain Metallopolymers at the Static-Dynamic Boundary Based on Nickelocene. Nat. Chem. 2017, 9, 743–750. DOI: 10.1038/nchem.2743.
  • Ruan, Z.; Li, Z. Recent Progress of Magnetic Nanomaterials from Cobalt-Containing Organometallic Polymer Precursors. Polym. Chem. 2020, 11, 764–778. DOI: 10.1039/C9PY01517E.
  • Wang, Y.; Rapakousiou, A.; Astruc, D. Synthesis of Cobalticenium-Enamine Polyelectrolytes. Macromolecules 2014, 47, 3767–3774. DOI: 10.1021/ma5007864.
  • Williams, K. A.; Boydston, A. J.; Bielawski, C. W. Main-Chain Organometallic Polymers: Synthetic Strategies, Applications, and Perspectives. Chem. Soc. Rev. 2007, 36, 729–744. DOI: 10.1039/b601574n.
  • Nguyen, P.; Gomez-Elipe, P.; Manners, I. Organometallic Polymers with Transition Metals in the Main Chain. Chem. Rev. 1999, 99, 1515–1548. DOI: 10.1021/cr960113u.
  • Cao, K.; Murshid, N.; Wang, X. Synthesis of Main-Chain Metal Carbonyl Organometallic Macromolecules (MCMCOMs). Macromol. Rapid Commun. 2015, 36, 586–596. DOI: 10.1002/marc.201400563.
  • Hailes, R. L. N.; Oliver, A. M.; Gwyther, J.; Whittell, G. R.; Manners, I. Polyferrocenylsilanes: Synthesis, Properties, and Applications. Chem. Soc. Rev. 2016, 45, 5358–5407. DOI: 10.1039/c6cs00155f.
  • Sha, Y.; Shen, Z.; Jia, H.; Luo, Z. Main-Chain Ferrocene-Containing Polymers Prepared by Acyclic Diene Metathesis Polymerization: A Review. Curr. Org. Chem 2020, 24, 1010–1017. DOI: 10.2174/1385272824666191227111804.
  • Gilroy, J. B.; Patra, S. K.; Mitchels, J. M.; Winnik, M. A.; Manners, I. Main-Chain Heterobimetallic Block Copolymers: Synthesis and Self-Assembly of Polyferrocenylsilane-b-Poly(Cobaltoceniumethylene). Angew. Chem. Int. Ed. Engl. 2011, 50, 5851–5855. DOI: 10.1002/anie.201008184.
  • Amer, W. A.; Wang, L.; Amin, A. M.; Ma, L.; Yu, H. Recent Progress in the Synthesis and Applications of Some Ferrocene Derivatives and Ferrocene-Based Polymers. J. Inorg. Organomet. Polym. 2010, 20, 605–615. DOI: 10.1007/s10904-010-9373-6.
  • Baljak, S.; Russell, A. D.; Binding, S. C.; Haddow, M. F.; O’Hare, D.; Manners, I. Ring-Opening Polymerization of a Strained [3] Nickelocenophane: A Route to Polynickelocenes, a Class of S = 1 Metallopolymers. J. Am. Chem. Soc. 2014, 136, 5864–5867. DOI: 10.1021/ja5014745.
  • Qiu, H. B.; Gilroy, J. B.; Manners, I. DNA-Induced Chirality in Water-Soluble Poly(Cobaltoceniumethylene). Chem. Commun. 2013, 49, 42–44. DOI: 10.1039/c2cc37026c.
  • Manners, I. Synthetic Metal-Containing Polymers; John Wiley & Sons: Hoboken, NJ, 2006.
  • Pietschnig, R. Polymers with Pendant Ferrocenes. Chem. Soc. Rev. 2016, 45, 5216–5231. DOI: 10.1039/c6cs00196c.
  • Wang, X. S.; Cao, K.; Liu, Y. B.; Tsang, B.; Liew, S. Migration Insertion Polymerization (MIP) of Cyclopentadienyldicarbonyldiphenylphosphinopropyliron (FpP): A New Concept for Main Chain Metal-Containing Polymers (MCPs). J. Am. Chem. Soc. 2013, 135, 3399–3402. DOI: 10.1021/ja400755e.
  • Manners, I. Ring-Opening Polymerization of Metallocenophanes: A New Route to Transition Metal-Based Polymers. Adv. Organomet. Chem. 1995, 37, 131–168. DOI: 10.1016/s0065-3055(08)60599-7.
  • Manners, I. Ring-Opening Polymerization of Metallocenophanes. Adv. Mater. 1994, 6, 68–71. DOI: 10.1002/adma.19940060115.
  • Nelson, J. M.; Rengel, H.; Manners, I. Ring-Opening Polymerization of [2] Ferrocenophanes with a Hydrocarbon Bridge: Synthesis of Poly (Ferrocenylethylenes). J. Am. Chem. Soc. 1993, 115, 7035–7036. DOI: 10.1021/ja00068a096.
  • Foucher, D. A.; Tang, B. Z.; Manners, I. Ring-Opening Polymerization of Strained, Ring-Tilted Ferrocenophanes: A Route to High-Molecular-Weight Poly (Ferrocenylsilanes). J. Am. Chem. Soc. 1992, 114, 6246–6248. DOI: 10.1021/ja00041a053.
  • Knapp, R.; Velten, U.; Rehahn, M. Synthesis and Material Properties of Soluble Poly(1,1'-Ferrocenylene-Alt-p-Oligophenylenes). Polymer 1998, 39, 5827–5838. DOI: 10.1016/S0032-3861(98)00076-7.
  • Li, H. K.; Li, L. Z.; Wu, H. Q.; Lam, J. W. Y.; Sun, J. Z.; Qin, A. J.; Tang, B. Z. Ferrocene-Based Poly(Aroxycarbonyltriazole)s: Synthesis by Metal-Free Click Polymerization and Use as Precursors to Magnetic Ceramics. Polym. Chem. 2013, 4, 5537–5541. DOI: 10.1039/c3py00892d.
