2,014
Views
37
CrossRef citations to date
0
Altmetric
Review

Biosensing Applications of Polyaniline (PANI)-Based Nanocomposites: A Review

, ORCID Icon, &
Pages 553-597 | Received 10 Aug 2020, Accepted 28 Nov 2020, Published online: 17 Dec 2020

References

  • Akagi, K. Interdisciplinary Chemistry Based on Integration of Liquid Crystals and Conjugated Polymers: Development and Progress. BCSJ. 2019, 92, 1509–1655. DOI: 10.1246/bcsj.20190092.
  • Gu, H.; Zhang, H.; Gao, C.; Lian, C.; Gu, J.; Guo, Z. New Functions of Polyaniline. ES Mater. Manuf. 2018, 1, 3–12. DOI: 10.30919/esmm5f108.
  • Jiang, D.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z.; Shao, Q.; Wang, C.; Liu, H.; Lu, N.; et al. Electromagnetic Interference Shielding Polymers and Nanocomposites-A Review. Polym. Rev. 2019, 59, 280–337. DOI: 10.1080/15583724.2018.1546737.
  • Lyu, L.; Liu, J.; Liu, H.; Liu, C.; Lu, Y.; Sun, K.; Fan, R.; Wang, N.; Lu, N.; Guo, Z.; et al. An Overview of Electrically Conductive Polymer Nanocomposites toward Electromagnetic Interference Shielding. Eng. Sci. 2018, 2, 26–42. DOI: 10.30919/es8d615.
  • Kim, J.; Kim, J. H.; Ariga, K. Redox-Active Polymers for Energy Storage Nanoarchitectonics. Joule 2017, 1, 739–768. DOI: 10.1016/j.joule.2017.08.018.
  • Li, S.; Jasim, A.; Zhao, W.; Fu, L.; Ullah, M. W.; Shi, Z.; Yang, G. Fabrication of pH-Electroactive Bacterial Cellulose/Polyaniline Hydrogel for the Development of a Controlled Drug Release System. ES Mater. Manuf. 2018, 1, 41–49. DOI: 10.30919/esmm5f120.
  • Ingle, R. V.; Shaikh, S. F.; Bhujbal, P. K.; Pathan, H. M.; Tabhane, V. A. Polyaniline Doped with Protonic Acids: Optical and Morphological Studies. ES Mater. Manuf. 2020, 8, 54–59. DOI: 10.30919/esmm5f732.
  • Das, T.; Verma, B. Synthesis of Polymer Composite Based on Polyaniline-Acetylene Black-Copper Ferrite for Supercapacitor Electrodes. Polymer 2019, 168, 61–69. DOI: 10.1016/j.polymer.2019.01.058.
  • Bhadra, J.; Popelka, A.; Abdulkareem, A.; Ahmad, Z.; Touati, F.; Al-Thani, N. Fabrication of Polyaniline–Graphene/Polystyrene Nanocomposites for Flexible Gas Sensors. RSC Adv. 2019, 9, 12496–12506. DOI: 10.1039/C9RA00936A.
  • Qiao, Y.; Xiao, J.; Jia, Q.; Lu, L.; Fan, H. Preparation and Microwave Absorption Properties of ZnFe2O4/Polyaniline/Graphene Oxide Composite. Results Phys. 2019, 13, 102221. DOI: 10.1016/j.rinp.2019.102221.
  • Kumar, P.; Narayan Maiti, U.; Sikdar, A.; Kumar Das, T.; Kumar, A.; Sudarsan, V. Recent Advances in Polymer and Polymer Composites for Electromagnetic Interference Shielding: Review and Future Prospects. Polym. Rev. 2019, 59, 687–738. DOI: 10.1080/15583724.2019.1625058.
  • Dhawan, S. K.; Singh, N.; Venkatachalam, S. Shielding Effectiveness of Conducting Polyaniline Coated Fabrics at 101 GHz. Synth. Met. 2001, 125, 389–393. DOI: 10.1016/S0379-6779(01)00478-7.
  • Li, S.; Yang, C.; Sarwar, S.; Nautiyal, A.; Zhang, P.; Du, H.; Liu, N.; Yin, J.; Deng, K.; Zhang, X. Facile Synthesis of Nanostructured Polyaniline in Ionic Liquids for High Solubility and Enhanced Electrochemical Properties. Adv. Compos. Hybrid Mater. 2019, 2, 279–288. DOI: 10.1007/s42114-019-00103-w.
  • Ma, Y.; Ma, M.; Yin, X.; Shao, Q.; Lu, N.; Feng, Y.; Lu, Y.; Wujcik, E. K.; Mai, X.; Wang, C.; et al. Tuning Polyaniline Nanostructures via End Group Substitutions and Their Morphology Dependent Electrochemical Performances. Polymer 2018, 156, 128–135. DOI: 10.1016/j.polymer.2018.09.051.
  • Ma, Y.; Zhuang, Z.; Ma, M.; Yang, Y.; Li, W.; Lin, J.; Dong, M.; Wu, S.; Ding, T.; Guo, Z. Solid Polyaniline Dendrites Consisting of High Aspect Ratio Branches Self-Assembled Using Sodium Lauryl Sulfonate as Soft Templates: Synthesis and Electrochemical Performance. Polymer 2019, 182, 121808. DOI: 10.1016/j.polymer.2019.121808.
  • Zare, Y.; Rhee, K. Y. A Simple Methodology to Predict the Tunneling Conductivity of Polymer/CNT Nanocomposites by the Roles of Tunneling Distance, Interphase and CNT Waviness. RSC Adv. 2017, 7, 34912–34921. DOI: 10.1039/C7RA04034B.
  • Zare, Y.; Rhee, K. Y. Development of a Conventional Model to Predict the Electrical Conductivity of Polymer/Carbon Nanotubes Nanocomposites by Interphase, Waviness and Contact Effects. Compos. Part A Appl. Sci. Manuf. 2017, 100, 305–312. DOI: 10.1016/j.compositesa.2017.05.031.
  • Zare, Y.; Rhee, K. Y. Simplification and Development of McLachlan Model for Electrical Conductivity of Polymer Carbon Nanotubes Nanocomposites Assuming the Networking of Interphase Regions. Compos. Part B Eng. 2019, 156, 64–71. DOI: 10.1016/j.compositesb.2018.08.056.
  • Zare, Y.; Rhee, K. Y. A Simple Model for Electrical Conductivity of Polymer Carbon Nanotubes Nanocomposites Assuming the Filler Properties, Interphase Dimension, Network Level, Interfacial Tension and Tunneling Distance. Compos. Sci. Technol. 2018, 155, 252–260. DOI: 10.1016/j.compscitech.2017.10.007.
  • Zare, Y.; Rhee, K. Y. Development of a Model for Electrical Conductivity of Polymer/Graphene Nanocomposites Assuming Interphase and Tunneling Regions in Conductive Networks. Ind. Eng. Chem. Res. 2017, 56, 9107–9115. DOI: 10.1021/acs.iecr.7b01348.
  • Zare, Y.; Rhee, K. Y. A Power Model to Predict the Electrical Conductivity of CNT Reinforced Nanocomposites by considering Interphase, Networks and Tunneling Condition. Compos. Part B Eng. 2018, 155, 11–18. DOI: 10.1016/j.compositesb.2018.08.028.
  • Kim, S.; Zare, Y.; Garmabi, H.; Rhee, K. Y. Variations of Tunneling Properties in Poly(lactic acid)(PLA)/Poly(ethylene oxide)(PEO)/Carbon Nanotubes (CNT) Nanocomposites during Hydrolytic Degradation. Sens. Actuators A 2018, 274, 28–36. DOI: 10.1016/j.sna.2018.03.004.
  • Ventrapragada, L. K.; Creager, S. E.; Rao, A. M.; Podila, R. Carbon Nanotubes Coated Paper as Current Collectors for Secondary Li-Ion Batteries. Nanotechnol. Rev. 2019, 8, 18–23. DOI: 10.1515/ntrev-2019-0002.
  • Lee, S.-Y.; Hwang, J.-G. Finite Element Nonlinear Transient Modelling of Carbon Nanotubes Reinforced Fiber/Polymer Composite Spherical Shells with a Cutout. Nanotechnol. Rev. 2019, 8, 444–451. DOI: 10.1515/ntrev-2019-0039.
  • Hu, T.; Jing, H.; Li, L.; Yin, Q.; Shi, X.; Zhao, Z. Humic Acid Assisted Stabilization of Dispersed Single-Walled Carbon Nanotubes in Cementitious Composites. Nanotechnol. Rev. 2019, 8, 513–522. DOI: 10.1515/ntrev-2019-0046.
  • Zare, Y.; Rhee, K. Y. Evaluation of the Tensile Strength in Carbon Nanotube-Reinforced Nanocomposites Using the Expanded Takayanagi Model. JOM 2019, 71, 3980–3988. DOI: 10.1007/s11837-019-03536-2.
  • Zare, Y.; Garmabi, H.; Rhee, K. Y. Structural and Phase Separation Characterization of Poly(lactic acid)/Poly(ethylene oxide)/Carbon Nanotube Nanocomposites by Rheological Examinations. Compos. Part B Eng. 2018, 144, 1–10. DOI: 10.1016/j.compositesb.2018.02.024.
  • Li, H.-X.; Zare, Y.; Rhee, K. Y. The Percolation Threshold for Tensile Strength of Polymer/CNT Nanocomposites Assuming Filler Network and Interphase Regions. Mater. Chem. Phys. 2018, 207, 76–83. DOI: 10.1016/j.matchemphys.2017.12.053.
  • Zare, Y.; Rhee, K. Y. The Mechanical Behavior of CNT Reinforced Nanocomposites Assuming Imperfect Interfacial Bonding between Matrix and Nanoparticles and Percolation of Interphase Regions. Compos. Sci. Technol. 2017, 144, 18–25. DOI: 10.1016/j.compscitech.2017.03.012.
  • Behdinan, K.; Moradi-Dastjerdi, R.; Safaei, B.; Qin, Z.; Chu, F.; Hui, D. Graphene and CNT Impact on Heat Transfer Response of Nanocomposite Cylinders. Nanotechnol. Rev. 2020, 9, 41–52. DOI: 10.1515/ntrev-2020-0004.
  • Awotunde, M. A.; Adegbenjo, A. O.; Obadele, B. A.; Okoro, M.; Shongwe, B. M.; Olubambi, P. A. Influence of Sintering Methods on the Mechanical Properties of Aluminium Nanocomposites Reinforced with Carbonaceous Compounds: A Review. J. Mater. Res. Technol. 2019, 8, 2432–2449. DOI: 10.1016/j.jmrt.2019.01.026.
  • Jiang, Q.; Tallury, S. S.; Qiu, Y.; Pasquinelli, M. A. Interfacial Characteristics of a Carbon Nanotube-Polyimide Nanocomposite by Molecular Dynamics Simulation. Nanotechnol. Rev. 2020, 9, 136–145. DOI: 10.1515/ntrev-2020-0012.
  • Zare, Y.; Rhee, K. Y. Tensile Strength Prediction of Carbon Nanotube Reinforced Composites by Expansion of Cross-Orthogonal Skeleton Structure. Compos. Part B Eng. 2019, 161, 601–607. DOI: 10.1016/j.compositesb.2019.01.001.
  • Zare, Y.; Rhee, K. Y. Expression of Normal Stress Difference and Relaxation Modulus for Ternary Nanocomposites Containing Biodegradable Polymers and Carbon Nanotubes by Storage and Loss Modulus Data. Compos. Part B Eng. 2019, 158, 162–168. DOI: 10.1016/j.compositesb.2018.09.076.
  • Zare, Y. Modeling of Tensile Modulus in Polymer/Carbon Nanotubes (CNT) Nanocomposites. Synth. Met. 2015, 202, 68–72. DOI: 10.1016/j.synthmet.2015.02.002.
  • Zare, Y.; Rhim, S.; Garmabi, H.; Rhee, K. Y. A Simple Model for Constant Storage Modulus of Poly(lactic acid)/Poly(ethylene oxide)/Carbon Nanotubes Nanocomposites at Low Frequencies Assuming the Properties of Interphase Regions and Networks. J. Mech. Behav. Biomed. Mater. 2018, 80, 164–170. DOI: 10.1016/j.jmbbm.2018.01.037.
  • Nikfar, N.; Zare, Y.; Rhee, K. Y. Dependence of Mechanical Performances of Polymer/Carbon Nanotubes Nanocomposites on Percolation Threshold. Physica B. 2018, 533, 69–75. DOI: 10.1016/j.physb.2018.01.008.
  • Li, Z.; Xu, K.; Pan, Y. Recent Development of Supercapacitor Electrode Based on Carbon Materials. Nanotechnol. Rev. 2019, 8, 35–49. DOI: 10.1515/ntrev-2019-0004.
  • Liu, Y.; Jiang, X.; Shi, J.; Luo, Y.; Tang, Y.; Wu, Q.; Luo, Z. Research on the Interface Properties and Strengthening–Toughening Mechanism of Nanocarbon-Toughened Ceramic Matrix Composites. Nanotechnol. Rev. 2020, 9, 190–208. DOI: 10.1515/ntrev-2020-0017.
  • Zhang, Y.-F.; Du, F.-P.; Chen, L.; Yeung, K.-W.; Dong, Y.; Law, W.-C.; Tsui, G. C.-P.; Tang, C.-Y. Supramolecular Ionic Polymer/Carbon Nanotube Composite Hydrogels with Enhanced Electromechanical Performance. Nanotechnol. Rev. 2020, 9, 478–488. DOI: 10.1515/ntrev-2020-0039.
  • Zare, Y.; Rhee, K. Y. Following the Morphological and Thermal Properties of PLA/PEO Blends Containing Carbon Nanotubes (CNTs) during Hydrolytic Degradation. Compos. Part B Eng. 2019, 175, 107132. DOI: 10.1016/j.compositesb.2019.107132.
  • Razavi, R.; Zare, Y.; Rhee, K. Y. The Roles of Interphase and Filler Dimensions in the Properties of Tunneling Spaces between CNT in Polymer Nanocomposites. Polym. Compos. 2019, 40, 801–810.
  • Zare, Y.; Rhee, K. Y. Development and Modification of Conventional Ouali Model for Tensile Modulus of Polymer/Carbon Nanotubes Nanocomposites Assuming the Roles of Dispersed and Networked Nanoparticles and Surrounding Interphases. J. Colloid Interface Sci. 2017, 506, 283–290. DOI: 10.1016/j.jcis.2017.07.050.