  • Yang, H. C.; Lin, S. Y.; Yang, H. C.; Lin, C. L.; Tsai, L.; Huang, S. L.; Chen, I. W. P.; Chen, C. H.; Jin, B. Y.; Luh, T. Y. Molecular Architecture towards Helical Double-Stranded Polymers. Angew. Chem. Int. Ed. Engl. 2006, 45, 726–730. DOI: 10.1002/anie.200503406.
  • Gonsalves, K.; Zhan-Ru, L.; Rausch, M. D. Ferrocene-Containing Polyamides and Polyureas. J. Am. Chem. Soc. 1984, 106, 3862–3863. DOI: 10.1021/ja00325a027.
  • Gonçalves, C. S.; Serbena, J. P.; Hümmelgen, I. A.; Gruber, J. A Novel ferrocene-DOPPV Conjugated Copolymer. Macromol. Symp. 2006, 245–246, 22–26. DOI: 10.1002/masy.200651304.
  • Itoh, T.; Saitoh, H.; Iwatsuki, S. Synthesis and Property of Soluble Poly(1,1′-Dialkyl-3,3′-Ferrocenylenevinylene)s via Titanium-Induced Dicarbonyl-Coupling Reaction of 1,1′-Dialkylferrocene-3,3′-Dicarbaldehydes. J. Polym. Sci. A Polym. Chem. 1995, 33, 1589–1596. DOI: 10.1002/pola.1995.080331005.
  • Luo, Q.; Zhang, R.; Zhang, J.; Xia, J. Synthesis of Conjugated Main-Chain Ferrocene-Containing Polymers through Melt-State Polymerization. Organometallics 2019, 38, 2972–2978. DOI: 10.1021/acs.organomet.9b00312.
  • Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O'Regan, M. Synthesis of Molybdenum Imido Alkylidene Complexes and Some Reactions Involving Acyclic Olefins. J. Am. Chem. Soc. 1990, 112, 3875–3886. DOI: 10.1021/ja00166a023.
  • Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. A Series of Well‐Defined Metathesis Catalysts-Synthesis of [RuCl2(CHR′)(PR3)2] and Its Reactions. Angew. Chem. Int. Ed. Engl. 1995, 34, 2039–2041. DOI: 10.1002/anie.199520391.
  • Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and Activity of a New Generation of Ruthenium-Based Olefin Metathesis Catalysts Coordinated with 1,3-Dimesityl-4,5-Dihydroimidazol-2-Ylidene Ligands. Org. Lett. 1999, 1, 953–956. DOI: 10.1021/ol990909q.
  • Sanford, M. S.; Love, J. A.; Grubbs, R. H. A Versatile Precursor for the Synthesis of New Ruthenium Olefin Metathesis Catalysts. Organometallics 2001, 20, 5314–5318. DOI: 10.1021/om010599r.
  • Bielawski, C. W.; Grubbs, R. H. Highly Efficient Ring-Opening Metathesis Polymerization (ROMP) Using New Ruthenium Catalysts Containing N-Heterocyclic Carbene Ligands. Angew. Chem. Int. Ed. 2000, 39, 2903–2906. DOI: 10.1002/1521-3773(20000818)39:16 < 2903::aid-anie2903 > 3.0.co;2-q.
  • Schrock, R. R.; Hoveyda, A. H. Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts. Angew. Chem. Int. Ed. Engl. 2003, 42, 4592–4633. DOI: 10.1002/anie.200300576.
  • Khan, R. K. M.; Torker, S.; Hoveyda, A. H. Readily Accessible and Easily Modifiable Ru-Based Catalysts for Efficient and Z-Selective Ring-Opening Metathesis Polymerization and Ring-Opening/Cross-Metathesis. J. Am. Chem. Soc. 2013, 135, 10258–10261. DOI: 10.1021/ja404208a.
  • Peeck, L. H.; LeuthäUsser, S.; Plenio, H. Switched Stereocontrol in Grubbs-Hoveyda Complex Catalyzed ROMP Utilizing Proton-Switched NHC Ligands. Organometallics 2010, 29, 4339–4345. DOI: 10.1021/om100628f.
  • Schrock, R. R. Multiple Metal-Carbon Bonds for Catalytic Metathesis Reactions (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 2006, 45, 3748–3759. DOI: 10.1002/anie.200600085.
  • Schulz, M. D.; Wagener, K. B. Precision Polymers through ADMET Polymerization. Macromol. Chem. Phys. 2014, 215, 1936–1945. DOI: 10.1002/macp.201400268.
  • Atallah, P.; Wagener, K. B.; Schulz, M. D. ADMET: The Future Revealed. Macromolecules 2013, 46, 4735–4741. DOI: 10.1021/ma400067b.
  • Opper, K. L.; Wagener, K. B. ADMET: Metathesis Polycondensation. J. Polym. Sci. A Polym. Chem. 2011, 49, 821–831. DOI: 10.1002/pola.24491.
  • Mutlu, H.; de Espinosa, L. M.; Meier, M. A. R. Acyclic Diene Metathesis: A Versatile Tool for the Construction of Defined Polymer Architectures. Chem. Soc. Rev. 2011, 40, 1404–1445. DOI: 10.1039/b924852h.
  • da Silva, L. C.; Rojas, G.; Schulz, M. D.; Wagener, K. B. Acyclic Diene Metathesis Polymerization: History, Methods and Applications. Prog. Polym. Sci. 2017, 69, 79–107. DOI: 10.1016/j.progpolymsci.2016.12.001.
  • Bielawski, C. W.; Grubbs, R. H. Living Ring-Opening Metathesis Polymerization. Prog. Polym. Sci. 2007, 32, 1–29. DOI: 10.1016/j.progpolymsci.2006.08.006.
  • Schrock, R. R. Living Ring-Opening Metathesis Polymerization Catalyzed by Well-Characterized Transition-Metal Alkylidene Complexes. Acc. Chem. Res. 1990, 23, 158–165. DOI: 10.1021/ar00173a007.
  • Buchmeiser, M. R. Homogeneous Metathesis Polymerization by Well-Defined Group VI and Group VIII Transition-Metal Alkylidenes: Fundamentals and Applications in the Preparation of Advanced Materials. Chem. Rev. 2000, 100, 1565–1604. DOI: 10.1021/cr990248a.
  • Zhao, Y.; Chen, J.; Zhu, W.; Zhang, K. Unique Post-Functionalization Method for ROMP Polymers Based on Triazolinedione Alder-Ene Chemistry. Polymer 2015, 74, 16–20. DOI: 10.1016/j.polymer.2015.07.050.
  • van Hensbergen, J. A.; Burford, R. P.; Lowe, A. B. ROMP (co)Polymers with Pendent Alkyne Side Groups: Post-Polymerization Modification Employing Thiol-Yne and CuAAC Coupling Chemistries. Polym. Chem. 2014, 5, 5339–5349. DOI: 10.1039/C4PY00604F.
  • van Hensbergen, J. A.; Burford, R. P.; Lowe, A. B. Post-Functionalization of a ROMP Polymer Backbone via Radical Thiol-Ene Coupling Chemistry. J. Polym. Sci. A Polym. Chem. 2013, 51, 487–492. DOI: 10.1002/pola.26433.
  • Griesser, T.; Wolfberger, A.; Daschiel, U.; Schmidt, V.; Fian, A.; Jerrar, A.; Teichert, C.; Kern, W. Cross-Linking of ROMP Derived Polymers Using the Two-Photon Induced Thiol-Ene Reaction: Towards the Fabrication of 3D-Polymer Microstructures. Polym. Chem. 2013, 4, 1708–1714. DOI: 10.1039/c2py21002a.
  • Sha, Y.; Rahman, A.; Zhu, T.; Cha, Y.; McAlister, C.; Tang, C. ROMPI-CDSA: Ring-Opening Metathesis Polymerization-Induced Crystallization-Driven Self-Assembly of Metallo-Block Copolymers. Chem. Sci. 2019, 10, 9782–9787. DOI: 10.1039/C9SC03056E.
  • Sha, Y.; Zhang, Y.; Zhu, T.; Tan, S.; Cha, Y.; Craig, S. L.; Tang, C. Ring-Closing Metathesis and Ring-Opening Metathesis Polymerization toward Main-Chain Ferrocene-Containing Polymers. Macromolecules 2018, 51, 9131–9139. DOI: 10.1021/acs.macromol.8b02064.
  • Sha, Y.; Zhang, Y.; Xu, E.; Wang, Z.; Zhu, T.; Craig, S. L.; Tang, C. Quantitative and Mechanistic Mechanochemistry in Ferrocene Dissociation. ACS Macro. Lett. 2018, 7, 1174–1179. DOI: 10.1021/acsmacrolett.8b00625.
  • Sha, Y.; Zhang, Y.; Xu, E.; McAlister, C. W.; Zhu, T.; Craig, S. L.; Tang, C. Generalizing Metallocene Mechanochemistry to Ruthenocene Mechanophores. Chem. Sci. 2019, 10, 4959–4965. DOI: 10.1039/c9sc01347d.
  • Dragutan, I.; Dragutan, V.; Filip, P.; Simionescu, B. C.; Demonceau, A. ROMP Synthesis of Iron-Containing Organometallic Polymers. Molecules 2016, 21, 198. DOI: 10.3390/molecules21020198.
  • Dragutan, I.; Dragutan, V.; Simionescu, B. C.; Demonceau, A.; Fischer, H. Recent Advances in Metathesis-Derived Polymers Containing Transition Metals in the Side Chain. Beilstein. J. Org. Chem. 2015, 11, 2747–2762. DOI: 10.3762/bjoc.11.296.
  • Dragutan, I.; Dragutan, V.; Fischer, H. Synthesis of Metal-Containing Polymers via Ring Opening Metathesis Polymerization (ROMP). Part II: Polymers Containing Transition Metals. J. Inorg. Organomet. Polym. 2008, 18, 311–324. DOI: 10.1007/s10904-008-9213-0.
  • Jean-Louis Hérisson, P.; Chauvin, Y. Catalyse de Transformation Des Oléfines Par Les Complexes du Tungstène. II. Télomérisation Des Oléfines Cycliques en Présence D’oléfines Acycliques. Makromol. Chem. 1971, 141, 161–176. DOI: 10.1002/macp.1971.021410112.
  • Schulz, M. D.; Wagener, K. B. ADMET Polymerization. In Handbook of Metathesis; Grubbs, R. H., O’Leary D. J., Khosravi E., Eds.; John Wiley & Sons: Hoboken, NJ, 2015; pp 313–355.
  • Gómez, F. J.; Wagener, K. B. Metal-Containing Polymers via ADMET Chemistry. In Ring Opening Metathesis Polymerisation and Related Chemistry: State of the Art and Visions for the New Century; Khosravi, E. and Szymanska-Buzar, T., Eds.; Springer Netherlands: Dordrecht, the Netherlands, 2002; pp 285–293.
  • Wolfe, P. S.; Gómez, F. J.; Wagener, K. B. Metal-Containing Polymers Synthesized via Acyclic Diene Metathesis: Polycarbostannanes. Macromolecules 1997, 30, 714–717. DOI: 10.1021/ma961291s.
  • Solmaz, K.; Cemil, A.; Bulent, D.; Imamoglu, Y. Synthesis and Characterization of Ge- and Sn-Containing ADMET Polymers. J. Mol. Catal. A Chem. 2006, 254, 186–191. DOI: 10.1016/j.molcata.2005.12.046.
  • Karabulut, S.; Aydogdu, C.; Düz, B.; İmamoglu, Y. Metal-Containing Polymers Synthesized via Acyclic Diene Metathesis (ADMET) Polymerization Using Electrochemically Reduced Tungsten-Based Catalyst: Polycarbogermanes. J. Inorg. Organomet. Polym. 2006, 16, 115–122. DOI: 10.1007/s10904-006-9034-y.
  • Shultz, G. V.; Zakharov, L. N.; Tyler, D. R. Transition-Metal-Containing Polymers by ADMET: Polymerization of Cis-Mo(CO)(4)(Ph(2)P(CH(2))(3)CH = CH(2))(2). Macromolecules 2008, 41, 5555–5558. DOI: 10.1021/ma800860h.