  • Zare, Y.; Rhee, K. Y.; Park, S.-J. Modeling the Roles of Carbon Nanotubes and Interphase Dimensions in the Conductivity of Nanocomposites. Results Phys. 2019, 15, 102562. DOI: 10.1016/j.rinp.2019.102562.
  • Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A. M. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev. 2018, 118, 6766–6843. DOI: 10.1021/acs.chemrev.6b00275.
  • Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Progress in Preparation, Processing and Applications of Polyaniline. Prog. Polym. Sci. 2009, 34, 783–810. DOI: 10.1016/j.progpolymsci.2009.04.003.
  • Naghib, S. M.; Ghorbanzade, S. Label-Free Biosensors Based on Graphene: State-of-the-Art. In Handbook of Graphene Set; Celasco, E., Chaika, A. N., Stauber, T., Zhang, M., Ozkan, C., Ozkan, C., Ozkan, U., Palys, B., Harun, S. W.; Henriksson, G., Eds.; Wiley: New Jersey, 2019; Vol. 1, pp 397–427.
  • Homocianu, M.; Pascariu, P. Electrospun Polymer-Inorganic Nanostructured Materials and Their Applications. Polym. Rev. 2020, 60, 493–541. DOI: 10.1080/15583724.2019.1676776.
  • Burek, M.; Wandzik, I. Synthetic Hydrogels with Covalently Incorporated Saccharides Studied for Biomedical Applications–15 Year Overview. Polym. Rev. 2018, 58, 537–586. DOI: 10.1080/15583724.2018.1443122.
  • Lai, J.; Yi, Y.; Zhu, P.; Shen, J.; Wu, K.; Zhang, L.; Liu, J. Polyaniline-Based Glucose Biosensor: A Review. Electroanal. Chem. 2016, 782, 138–153. DOI: 10.1016/j.jelechem.2016.10.033.
  • Zare, E. N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem. 2020, 63, 1–22. DOI: 10.1021/acs.jmedchem.9b00803.
  • Dhand, C.; Das, M.; Datta, M.; Malhotra, B. D. Recent Advances in Polyaniline Based Biosensors. Biosens. Bioelectron. 2011, 26, 2811–2821. DOI: 10.1016/j.bios.2010.10.017.
  • Yassin, M. A.; Shrestha, B. K.; Ahmad, R.; Shrestha, S.; Park, C. H.; Kim, C. S. Exfoliated Nanosheets of Co3O4 Webbed with Polyaniline Nanofibers: A Novel Composite Electrode Material for Enzymeless Glucose Sensing Application. J. Ind. Eng. Chem. 2019, 73, 106–117. DOI: 10.1016/j.jiec.2019.01.011.
  • Tian, Z.; Yu, H.; Wang, L.; Saleem, M.; Ren, F.; Ren, P.; Chen, Y.; Sun, R.; Sun, Y.; Huang, L. Recent Progress in the Preparation of Polyaniline Nanostructures and Their Applications in Anticorrosive Coatings. RSC Adv. 2014, 4, 28195–28208. DOI: 10.1039/c4ra03146f.
  • Makvandi, P.; Ali, G. W.; Della Sala, F.; Abdel-Fattah, W. I.; Borzacchiello, A. Biosynthesis and Characterization of Antibacterial Thermosensitive Hydrogels Based on Corn Silk Extract, Hyaluronic Acid and Nanosilver for Potential Wound Healing. Carbohydr. Polym. 2019, 223, 115023. DOI: 10.1016/j.carbpol.2019.115023.
  • Zhao, X.; Li, P.; Guo, B.; Ma, P. X. Antibacterial and Conductive Injectable Hydrogels Based on Quaternized Chitosan-Graft-Polyaniline/Oxidized Dextran for Tissue Engineering. Acta Biomater. 2015, 26, 236–248. DOI: 10.1016/j.actbio.2015.08.006.
  • Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P. X. Antibacterial Anti-Oxidant Electroactive Injectable Hydrogel as Self-Healing Wound Dressing with Hemostasis and Adhesiveness for Cutaneous Wound Healing. Biomaterials 2017, 122, 34–47. DOI: 10.1016/j.biomaterials.2017.01.011.
  • Bhadra, J.; Popelka, A.; Abdulkareem, A.; Lehocky, M.; Humpolicek, P.; Al-Thani, N. Effect of Humidity on the Electrical Properties of the Silver-Polyaniline/Polyvinyl Alcohol Nanocomposites. Sens. Actuators A 2019, 288, 47–54. DOI: 10.1016/j.sna.2019.01.012.
  • Sen, T.; Mishra, S.; Shimpi, N. G. Synthesis and Sensing Applications of Polyaniline Nanocomposites: A Review. RSC Adv. 2016, 6, 42196–42222. DOI: 10.1039/C6RA03049A.
  • Anju, V. P.; Jithesh, P. R.; Narayanankutty, S. K. A Novel Humidity and Ammonia Sensor Based on Nanofibers/Polyaniline/Polyvinyl Alcohol. Sens. Actuators A 2019, 285, 35–44. DOI: 10.1016/j.sna.2018.10.037.
  • Hou, P.; Li, R.; Li, Q.; Lu, N.; Wang, K.; Liu, M.; Cheng, X.; Shah, S. Novel Superhydrophobic Cement-Based Materials Achieved by Construction of Hierarchical Surface Structure with FAS/SiO2 Hybrid Nanocomposites. ES Mater. Manuf. 2018, 1, 57–66. DOI: 10.30919/esmm5f125.
  • Das, R.; Vupputuri, S.; Hu, Q.; Chen, Y.; Colorado, H.; Guo, Z.; Wang, Z. Synthesis and Characterization of Antiflammable Vinyl Ester Resin Nanocomposites with Surface Functionalized Nanotitania. ES Mater. Manuf. 2020, 8, 46–53.
  • Nidamanuri, N.; Li, Y.; Li, Q.; Dong, M. Graphene and Graphene Oxide-Based Membranes for Gas Separation. Eng. Sci. 2020, 9, 3–16. DOI: 10.30919/es8d128906.
  • Liu, C.; Chen, M.; Yu, W.; He, Y. Recent Advance on Graphene in Heat Transfer Enhancement of Composites. ES Energy Environ. 2018, 2, 31–42. DOI: 10.30919/esee8c191.
  • Chen, Y.; Guo, Z.; Das, R.; Jiang, Q. Starch-Based Carbon Nanotubes and Graphene: Preparation, Properties and Applications. ES Food Agrofor. in press. DOI: 10.30919/esfaf1111.
  • Wang, J.; Liu, Y.; Fan, Z.; Wang, W.; Wang, B.; Guo, Z. Ink-Based 3D Printing Technologies for Graphene-Based Materials: A Review. Adv. Compos. Hybrid Mater. 2019, 2, 1–33. DOI: 10.1007/s42114-018-0067-9.
  • Zhang, X.; Ziemer, K. S.; Weeks, B. L. Combustion Synthesis of N-Doped Three-Dimensional Graphene Networks Using Graphene Oxide–Nitrocellulose Composites. Adv. Compos. Hybrid Mater. 2019, 2, 492–500. DOI: 10.1007/s42114-019-00113-8.
  • Zhao, Z.; Bai, P.; Du, W.; Liu, B.; Pan, D.; Das, R.; Liu, C.; Guo, Z. An Overview of Graphene and Its Derivatives Reinforced Metal Matrix Composites: Preparation, Properties and Applications. Carbon 2020, 170, 302–326. DOI: 10.1016/j.carbon.2020.08.040.
  • Jia, Y.; Ren, P.; Wang, J.; Fan, C.; Liang, E. Thermal Modulation of Plasmon Induced Transparency in Graphene Metamaterial. Eng. Sci. 2019, 7, 4–11. DOI: 10.30919/esee8c338.
  • Liu, C.; Lin, Y.; Dong, Y.; Wu, Y.; Bao, Y.; Yan, H.; Ma, J. Fabrication and Investigation on Ag Nanowires/TiO 2 Nanosheets/Graphene Hybrid Nanocomposite and Its Water Treatment Performance. Adv. Compos. Hybrid Mater. 2020, 3, 402–414. DOI: 10.1007/s42114-020-00164-2.
  • Bustero, I.; Gaztelumendi, I.; Obieta, I.; Mendizabal, M. A.; Zurutuza, A.; Ortega, A.; Alonso, B. Free-Standing Graphene Films Embedded in Epoxy Resin with Enhanced Thermal Properties. Adv. Compos. Hybrid Mater. 2020, 3, 10–31. DOI: 10.1007/s42114-020-00136-6.
  • Zhao, Y.; Niu, M.; Yang, F.; Jia, Y.; Cheng, Y. Ultrafast Electro-Thermal Responsive Heating Film Fabricated from Graphene Modified Conductive Materials. Eng. Sci. 2019, 8, 33–38. DOI: 10.30919/es8d501.
  • Li, N.; Zhang, F.; Wang, H.; Hou, S. Catalytic Degradation of 4-Nitrophenol in Polluted Water by Three-Dimensional Gold Nanoparticles/Reduced Graphene Oxide Microspheres. Eng. Sci. 2019, 7, 72–79. DOI: 10.30919/es8d509.
  • Zhao, S.; Niu, M.; Peng, P.; Cheng, Y.; Zhao, Y. Edge Oleylaminated Graphene as Ultra-Stable Lubricant Additive for Friction and Wear Reduction. Eng. Sci. 2019, 9, 77–83.
  • Qiu, L.; Guo, P.; Zou, H.; Feng, Y.; Zhang, X.; Pervaiz, S.; Wen, D. Extremely Low Thermal Conductivity of Graphene Nanoplatelets Using Nanoparticle Decoration. ES Energy Environ. 2018, 2, 66–72. DOI: 10.30919/esee8c139.
  • Dong, H.; Li, Y.; Chai, H.; Cao, Y.; Chen, X. Hydrothermal Synthesis of CuCo2S4 Nano-Structure and N-Doped Graphene for High-Performance Aqueous Asymmetric Supercapacitors. ES Energy Environ. 2019, 4, 19–26. DOI: 10.30919/esee8c221.
  • Fu, Y.; Pei, X.; Dai, Y.; Mo, D.; Lyu, S. Three-Dimensional Graphene-Like Carbon Prepared from CO2 as Anode Material for High-Performance Lithium-Ion Batteries. ES Energy Environ. 2019, 4, 66–73.
  • Zhang, Y.; Yan, Y.; Guo, J.; Lu, T.; Liu, J.; Zhou, J.; Xu, X. Superior Thermal Dissipation in Graphene Electronic Device through Novel Heat Path by Electron-Phonon Coupling. ES Energy Environ. 2019, 8, 42–47.
  • Wang, L.; Lu, X.; Lei, S.; Song, Y. Graphene-Based Polyaniline Nanocomposites: Preparation, Properties and Applications. J. Mater. Chem. A 2014, 2, 4491–4509. DOI: 10.1039/C3TA13462H.
  • Vega-Rios, A.; Rentería-Baltiérrez, F. Y.; Hernández-Escobar, C. A.; Zaragoza-Contreras, E. A. A New Route toward Graphene Nanosheet/Polyaniline Composites Using a Reactive Surfactant as Polyaniline Precursor. Synth. Met. 2013, 184, 52–60. DOI: 10.1016/j.synthmet.2013.09.014.
  • Kumar, M.; Singh, K.; Dhawan, S. K.; Tharanikkarasu, K.; Chung, J. S.; Kong, B.-S.; Kim, E. J.; Hur, S. H. Synthesis and Characterization of Covalently-Grafted Graphene–Polyaniline Nanocomposites and Its Use in a Supercapacitor. Chem. Eng. J. 2013, 231, 397–405. DOI: 10.1016/j.cej.2013.07.043.
  • Wang, R.; Han, M.; Zhao, Q.; Ren, Z.; Guo, X.; Xu, C.; Hu, N.; Lu, L. Hydrothermal Synthesis of Nanostructured Graphene/Polyaniline Composites as High-Capacitance Electrode Materials for Supercapacitors. Sci. Rep. 2017, 7, 44562. DOI: 10.1038/srep44562.
  • Wang, Y.; Yang, J.; Wang, L.; Du, K.; Yin, Q.; Yin, Q. Polypyrrole/Graphene/Polyaniline Ternary Nanocomposite with High Thermoelectric Power Factor. ACS Appl. Mater Interfaces 2017, 9, 20124–20131. DOI: 10.1021/acsami.7b05357.
  • Luo, J.; Jiang, S.; Liu, R.; Zhang, Y.; Liu, X. Synthesis of Water Dispersible Polyaniline/Poly(styrenesulfonic acid) Modified Graphene Composite and Its Electrochemical Properties. Electrochim. Acta 2013, 96, 103–109. DOI: 10.1016/j.electacta.2013.02.072.
  • Huang, Y. F.; Lin, C. W. Facile Synthesis and Morphology Control of Graphene Oxide/Polyaniline Nanocomposites via In-Situ Polymerization Process. Polymer 2012, 53, 2574–2582. DOI: 10.1016/j.polymer.2012.04.022.
  • Li, X.; Zhao, W.; Yin, R.; Huang, X.; Qian, L. A Highly Porous Polyaniline-Graphene Composite Used for Electrochemical Supercapacitors. Eng. Sci. 2018, 3, 89–95. DOI: 10.30919/es8d743.
  • Mondal, S.; Rana, U.; Malik, S. Reduced Graphene Oxide/Fe3O4/Polyaniline Nanostructures as Electrode Materials for an All-Solid-State Hybrid Supercapacitor. J. Phys. Chem. C 2017, 121, 7573–7583. DOI: 10.1021/acs.jpcc.6b10978.
  • Hu, B.; Qiu, M.; Hu, Q.; Sun, Y.; Sheng, G.; Hu, J.; Ma, J. Decontamination of Sr (II) on Magnetic Polyaniline/Graphene Oxide Composites: Evidence from Experimental, Spectroscopic, and Modeling Investigation. ACS Sustain. Chem. Eng. 2017, 5, 6924–6931. DOI: 10.1021/acssuschemeng.7b01126.
  • Mooss, V. A.; Bhopale, A. A.; Deshpande, P. P.; Athawale, A. A. Graphene Oxide-Modified Polyaniline Pigment for Epoxy Based Anti-Corrosion Coatings. Chem. Pap. 2017, 71, 1515–1528. DOI: 10.1007/s11696-017-0146-3.