  • Shultz, G. V.; Zemke, J. M.; Tyler, D. R. Preparation of Photoreactive Oligomers by ADMET Polymerization of (C5H4(CH2)(8)CH = CH2)Mo(CO)(3) (2). Macromolecules 2009, 42, 7644–7649. DOI: 10.1021/ma9013252.
  • Curtis, M. D.; Hay, M. S.; Choi, M. G.; Angelici, R. J. Cyclopentadienyl Metal Carbonyl Dimers of Molybdenum and Tungsten. In Inorganic Syntheses; Angelici, R. J., Ed.; John Wiley & Sons, Inc: Hoboken, NJ, 1990; pp 150–154.
  • Shultz, G. V.; Berryman, O. B.; Zakharov, L. N.; Tyler, D. R. Preparation of Photodegradable Oligomers Containing Metal-Metal Bonds Using ADMET. J. Inorg. Organomet. Polym. 2008, 18, 149–154. DOI: 10.1007/s10904-007-9174-8.
  • Lucas, N. T.; Humphrey, M. G.; Rae, A. D. Mixed-Metal Cluster Chemistry. 16.(1) Syntheses of Oligourethanes Containing Clusters in the Backbone. Macromolecules 2001, 34, 6188–6195. DOI: 10.1021/ma0104480.
  • Tyler, D. R. Mechanistic Aspects of the Photodegradation of Polymers Containing Metal-Metal Bonds along Their Backbones. In Macromolecules Containing Metal and Metal-Like Elements; John Wiley & Sons, Inc: Hoboken, NJ, 2006; pp 77–109.
  • Tyler, D. R. Photochemically Degradable Polymers Containing Metal-Metal Bonds along Their Backbones. Coordin. Chem. Rev. 2003, 246, 291–303. DOI: 10.1016/S0010-8545(03)00127-9.
  • Ryan, M. F.; Eyler, J. R.; Richardson, D. E. Adiabatic Ionization Energies, Bond Disruption Enthalpies, and Solvation Free Energies for Gas-Phase Metallocenes and Metallocenium Ions. J. Am. Chem. Soc. 1992, 114, 8611–8619. DOI: 10.1021/ja00048a040.
  • Frunzke, J.; Lein, M.; Frenking, G. Structures, Metal-Ligand Bond Strenght, and Bonding Analysis of Ferrocene Derivatives with Group-15 Heteroligands Fe(Eta(5)-E-5)(2) and FeCp(Eta(5)-E-5) (E = N, P, as, Sb). A Theoretical Study. Organometallics 2002, 21, 3351–3359. DOI: 10.1021/om020397a.
  • Quan Manh, P.; Vancoillie, S.; Pierloot, K. A Multiconfigurational Perturbation Theory and Density Functional Theory Study on the Heterolytic Dissociation Enthalpy of First-Row Metallocenes. J. Chem. Theory Comput. 2012, 8, 883–892. DOI: 10.1021/ct200875m.
  • Pierloot, K.; Persson, B. J.; Roos, B. O. Theoretical Study of the Chemical Bonding in [Ni (C2H4)] and Ferrocene. J. Phys. Chem. 1995, 99, 3465–3472. DOI: 10.1021/j100011a011.
  • Haaland, A. Molecular Structure and Bonding in the 3d Metallocenes. Acc. Chem. Res. 1979, 12, 415–422. DOI: 10.1021/ar50143a006.
  • Gamble, A. S.; Patton, J. T.; Boncella, J. M. Acyclic Diene Metathesis Polymerizations of Ferrocene Monomers. Makromol. Chem. Rapid Commun. 1992, 13, 109–115. DOI: 10.1002/marc.1992.030130207.
  • Masson, G.; Lough, A. J.; Manners, I. Manners, I. Soluble Poly(Ferrocenylenevinylene) with t-Butyl Substituents on the Cyclopentadienyl Ligands via Ring-Opening Metathesis Polymer Ization. Macromolecules 2008, 41, 539–547. DOI: 10.1021/ma071034v.
  • Gao, X.; Deng, L.; Hu, J.; Zhang, H. Ferrocene-Containing Conjugated Oligomers Synthesized by Acyclic Diene Metathesis Polymerization. Polymers 2019, 11, 1334. DOI: 10.3390/polym11081334.
  • Zhang, H.; Liu, F.; Cao, J.; Ling, L.; Sun, R. F. Ferrocene-Containing Polymers Synthesized by Acyclic Diene Metathesis (ADMET) Polymerization. Chin. J. Polym. Sci. 2016, 34, 242–252. DOI: 10.1007/s10118-016-1743-2.
  • Weychardt, H.; Plenio, H. Acyclic Diene Metathesis Polymerization of Divinylarenes and Divinylferrocenes with Grubbs-Type Olefin Metathesis Catalysts. Organometallics 2008, 27, 1479–1485. DOI: 10.1021/om701277p.
  • Majchrzak, M.; Kostera, S.; Grzelak, M.; Marciniec, B.; Kubicki, M. An Efficient Catalytic Synthesis and Characterization of New Styryl-Ferrocenes and Their Trans-pi-Conjugated Organosilicon Materials. RSC Adv. 2016, 6, 39947–39954. DOI: 10.1039/C6RA00859C.
  • Heo, R. W.; Somoza, F. B.; Randall, T. Soluble Conjugated Polymers That Contain Ferrocenylene Units in the Backbone. J. Am. Chem. Soc. 1998, 120, 1621–1622. DOI: 10.1021/ja972871n.
  • Heo, R. W.; Park, J. S.; Goodson, J. T.; Claudio, G. C.; Takenaga, M.; Albright, T. A.; Lee, T. R. ROMP of t-Butyl-Substituted Ferrocenophanes Affords Soluble Conjugated Polymers That Contain Ferrocene Moieties in the Backbone. Tetrahedron 2004, 60, 7225–7235. DOI: 10.1016/j.tet.2004.06.067.
  • Buretea, M. A.; Tilley, T. D. Poly(Ferrocenylenevinylene) from Ring-Opening Metathesis Polymerization of Ansa-(Vinylene)Ferrocene. Organometallics 1997, 16, 1507–1510. DOI: 10.1021/om960940l.