  • Yin, Y.; Jiang, B.; Zhu, X.; Meng, L.; Huang, Y. Investigation of Thermostability of Modified Graphene Oxide/Methylsilicone Resin Nanocomposites. Eng. Sci. 2018, 5, 73–78. DOI: 10.30919/es8d762.
  • Xu, G.; Wang, N.; Wei, J.; Lv, L.; Zhang, J.; Chen, Z.; Xu, Q. Preparation of Graphene Oxide/Polyaniline Nanocomposite with Assistance of Supercritical Carbon Dioxide for Supercapacitor Electrodes. Ind. Eng. Chem. Res. 2012, 51, 14390–14398. DOI: 10.1021/ie301734f.
  • Yan, X.; Liu, J.; Khan, M. A.; Sheriff, S.; Vupputuri, S.; Das, R.; Sun, L.; Young, D. P.; Guo, Z. Efficient Solvent-Free Microwave Irradiation Synthesis of Highly Conductive Polypropylene Nanocomposites with Lowly Loaded Carbon Nanotubes. ES Mater. Manuf. 2020, 9, 21–33. DOI: 10.30919/esmm5f716.
  • Tran, H. D.; Wang, Y.; D'Arcy, J. M.; Kaner, R. B. Toward an Understanding of the Formation of Conducting Polymer Nanofibers. ACS Nano 2008, 2, 1841–1848. DOI: 10.1021/nn800272z.
  • Liao, Y.; Zhang, C.; Zhang, Y.; Strong, V.; Tang, J.; Li, X.-G.; Kalantar-Zadeh, K.; Hoek, E. M. V.; Wang, K. L.; Kaner, R. B. Carbon Nanotube/Polyaniline Composite Nanofibers: Facile Synthesis and Chemosensors. Nano Lett. 2011, 11, 954–959. DOI: 10.1021/nl103322b.
  • Liu, X.; Ly, J.; Han, S.; Zhang, D.; Requicha, A.; Thompson, M. E.; Zhou, C. Synthesis and Electronic Properties of Individual Single-Walled Carbon Nanotube/Polypyrrole Composite Nanocables. Adv. Mater. 2005, 17, 2727–2732. DOI: 10.1002/adma.200501211.
  • Downs, C.; Nugent, J.; Ajayan, P. M.; Duquette, D. J.; Santhanam, K. S. V. Efficient Polymerization of Aniline at Carbon Nanotube Electrodes. Adv. Mater. 1999, 11, 1028–1031. DOI: 10.1002/(SICI)1521-4095(199908)11:12<1028::AID-ADMA1028>3.0.CO;2-N.
  • Li, W.; Chen, J.; Zhao, J.; Zhang, J.; Zhu, J. Application of Ultrasonic Irradiation in Preparing Conducting Polymer as Active Materials for Supercapacitor. Mater. Lett. 2005, 59, 800–803. DOI: 10.1016/j.matlet.2004.11.024.
  • Li, L.; Qin, Z.-Y.; Liang, X.; Fan, Q.-Q.; Lu, Y.-Q.; Wu, W.-H.; Zhu, M.-F. Facile Fabrication of Uniform Core − Shell Structured Carbon Nanotube − Polyaniline Nanocomposites. J. Phys. Chem. C 2009, 113, 5502–5507. DOI: 10.1021/jp808582f.
  • Zhang, X.; Zhang, J.; Wang, R.; Liu, Z. Cationic Surfactant Directed Polyaniline/CNT Nanocables: Synthesis, Characterization, and Enhanced Electrical Properties. Carbon 2004, 42, 1455–1461. DOI: 10.1016/j.carbon.2004.01.003.
  • Hezarjaribi, M.; Jahanshahi, M.; Rahimpour, A.; Yaldagard, M. Gas Diffusion Electrode Based on Electrospun Pani/CNF Nanofibers Hybrid for Proton Exchange Membrane Fuel Cells (PEMFC) Applications. Appl. Surf. Sci. 2014, 295, 144–149. DOI: 10.1016/j.apsusc.2014.01.018.
  • Kar, P.; Choudhury, A. Carboxylic Acid Functionalized Multi-Walled Carbon Nanotube Doped Polyaniline for Chloroform Sensors. Sens. Actuators B 2013, 183, 25–33. DOI: 10.1016/j.snb.2013.03.093.
  • Zhang, D.; Sun, J.; Lee, L. J.; Castro, J. M. Overview of Ultrasonic Assisted Manufacturing Multifunctional Carbon Nanotube Nanopaper Based Polymer Nanocomposites. Eng. Sci. 2020, 10, 35–50.
  • Wang, J.; Shi, Z.; Wang, X.; Mai, X.; Fan, R.; Liu, H. Enhancing Dielectric Performance of Poly(vinylidene fluoride) Nanocomposites via Controlled Distribution of Carbon Nanotubes and Barium Titanate Nanoparticle. Eng. Sci. 2018, 4, 79–86.
  • Yao, Q.; Chen, L.; Zhang, W.; Liufu, S.; Chen, X. Enhanced Thermoelectric Performance of Single-Walled Carbon Nanotubes/Polyaniline Hybrid Nanocomposites. ACS Nano 2010, 4, 2445–2451. DOI: 10.1021/nn1002562.
  • Wu, G.; Tan, P.; Wang, D.; Li, Z.; Peng, L.; Hu, Y.; Wang, C.; Zhu, W.; Chen, S.; Chen, W. High-Performance Supercapacitors Based on Electrochemical-Induced Vertical-Aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes. Sci. Rep. 2017, 7, 43676. DOI: 10.1038/srep43676.
  • Chatterjee, M. J.; Ghosh, A.; Mondal, A.; Banerjee, D. Polyaniline–Single Walled Carbon Nanotube Composite–A Photocatalyst to Degrade Rose Bengal and Methyl Orange Dyes under Visible-Light Illumination. RSC Adv. 2017, 7, 36403–36415. DOI: 10.1039/C7RA03855K.
  • Faraji, M. Interlaced Polyaniline/Carbon Nanotube Nanocomposite Co-Electrodeposited on TiO 2 Nanotubes/Ti for High-Performance Supercapacitors. J. Solid State Electrochem. 2018, 22, 677–684. DOI: 10.1007/s10008-017-3804-z.
  • Gupta, T. K.; Singh, B. P.; Mathur, R. B.; Dhakate, S. R. Multi-Walled Carbon Nanotube-Graphene-Polyaniline Multiphase Nanocomposite with Superior Electromagnetic Shielding Effectiveness. Nanoscale 2014, 6, 842–851. DOI: 10.1039/c3nr04565j.
  • Hong, S. Y.; Oh, J. H.; Park, H.; Yun, J. Y.; Jin, S. W.; Sun, L.; Zi, G.; Ha, J. S. Polyurethane Foam Coated with a Multi-Walled Carbon Nanotube/Polyaniline Nanocomposite for a Skin-Like Stretchable Array of Multi-Functional Sensors. NPG Asia Mater. 2017, 9, e448. DOI: 10.1038/am.2017.194.
  • Peymanfar, R.; Javidan, A.; Javanshir, S. Preparation and Investigation of Structural, Magnetic, and Microwave Absorption Properties of Aluminum-Doped Strontium Ferrite/MWCNT/Polyaniline Nanocomposite at KU-Band Frequency. J. Appl. Polym. Sci. 2017, 134, 45135. DOI: 10.1002/app.45135.
  • Tan, Y.; Liu, Y.; Zhang, Y.; Xu, C.; Kong, L.; Kang, L.; Ran, F. Dulse-Derived Porous Carbon–Polyaniline Nanocomposite Electrode for High-Performance Supercapacitors. J. Appl. Polym. Sci. 2018, 135, 45776. DOI: 10.1002/app.45776.
  • Gong, K.; Hu, Q.; Xiao, Y.; Cheng, X.; Liu, H.; Wang, N.; Qiu, B.; Guo, Z. Triple Layered Core–Shell ZVI@ Carbon@ Polyaniline Composite Enhanced Electron Utilization in Cr (vi) Reduction. J. Mater. Chem. A 2018, 6, 11119–11128. DOI: 10.1039/C8TA03066A.
  • Liu, J.; Bi, H.; Morais, P. C.; Zhang, X.; Zhang, F.; Hu, L. Room-Temperature Magnetism in Carbon Dots and Enhanced Ferromagnetism in Carbon Dots-Polyaniline Nanocomposite. Sci. Rep. 2017, 7, 2165. DOI: 10.1038/s41598-017-01350-x.
  • Hu, Y.; Tong, X.; Zhuo, H.; Zhong, L.; Peng, X. Biomass-Based Porous N-Self-Doped Carbon Framework/Polyaniline Composite with Outstanding Supercapacitance. ACS Sustain. Chem. Eng. 2017, 5, 8663–8674. DOI: 10.1021/acssuschemeng.7b01380.
  • Lei, D.; Song, K.-H.; Li, X.-D.; Kim, H.-Y.; Kim, B.-S. Nanostructured Polyaniline/Kenaf-Derived 3D Porous Carbon Materials with High Cycle Stability for Supercapacitor Electrodes. J. Mater. Sci. 2017, 52, 2158–2168. DOI: 10.1007/s10853-016-0504-5.
  • Li, M.; Xiang, S.; Chang, X.; Chang, C. Resorcinol-Formaldehyde Carbon Spheres/Polyaniline Composite with Excellent Electrochemical Performance for Supercapacitors. J. Solid State Electrochem. 2017, 21, 485–494. DOI: 10.1007/s10008-016-3390-5.
  • Wu, N.; Du, W.; Hu, Q.; Vupputuri, S.; Jiang, Q. Recent Development in Fabrication of Co Nanostructures and Their Carbon Nanocomposites for Electromagnetic Wave Absorption. Eng. Sci. in press. DOI: 10.30919/es8d1149.
  • Wang, X.; Zeng, X.; Cao, D. Biomass-Derived Nitrogen-Doped Porous Carbons (NPC) and NPC/Polyaniline Composites as High Performance Supercapacitor Materials. Eng. Sci. 2018, 1, 55–63. DOI: 10.30919/es.180325.
  • Yang, C.; Du, J.; Peng, Q.; Qiao, R.; Chen, W.; Xu, C.; Shuai, Z.; Gao, M. Polyaniline/Fe3O4 Nanoparticle Composite: Synthesis and Reaction Mechanism. J. Phys. Chem. B 2009, 113, 5052–5058. DOI: 10.1021/jp811125k.
  • Zhao, B.; Deng, J.; Zhang, R.; Liang, L.; Fan, B.; Bai, Z.; Shao, G.; Park, C. B. Recent Advances on the Electromagnetic Wave Absorption Properties of Ni Based Materials. Eng. Sci. 2018, 3, 5–40. DOI: 10.30919/es8d735.
  • An, Y.; Feng, S.; Shao, G.; Yuan, W.; Sun, K.; Li, X.; Fan, R. Influence of the Annealing Process on Magnetic Performance of Iron Based Soft Magnetic Composites. Eng. Sci. 2020, 11, 85–91. DOI: 10.30919/es8a0009.
  • Hu, H.; Liu, H.; Zhang, D.; Wang, J.; Qin, G.; Zhang, X. pH and Electromagnetic Dual-Remoted Drug Delivery Based on Bimodal Superparamagnetic Fe3O4@ Porous Silica Nanoparticles. Eng. Sci. 2018, 2, 43–48. DOI: 10.30919/es8d136.
  • Doan, L.; Lu, Y.; Karatela, M.; Phan, V.; Jeffryes, C.; Benson, T.; Wujcik, E. K. Surface Modifications of Superparamagnetic Iron Oxide Nanoparticles with Polylactic Acid-Polyethylene Glycol Diblock Copolymer and Graphene Oxide for a Protein Delivery Vehicle. Eng. Sci. 2019, 7, 10–16. DOI: 10.30919/es8d510.
  • Wei, H.; Gu, H.; Guo, J.; Cui, D.; Yan, X.; Liu, J.; Cao, D.; Wang, X.; Wei, S.; Guo, Z. Significantly Enhanced Energy Density of Magnetite/Polypyrrole Nanocomposite Capacitors at High Rates by Low Magnetic Fields. Adv. Compos. Hybrid Mater. 2018, 1, 127–134. DOI: 10.1007/s42114-017-0003-4.
  • Wu, H.; Zhang, Y.; Yin, R.; Zhao, W.; Li, X.; Qian, L. Magnetic Negative Permittivity with Dielectric Resonance in Random Fe 3 O 4@ Graphene-Phenolic Resin Composites. Adv. Compos. Hybrid Mater. 2018, 1, 168–176. DOI: 10.1007/s42114-017-0014-1.
  • Bahadur, A.; Iqbal, S.; Shoaib, M.; Saeed, A. Electrochemical Study of Specially Designed Graphene-Fe3O4-Polyaniline Nanocomposite as a High-Performance Anode for Lithium-Ion Battery. Dalton Trans. 2018, 47, 15031–15037. DOI: 10.1039/c8dt03107j.
  • Zhou, Q.; Wang, Y.; Xiao, J.; Fan, H. Fabrication and Characterisation of Magnetic Graphene Oxide Incorporated Fe3O4@polyaniline for the Removal of Bisphenol A, t-Octyl-phenol, and α-Naphthol from Water. Sci. Rep. 2017, 7, 11316. DOI: 10.1038/s41598-017-11831-8.
  • Dolatkhah, A.; Wilson, L. D. Salt-Responsive Fe3O4 Nanocomposites and Phase Behavior in Water . Langmuir 2018, 34, 341–350. DOI: 10.1021/acs.langmuir.7b03613.
  • Ayad, M. M.; Amer, W. A.; Kotp, M. G.; Minisy, I. M.; Rehab, A. F.; Kopecký, D.; Fitl, P. Synthesis of Silver-Anchored Polyaniline–Chitosan Magnetic Nanocomposite: A Smart System for Catalysis. RSC Adv. 2017, 7, 18553–18560. DOI: 10.1039/C7RA02575K.
  • Mu, B.; Tang, J.; Zhang, L.; Wang, A. Facile Fabrication of Superparamagnetic Graphene/Polyaniline/Fe3O4 Nanocomposites for Fast Magnetic Separation and Efficient Removal of Dye. Sci. Rep. 2017, 7, 5347. DOI: 10.1038/s41598-017-05755-6.
  • Ramachandran, A.; Prasankumar, T.; Sivaprakash, S.; Wiston, B. R.; Biradar, S.; Jose, S. Removal of Elevated Level of Chromium in Groundwater by the Fabricated PANI/Fe3O4 Nanocomposites. Environ. Sci. Pollut. Res. Int. 2017, 24, 7490–7498. DOI: 10.1007/s11356-017-8465-z.