  • Arisandy, C.; Cowley, A. R.; Barlow, S. 1,1 '-(1-propene-1,3-Diyl)-Ferrocene: modified Synthesis, Crystal Structure, and Polymerisation Behaviour. J. Organomet. Chem. 2004, 689, 775–780. DOI: 10.1016/j.jorganchem.2003.12.001.
  • Aggarwal, V. K.; Jones, D.; Turner, M. L.; Adams, H. First Synthesis and X-Ray Crystal Structure of 1,2-(1,1'-Ferrocenediyl)Ethene. J. Organomet. Chem. 1996, 524, 263–266. DOI: 10.1016/S0022-328X(96)06330-9.
  • Stanton, C. E.; Lee, T. R.; Grubbs, R. H.; Lewis, N. S.; Pudelski, J. K.; Callstrom, M. R.; Erickson, M. S.; McLaughlin, M. L. Routes to Conjugated Polymers with Ferrocenes in Their Backbones: Synthesis and Characterization of Poly(Ferrocenylenedivinylene) and Poly(Ferrocenylenebutenylene). Macromolecules 1995, 28, 8713–8721. DOI: 10.1021/ma00130a002.
  • Haines, R. J.; Du Preez, A. L. Reactions of Metal Carbonyl Derivatives. Part III. The Mechanism of Halogenation of Tetracarbonylbis-π-Cyclopentadienyldi-Iron and Its Derivatives. J. Chem. Soc. A 1970, 0, 2341–2346. DOI: 10.1039/J19700002341.
  • Haines, R. J.; Du Preez, A. L. Reactions of Metal Carbonyl Derivatives II. Ditertiary Phosphine and Arsine Derivatives of Tetracarbonyldi-π-Cyclopentadienyldiiron. J. Organomet. Chem. 1970, 21, 181–193. DOI: 10.1016/S0022-328X(00)90610-7.
  • Gilbertson, J. D.; Weakley, T. J. R.; Han, F.; Wolcott, J. J.; Tyler, D. R. Synthesis of ROMP Monomers Containing Metal-Metal Bonds. J. Inorg. Organomet. Polym. 2005, 15, 439–446. DOI: 10.1007/s10904-006-9016-0.
  • Shultz, G. V.; Tyler, D. R. Preparation of Functionalized Organometallic Metal-Metal Bonded Dimers Used in the Synthesis of Photodegradable Polymers. J. Inorg. Organomet. Polym. 2009, 19, 423–435. DOI: 10.1007/s10904-009-9307-3.
  • Shultz, G. V. Polymerization Methods for the Synthesis of Photosensitive Organometallic Polymers with Mo-Mo Bonds in the Backbone; University of Oregon: Eugene, OR, 2009.
  • Zhu, T.; Sha, Y.; Firouzjaie, H. A.; Peng, X.; Cha, Y.; Dissanayake, D. M. M. M.; Smith, M. D.; Vannucci, A. K.; Mustain, W. E.; Tang, C. Rational Synthesis of Metallo-Cations toward Redox- and Alkaline-Stable Metallo-Polyelectrolytes. J. Am. Chem. Soc. 2020, 142, 1083–1089. DOI: 10.1021/jacs.9b12051.
  • Monfette, S.; Fogg, D. E. Equilibrium Ring-Closing Metathesis. Chem. Rev. 2009, 109, 3783–3816. DOI: 10.1021/cr800541y.
  • Marsella, M. J.; Maynard, H. D.; Grubbs, R. H. Template-Directed Ring-Closing Metathesis: Synthesis and Polymerization of Unsaturated Crown Ether Analogs. Angew. Chem. Int. Ed. Engl. 1997, 36, 1101–1103. DOI: 10.1002/anie.199711011.
  • Xue, Z.; Mayer, M. F. Entropy-Driven Ring-Opening Olefin Metathesis Polymerizations of Macrocycles. Soft. Matter. 2009, 5, 4600–4611. DOI: 10.1039/b913696g.
  • Hodge, P.; Kamau, S. D. Entropically Driven Ring-Opening-Metathesis Polymerization of Macrocyclic Olefins with 21-84 Ring Atoms. Angew. Chem. Int. Ed. Engl. 2003, 42, 2412–2414. DOI: 10.1002/anie.200250842.
  • Ogasawara, M.; Tseng, Y. Y.; Uryu, M.; Ohya, N.; Chang, N.; Ishimoto, H.; Arae, S.; Takahashi, T.; Kamikawa, K. Molybdenum-Catalyzed Enantioselective Synthesis of Planar-Chiral (Eta(5)-Phosphacyclopentadienyl)Manganese(I) Complexes and Application in Asymmetric Catalysis. Organometallics 2017, 36, 4061–4069. DOI: 10.1021/acs.organomet.7b00704.
  • Arae, S.; Ogasawara, M. Catalytic Asymmetric Synthesis of Planar-Chiral Transition-Metal Complexes. Tetrahedron Lett. 2015, 56, 1751–1761. DOI: 10.1016/j.tetlet.2015.01.130.
  • Ogasawara, M.; Wu, W. Y.; Arae, S.; Nakajima, K.; Takahashi, T. Inter- versus Intraannular Ring-Closing Metathesis of Polyallylferrocenes: Five-Fold RCM within a Single Molecule. Organometallics 2013, 32, 6593–6598. DOI: 10.1021/om400936b.
  • Ogasawara, M.; Watanabe, S.; Nakajima, K.; Takahashi, T. Enantioselective Synthesis of Planar-Chiral Phosphaferrocenes by Molybdenum-Catalyzed Asymmetric Interannular Ring-Closing Metathesis. J. Am. Chem. Soc. 2010, 132, 2136–2137. DOI: 10.1021/ja910348z.
  • Ogasawara, M.; Watanabe, S.; Nakajima, K.; Takahashi, T. Preparation of 4 - and 5 Ferrocenophanes by Ruthenium-Catalyzed Ring-Closing Ene-Yne Metathesis. Organometallics 2008, 27, 6565–6569. DOI: 10.1021/om8007663.