  • Manna, K.; Srivastava, S. K. Fe3O4@ Carbon@ Polyaniline Trilaminar Core–Shell Composites as Superior Microwave Absorber in Shielding of Electromagnetic Pollution. ACS Sustain. Chem. Eng. 2017, 5, 10710–10721. DOI: 10.1021/acssuschemeng.7b02682.
  • Tseng, R. J.; Huang, J.; Ouyang, J.; Kaner, R. B.; Yang, Y. Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory. Nano Lett. 2005, 5, 1077–1080. DOI: 10.1021/nl050587l.
  • Virji, S.; Fowler, J. D.; Baker, C. O.; Huang, J.; Kaner, R. B.; Weiller, B. H. Polyaniline Nanofiber Composites with Metal Salts: Chemical Sensors for Hydrogen Sulfide. Small 2005, 1, 624–627. DOI: 10.1002/smll.200400155.
  • Machida, K.; Furuuchi, K.; Min, M.; Naoi, K. Mixed Proton-Electron Conducting Nanocomposite Based on Hydrous RuO2 and Polyaniline Derivatives for Supercapacitors. Electrochemistry 2004, 72, 402–404. DOI: 10.5796/electrochemistry.72.402.
  • Ma, S.; Song, G.; Feng, N.; Zhao, P. Corrosion Protection of Mild Steel with Nanofibrous Polyaniline-Based Coatings. J. Appl. Polym. Sci. 2012, 125, 1601–1605. DOI: 10.1002/app.35643.
  • Ge, C. Y.; Yang, X. G.; Hou, B. R. Synthesis of Polyaniline Nanofiber and Anticorrosion Property of Polyaniline–Epoxy Composite Coating for Q235 Steel. J. Coat. Technol. Res. 2012, 9, 59–69. DOI: 10.1007/s11998-010-9316-8.
  • Bedre, M. D.; Basavaraja, S.; Salwe, B. D.; Shivakumar, V.; Arunkumar, L.; Venkataraman, A. Preparation and Characterization of Pani and Pani-Ag Nanocomposites via Interfacial Polymerization. Polym. Compos. 2009, 30, 1668–1677. DOI: 10.1002/pc.20740.
  • Zhang, B.; Zhao, B.; Huang, S.; Zhang, R.; Xu, P.; Wang, H.-L. One-Pot Interfacial Synthesis of Au Nanoparticles and Au–Polyaniline Nanocomposites for Catalytic Applications. CrystEngComm 2012, 14, 1542–1544. DOI: 10.1039/c2ce06396d.
  • Liu, F.-J.; Huang, L.-M.; Wen, T.-C.; Gopalan, A.; Hung, J.-S. Interfacial Synthesis of Platinum Loaded Polyaniline Nanowires in Poly(styrene sulfonic acid). Mater. Lett. 2007, 61, 4400–4405. DOI: 10.1016/j.matlet.2007.02.030.
  • Divya, V.; Sangaranarayanan, M. V. A Facile Synthetic Strategy for Mesoporous Crystalline Copper–Polyaniline Composite. Eur. Polym. J. 2012, 48, 560–568. DOI: 10.1016/j.eurpolymj.2011.12.009.
  • Cho, W.; Park, S.-J.; Kim, S. Effect of Monomer Concentration on Interfacial Synthesis of Platinum Loaded Polyaniline Nanocomplex Using Poly(styrene sulfonic acid). Synth. Met. 2011, 161, 2446–2450. DOI: 10.1016/j.synthmet.2011.09.025.
  • Kinyanjui, J. M.; Wijeratne, N. R.; Hanks, J.; Hatchett, D. W. Chemical and Electrochemical Synthesis of Polyaniline/Platinum Composites. Electrochim. Acta 2006, 51, 2825–2835. DOI: 10.1016/j.electacta.2005.08.013.
  • Houdayer, A.; Schneider, R.; Billaud, D.; Ghanbaja, J.; Lambert, J. New Polyaniline/Ni (0) Nanocomposites: Synthesis, Characterization and Evaluation of Their Catalytic Activity in Heck Couplings. Synth. Met. 2005, 151, 165–174. DOI: 10.1016/j.synthmet.2005.04.003.
  • Hosseini, M. G.; Zeynali, S.; Momeni, M. M.; Najjar, R. Polyaniline Nanofibers Supported on Titanium as Templates for Immobilization of Pd Nanoparticles: A New Electro-Catalyst for Hydrazine Oxidation. J. Appl. Polym. Sci. 2012, 124, 4671–4677.
  • Ghaly, H. A.; El-Kalliny, A. S.; Gad-Allah, T. A.; El-Sattar, N. E. A. A.; Souaya, E. R. Stable Plasmonic Ag/AgCl–Polyaniline Photoactive Composite for Degradation of Organic Contaminants under Solar Light. RSC Adv. 2017, 7, 12726–12736. DOI: 10.1039/C6RA27957K.
  • Shaban, M.; Rabia, M.; Fathallah, W.; El-Mawgoud, N. A.; Mahmoud, A.; Hussien, H.; Said, O. Preparation and Characterization of Polyaniline and Ag/Polyaniline Composite Nanoporous Particles and Their Antimicrobial Activities. J. Polym. Environ. 2018, 26, 434–442. DOI: 10.1007/s10924-017-0937-1.
  • Tang, L.; Duan, F.; Chen, M. Green Synthesis of Silver Nanoparticles Embedded in Polyaniline Nanofibers via Vitamin C for Supercapacitor Applications. J. Mater. Sci. Mater. Electron. 2017, 28, 7769–7777.
  • Chen, X.; Liu, J.; Qian, K.; Wang, J. Ternary Composites of Ni–Polyaniline–Graphene as Counter Electrodes for Dye-Sensitized Solar Cells. RSC Adv. 2018, 8, 10948–10953. DOI: 10.1039/C8RA00934A.
  • Wang, X.; Feng, S.; Zhao, W.; Zhao, D.; Chen, S. Ag/Polyaniline Heterostructured Nanosheets Loaded with gC 3 N 4 Nanoparticles for Highly Efficient Photocatalytic Hydrogen Generation under Visible Light. New J. Chem. 2017, 41, 9354–9360. DOI: 10.1039/C7NJ01903C.
  • Wang, Y.; Zhang, W.; Wu, X.; Luo, C.; Wang, Q.; Li, J.; Hu, L. Conducting Polymer Coated Metal-Organic Framework Nanoparticles: Facile Synthesis and Enhanced Electromagnetic Absorption Properties. Synth. Met. 2017, 228, 18–24. DOI: 10.1016/j.synthmet.2017.04.009.
  • Zhu, S.; Wei, W.; Chen, X.; Jiang, M.; Zhou, Z. Hybrid Structure of Polyaniline/ZnO Nanograss and Its Application in Dye-Sensitized Solar Cell with Performance Improvement. J. Solid State Chem. 2012, 190, 174–179. DOI: 10.1016/j.jssc.2012.02.028.
  • Wang, B.; Liu, C.; Yin, Y.; Yu, S.; Chen, K.; Liu, P.; Liang, B. Double Template Assisting Synthesized Core–Shell Structured Titania/Polyaniline Nanocomposite and Its Smart Electrorheological Response. Compos. Sci. Technol. 2013, 86, 89–100. DOI: 10.1016/j.compscitech.2013.07.003.