  • Ogasawara, M.; Watanabe, S.; Nakajima, K.; Takahashi, T. Asymmetric Synthesis of Planar-Chiral Ferrocenes by Mo- or Ru-Catalyzed Enantioselective Metathesis. Pure Appl. Chem. 2008, 80, 1109–1113. DOI: 10.1351/pac200880051109.
  • Ogasawara, M.; Nagano, T.; Hayashi, T. Metathesis Route to Bridged Metallocenes. J. Am. Chem. Soc. 2002, 124, 9068–9069. DOI: 10.1021/ja026401r.
  • Locke, A. J.; Jones, C.; Richards, C. J. A Rapid Approach to Ferrocenophanes via Ring-Closing Metathesis. J. Organomet. Chem. 2001, 637-639, 669–676. DOI: 10.1016/S0022-328X(01)00980-9.
  • Buchowicz, W.; Szmajda, M. Carbonyl-Substituted Nickelocenes by the Cross-Metathesis Route. Organometallics 2009, 28, 6838–6840. DOI: 10.1021/om9008444.
  • Buchowicz, W.; Furmańczyk, A.; Zachara, J.; Majchrzak, M. Axial Chiral Metallocenes by Two-Fold Ring-Closing Metathesis. Dalton Trans. 2012, 41, 9269–9271. DOI: 10.1039/c2dt31291c.
  • Erker, G. Building Bridges: Ansa-Metallocene Construction by Carbon-Carbon Coupling Reactions at Preformed Group 4 Bent Metallocene Frameworks. Polyhedron 2005, 24, 1289–1297. DOI: 10.1016/j.poly.2005.03.054.
  • Martinez, V.; Blais, J. C.; Bravic, G.; Astruc, D. Coupling Multiple Benzylic Activation of Simple Arenes by CpFe + with Multiple Alkene Metathesis Using Grubbs Catalysts: An Efficient Carbon-Carbon Bond Formation Strategy Leading to Polycycles, Cyclophanes, Capsules, and Polymeric Compounds and Their CpFe+ Complexes. Organometallics 2004, 23, 861–874. DOI: 10.1021/om030623w.
  • Willis, T. C.; Sheats, J. E. Synthesis and Characterization of Polymers and Copolymers of Vinylruthenocene. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 1077–1084. DOI: 10.1002/pol.1984.170220508.
  • Erhard, M.; Lam, K.; Haddow, M.; Whittell, G. R.; Geiger, W. E.; Manners, I. Polyferrocenylsilane Homopolymers and Diblock Copolymers with Pendant Ruthenocenyl Groups by Photocontrolled Ring-Opening Polymerisation. Polym. Chem. 2014, 5, 1264–1274. DOI: 10.1039/C3PY01232H.
  • Alkan, A.; Gleede, T.; Wurm, F. R. Ruthenocenyl Glycidyl Ether: A Ruthenium-Containing Epoxide for Anionic Polymerization. Organometallics 2017, 36, 3023–3028. DOI: 10.1021/acs.organomet.7b00278.
  • Buchmeiser, M.; Schrock, R. R. Synthesis of Polyenes That Contain Metallocenes via the Living Polymerization of Ethynylferrocene and Ethynylruthenocene. Macromolecules 1995, 28, 6642–6649. DOI: 10.1021/ma00123a034.
  • Kenaree, A. R.; Gilroy, J. B. A Phosphine-Based Heterotrimetallic (M = Fe, Ru, W) Homopolymer. Organometallics 2017, 36, 2483–2486. DOI: 10.1021/acs.organomet.7b00085.
  • Vogel, U.; Lough, A. J.; Manners, I. Isolation of [1] Ruthenocenophanes: Synthesis of Polyruthenocenylstannanes by Ring-opening Polymerization. Angew. Chem. Int. Ed. Engl. 2004, 43, 3321–3325. DOI: 10.1002/anie.200454022.
  • Nelson, J. M.; Lough, A. J.; Manners, I. Synthesis and Ring‐Opening Polymerization of Highly Strained, Ring‐Tilted [2] Ruthenocenophanes. Angew. Chem. Int. Ed. Engl. 1994, 33, 989–991. DOI: 10.1002/anie.199409891.
  • Allcock, H. R.; Riding, G. H.; Lavin, K. D. Polymerization of New Metallocenylphosphazenes. Macromolecules 1987, 20, 6–10. DOI: 10.1021/ma00167a002.
  • Yan, Y.; Zhang, J. Y.; Qiao, Y. L.; Ganewatta, M.; Tang, C. B. Ruthenocene-Containing Homopolymers and Block Copolymers via ATRP and RAFT Polymerization. Macromolecules 2013, 46, 8816–8823. DOI: 10.1021/ma402039u.
  • Lee, B.; Niu, Z.; Wang, J.; Slebodnick, C.; Craig, S. L. Relative Mechanical Strengths of Weak Bonds in Sonochemical Polymer Mechanochemistry. J. Am. Chem. Soc. 2015, 137, 10826–10832. DOI: 10.1021/jacs.5b06937.
  • Rulkens, R.; Lough, A. J.; Manners, I.; Lovelace, S. R.; Grant, C.; Geiger, W. E. Linear Oligo(Ferrocenyldimethylsilanes) with between Two and Nine Ferrocene Units: Electrochemical and Structural Models for Poly(Ferrocenylsilane) High Polymers. J. Am. Chem. Soc. 1996, 118, 12683–12695. DOI: 10.1021/ja962470s.
  • Nguyen, M. T.; Diaz, A. F.; Dement'ev, V. V.; Pannell, K. H. High Molecular Weight Poly (Ferrocenediyl-Silanes): Synthesis and Electrochemistry of [-(C5H4) Fe (C5H4) SiR2-] n, R = Me, Et, n-Bu, n-Hex. Chem. Mater. 1993, 5, 1389–1394. DOI: 10.1021/cm00034a005.
  • Barlow, S.; O'Hare, D. Metalminus Sign Metal Interactions in Linked Metallocenes. Chem. Rev. 1997, 97, 637–670. DOI: 10.1021/cr960083v.
  • Bowser, B. H.; Craig, S. L. Empowering Mechanochemistry with Multi-Mechanophore Polymer Architectures. Polym. Chem. 2018, 9, 3583–3593. DOI: 10.1039/C8PY00720A.
  • Lee, B.; Niu, Z. B.; Craig, S. L. The Mechanical Strength of a Mechanical Bond: Sonochemical Polymer Mechanochemistry of Poly(Catenane) Copolymers. Angew. Chem. Int. Ed. Engl. 2016, 55, 13086–13089. DOI: 10.1002/anie.201606893.
  • Wang, J. P.; Kouznetsova, T. B.; Boulatov, R.; Craig, S. L. Mechanical Gating of a Mechanochemical Reaction Cascade. Nat. Commun. 2016, 7, 13433. DOI: 10.1038/ncomms13433.
  • Gossweiler, G. R.; Kouznetsova, T. B.; Craig, S. L. Force-Rate Characterization of Two Spiropyran-Based Molecular Force Probes. J. Am. Chem. Soc. 2015, 137, 6148–6151. DOI: 10.1021/jacs.5b02492.
  • Wang, J. P.; Piskun, I.; Craig, S. L. Mechanochemical Strengthening of a Multi-Mechanophore Benzocyclobutene Polymer. ACS Macro. Lett. 2015, 4, 834–837. DOI: 10.1021/acsmacrolett.5b00440.
  • Sha, Y.; Zhu, T.; Rahman, M. A.; Cha, Y.; Hwang, J.; Luo, Z.; Tang, C. Synthesis of Site-Specific Charged Metallopolymers via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Polymer 2020, 187, 122095. DOI: 10.1016/j.polymer.2019.122095.
  • Shirakawa, H.; Ito, T.; Ikeda, S. Electrical Properties of Polyacetylene with Various Cis‐Trans Compositions. Die Makromol Chemie. Makromol. Chem. 1978, 179, 1565–1573. DOI: 10.1002/macp.1978.021790615.
  • Du, V. A.; Manners, I. Poly(Ferrocenylmethylsilane): An Unsymmetrically Substituted, Atactic, but Semicrystalline Polymetallocene. Macromolecules 2013, 46, 4742–4753. DOI: 10.1021/ma400866u.
  • Massey, J. A.; Temple, K.; Cao, L.; Rharbi, Y.; Raez, J.; Winnik, M. A.; Manners, I. Self-Assembly of Organometallic Block Copolymers: The Role of Crystallinity of the Core-Forming Polyferrocene Block in the Micellar Morphologies Formed by Poly(Ferrocenylsilane-b-Dimethylsiloxane) in n-Alkane Solvents. J. Am. Chem. Soc. 2000, 122, 11577–11584. DOI: 10.1021/ja002205d.
  • Qiu, H.; Gao, Y.; Du, V. A.; Harniman, R.; Winnik, M. A.; Manners, I. Branched Micelles by Living Crystallization-Driven Block Copolymer Self-Assembly under Kinetic Control. J. Am. Chem. Soc. 2015, 137, 2375–2385. DOI: 10.1021/ja5126808.
  • Boott, C. E.; Gwyther, J.; Harniman, R. L.; Hayward, D. W.; Manners, I. Scalable and Uniform 1D Nanoparticles by Synchronous Polymerization, Crystallization and Self-assembly. Nat. Chem. 2017, 9, 785–792. DOI: 10.1038/nchem.2721.
  • Massey, J.; Power, K. N.; Manners, I.; Winnik, M. A. Self-Assembly of a Novel Organometallic-Inorganic Block Copolymer in Solution and the Solid State: Nonintrusive Observation of Novel Wormlike Poly(Ferrocenyldimethylsilane)-b-Poly(Dimethylsiloxane) Micelles. J. Am. Chem. Soc. 1998, 120, 9533–9540. DOI: 10.1021/ja981803d.
  • Gilroy, J. B.; Gädt, T.; Whittell, G. R.; Chabanne, L.; Mitchels, J. M.; Richardson, R. M.; Winnik, M. A.; Manners, I. A.; Manners, I. Monodisperse Cylindrical Micelles by Crystallization-Driven Living Self-Assembly. Nat. Chem. 2010, 2, 566–570. DOI: 10.1038/nchem.664.
  • Cai, J.; Li, C.; Kong, N.; Lu, Y.; Lin, G.; Wang, X.; Yao, Y.; Manners, I.; Qiu, H. Tailored Multifunctional Micellar Brushes via Crystallization-Driven Growth from a Surface. Science 2019, 366, 1095–1098. DOI: 10.1126/science.aax9075.
  • Tritschler, U.; Pearce, S.; Gwyther, J.; Whittell, G. R.; Manners, I. Manners, I. 50th Anniversary Perspective: Functional Nanoparticles from the Solution Self-Assembly of Block Copolymers. Macromolecules 2017, 50, 3439–3463. DOI: 10.1021/acs.macromol.6b02767.
  • Truong, N. P.; Quinn, J. F.; Whittaker, M. R.; Davis, T. P. Polymeric Filomicelles and Nanoworms: Two Decades of Synthesis and Application. Polym. Chem. 2016, 7, 4295–4312. DOI: 10.1039/C6PY00639F.
  • Charleux, B.; Delaittre, G.; Rieger, J.; D’Agosto, F. Polymerization-Induced Self-Assembly: From Soluble Macromolecules to Block Copolymer Nano-Objects in One Step. Macromolecules 2012, 45, 6753–6765. DOI: 10.1021/ma300713f.
  • Derry, M. J.; Fielding, L. A.; Armes, S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nanoparticles via RAFT Non-Aqueous Dispersion Polymerization. Prog. Polym. Sci. 2016, 52, 1–18. DOI: 10.1016/j.progpolymsci.2015.10.002.
  • Zhu, Y.; Yang, B.; Chen, S.; Du, J. Polymer Vesicles: Mechanism, Preparation, Application, and Responsive Behavior. Prog. Polym. Sci. 2017, 64, 1–22. DOI: 10.1016/j.progpolymsci.2015.05.001.
  • Yeow, J.; Boyer, C. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities. Adv. Sci. 2017, 4, 1700137. DOI: 10.1002/advs.201700137.
  • Warren, N. J.; Armes, S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nano-objects via RAFT Aqueous Dispersion Polymerization . J. Am. Chem. Soc. 2014, 136, 10174–10185. DOI: 10.1021/ja502843f.
  • Tan, J. B.; Sun, H.; Yu, M. G.; Sumerlin, B. S.; Zhang, L. Photo-PISA: Shedding Light on Polymerization-Induced Self-Assembly. ACS Macro. Lett. 2015, 4, 1249–1253. DOI: 10.1021/acsmacrolett.5b00748.
  • Yoon, K. Y.; Lee, I. H.; Kim, K. O.; Jang, J.; Lee, E.; Choi, T. L. One-Pot in Situ Fabrication of Stable Nanocaterpillars Directly from Polyacetylene Diblock Copolymers Synthesized by Mild Ring-Opening Metathesis Polymerization. J. Am. Chem. Soc. 2012, 134, 14291–14294. DOI: 10.1021/ja305150c.
  • Wright, D. B.; Touve, M. A.; Adamiak, L.; Gianneschi, N. C. ROMPISA: Ring-Opening Metathesis Polymerization-Induced Self-Assembly. ACS Macro. Lett. 2017, 6, 925–929. DOI: 10.1021/acsmacrolett.7b00408.
  • Varlas, S.; Foster, J. C.; O'Reilly, R. K. Ring-Opening Metathesis Polymerization-Induced Self-Assembly (ROMPISA). Chem. Commun. 2019, 55, 9066–9071. DOI: 10.1039/c9cc04445k.
  • Cha, Y.; Jarrett-Wilkins, C.; Rahman, M. A.; Zhu, T.; Sha, Y.; Manners, I.; Tang, C. Crystallization-Driven Self-Assembly of Metallo-Polyelectrolyte Block Copolymers with a Polycaprolactone Core-Forming Segment. ACS Macro. Lett. 2019, 8, 835–840. DOI: 10.1021/acsmacrolett.9b00335.
  • Zou, X. F.; Zhang, L.; Wang, Z. J.; Luo, Y. Mechanisms of the Antimicrobial Activities of Graphene Materials. J. Am. Chem. Soc. 2016, 138, 2064–2077. DOI: 10.1021/jacs.5b11411.
  • Wagener, K. B.; Brzezinska, K.; Anderson, J. D.; Younkin, T. R.; Steppe, K.; DeBoer, W. Kinetics of Acyclic Diene Metathesis (ADMET) Polymerization. Influence of the Negative Neighboring Group Effect. Macromolecules 1997, 30, 7363–7369. DOI: 10.1021/ma970357w.
  • Zhu, T. Y.; Xu, S. C.; Rahman, A.; Dogdibegovic, E.; Yang, P.; Pageni, P.; Kabir, M. P.; Zhou, X. D.; Tang, C. Cationic Metallo-Polyelectrolytes for Robust Alkaline Anion-Exchange Membranes. Angew. Chem. Int. Ed. Engl. 2018, 57, 2388–2392. DOI: 10.1002/anie.201712387.
  • Ren, L. X.; Zhang, J. Y.; Bai, X. L.; Hardy, C. G.; Shimizu, K. D.; Tang, C. Preparation of Cationic Cobaltocenium Polymers and Block Copolymers by “Living” Ring-Opening Metathesis Polymerization. Chem. Sci. 2012, 3, 580–583. DOI: 10.1039/C1SC00783A.
  • Ren, L. X.; Hardy, C. G.; Tang, S. F.; Doxie, D. B.; Hamidi, N.; Tang, C. B. Preparation of Side-Chain 18-e Cobaltocenium-Containing Acrylate Monomers and Polymers. Macromolecules 2010, 43, 9304–9310. DOI: 10.1021/ma101935a.
  • Ren, L. X.; Hardy, C. G.; Tang, C. Synthesis and Solution Self-Assembly of Side-Chain Cobaltocenium-Containing Block Copolymers. J. Am. Chem. Soc. 2010, 132, 8874–8875. DOI: 10.1021/ja1037726.
  • Wilson, B. J.; Brantley, J. N. Synthesis and Reactivity of Metallocarbene-Containing Polymers. J. Am. Chem. Soc. 2019, 141, 12453–12457. DOI: 10.1021/jacs.9b04077.
  • Dobrawa, R.; Wurthner, F. Metallosupramolecular Approach toward Functional Coordination Polymers. J. Polym. Sci. A Polym. Chem. 2005, 43, 4981–4995. DOI: 10.1002/pola.20997.
  • Voevodin, A.; Campos, L. M.; Roy, X. Multifunctional Vesicles from a Self-Assembled Cluster-Containing Diblock Copolymer. J. Am. Chem. Soc. 2018, 140, 5607–5611. DOI: 10.1021/jacs.8b02041.
  • Zhang, H.; Zhao, H.; Zhuo, K.; Hua, Y.; Chen, J.; He, X.; Weng, W.; Xia, H. Carbolong” Polymers with near Infrared Triggered, Spatially Resolved and Rapid Self-Healing Properties. Polym. Chem. 2019, 10, 386–394. DOI: 10.1039/C8PY01482E.
  • Lu, Z.; Lin, Q.; Cai, Y.; Chen, S.; Chen, J.; Wu, W.; He, X.; Xia, H. Cylindrical NIR-Responsive Metallopolymer Containing Mobius Metalla-Aromatics. ACS Macro. Lett. 2018, 7, 1034–1038. DOI: 10.1021/acsmacrolett.8b00442.
  • Yan, J.; Zheng, X.; Yao, J.; Xu, P.; Miao, Z.; Li, J.; Lv, Z.; Zhang, Q.; Yan, Y. Metallopolymers from Organically Modified Polyoxometalates (MOMPs): A Review. J. Organomet. Chem. 2019, 884, 1–16. DOI: 10.1016/j.jorganchem.2019.01.012.
  • Yang, H.; Jin, Y.; Du, Y.; Zhang, W. Application of Alkyne Metathesis in Polymer Synthesis. J. Mater. Chem. A 2014, 2, 5986–5993. DOI: 10.1039/c3ta14227b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.