  • Nandapure, B. I.; Kondawar, S. B.; Salunkhe, M. Y.; Nandapure, A. I. Magnetic and Transport Properties of Conducting Polyaniline/Nickel Oxide Nanocomposites. AML 2013, 4, 134–140. DOI: 10.5185/amlett.2012.5348.
  • Mostafaei, A.; Zolriasatein, A. Synthesis and Characterization of Conducting Polyaniline Nanocomposites Containing ZnO Nanorods. Prog. Nat. Sci. Mater. Int. 2012, 22, 273–280. DOI: 10.1016/j.pnsc.2012.07.002.
  • Patil, S. L.; Chougule, M. A.; Pawar, S. G.; Sen, S.; Moholkar, A. V.; Kim, J. H. Fabrication of Polyaniline-ZnO Nanocomposite Gas Sensor. Sens. Transducers 2011, 134, 120.
  • Sampreeth, T.; Al-Maghrabi, M. A.; Bahuleyan, B. K.; Ramesan, M. T. Synthesis, Characterization, Thermal Properties, Conductivity and Sensor Application Study of Polyaniline/Cerium-Doped Titanium Dioxide Nanocomposites. J. Mater. Sci. 2018, 53, 591–603. DOI: 10.1007/s10853-017-1505-8.
  • Ramesan, M. T.; Sampreeth, T. In Situ Synthesis of Polyaniline/Sm-Doped TiO 2 Nanocomposites: Evaluation of Structural, Morphological, Conductivity Studies and Gas Sensing Applications. J. Mater. Sci. Mater. Electron. 2018, 29, 4301–4311.
  • Ramesan, M. T.; Sampreeth, T. Synthesis, Characterization, Material Properties and Sensor Application Study of Polyaniline/Niobium Doped Titanium Dioxide Nanocomposites. J. Mater. Sci. Mater. Electron. 2017, 28, 16181–16191.
  • Vellakkat, M.; Hundekal, D. Electrical Conductivity and Supercapacitor Properties of Polyaniline/Chitosan/Nickel Oxide Honeycomb Nanocomposite. J. Appl. Polym. Sci. 2017, 134, 44536 (1-12).   DOI: 10.1002/app.44536.
  • Liu, J.; Yang, C.; Shang, Y.; Zhang, P.; Liu, J.; Zheng, J. Preparation of a Nanocomposite Material Consisting of Cuprous Oxide, Polyaniline and Reduced Graphene Oxide, and Its Application to the Electrochemical Determination of Hydrogen Peroxide. Mikrochim. Acta 2018, 185, 172. DOI: 10.1007/s00604-018-2717-6.
  • Azak, H.; Yildiz, H. B.; Carbas, B. B. Synthesis and Characterization of a New Poly(dithieno (3, 2-b: 2′, 3′-d) pyrrole) Derivative Conjugated Polymer: Its Electrochromic and Biosensing Applications. Polymer 2018, 134, 44–52. DOI: 10.1016/j.polymer.2017.11.044.
  • Cao, T. T.; Male, U.; Huh, D. S. Fabrication of Pore-Selective Carboxyl Group Functionalized Polyimide Honeycomb-Patterned Porous Films Using KOH Humidity. Polymer 2018, 153, 86–94. DOI: 10.1016/j.polymer.2018.08.006.
  • Sun, C.; Jia, H.; Lei, K.; Zhu, D.; Gao, Y.; Zheng, Z.; Wang, X. Self-Healing Hydrogels with Stimuli Responsiveness Based on Acylhydrazone Bonds. Polymer 2019, 160, 246–253. DOI: 10.1016/j.polymer.2018.11.051.
  • Stroylova, Y.; Sorokina, S.; Stroylov, V.; Melnikova, A.; Gaillard, C.; Shifrina, Z.; Haertlé, T.; Muronetz, V. I. Spontaneous Formation of Nanofilms under Interaction of 4th Generation Pyrydylphenylene Dendrimer with Proteins. Polymer 2018, 137, 186–194. DOI: 10.1016/j.polymer.2018.01.015.
  • Das, K. R.; Antony, M. J.; Varghese, S. Highly Bluish-White Light Emissive and Redox Active Conjugated Poly-N-Phenyl Anthranilic Acid Polymer Fluoroprobe for Analytical Sensing. Polymer 2019, 181, 121747. DOI: 10.1016/j.polymer.2019.121747.
  • Smyslov, R. Y.; Tomilin, F. N.; Shchugoreva, I. A.; Nosova, G. I.; Zhukova, E. V.; Litvinova, L. S.; Yakimansky, A. V.; Kolesnikov, I.; Abramov, I. G.; Ovchinnikov, S. G.; et al. Synthesis and Photophysical Properties of Copolyfluorenes for Light-Emitting Applications: Spectroscopic Experimental Study and Theoretical DFT Consideration. Polymer 2019, 168, 185–198. DOI: 10.1016/j.polymer.2019.02.015.
  • Sigolaeva, L. V.; Bulko, T. V.; Kozin, M. S.; Zhang, W.; Köhler, M.; Romanenko, I.; Yuan, J.; Schacher, F. H.; Pergushov, D. V.; Shumyantseva, V. V. Long-Term Stable Poly(ionic liquid)/MWCNTs Inks Enable Enhanced Surface Modification for Electrooxidative Detection and Quantification of dsDNA. Polymer 2019, 168, 95–103. DOI: 10.1016/j.polymer.2019.02.005.
  • Yadav, R.; Venkatesu, P. Functionalized Carbon Nanotubes Modulate the Phase Transition Behavior of Thermoresponsive Polymer via Hydrophilic-Hydrophobic Balance. Polymer 2019, 178, 121573. DOI: 10.1016/j.polymer.2019.121573.
  • Askari, E.; Naghib, S. M.; Seyfoori, A.; Maleki, A.; Rahmanian, M. Ultrasonic-Assisted Synthesis and In Vitro Biological Assessments of a Novel Herceptin-Stabilized Graphene using Three Dimensional Cell Spheroid. Ultrason. Sonochem. 2019, 58, 104615. DOI: 10.1016/j.ultsonch.2019.104615.
  • Kalantari, E.; Naghib, S. M. A Comparative Study on Biological Properties of Novel Nanostructured Monticellite-Based Composites with Hydroxyapatite Bioceramic. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 1087–1096. DOI: 10.1016/j.msec.2018.12.140.
  • Molaabasi, F.; Hajipour-Verdom, B.; Alipour, M.; Naghib, S. M. Fluorescent Nanoclusters for Imaging of Cells/Stem Cells. Methods Mol. Biol. 2020, 2125, 27–37.
  • Seyfoori, A.; Ebrahimi, S. A. S.; Omidian, S.; Naghib, S. M. Multifunctional Magnetic ZnFe2O4-Hydroxyapatite Nanocomposite Particles for Local Anti-Cancer Drug Delivery and Bacterial Infection Inhibition: An In Vitro Study. J. Taiwan Inst. Chem. Eng. 2019, 96, 503–508. DOI: 10.1016/j.jtice.2018.10.018.
  • Kalantari, E.; Naghib, S. M.; Iravani, N. J.; Aliahmadi, A.; Naimi-Jamal, M. R.; Mozafari, M. Nanostructured Monticellite for Tissue Engineering Applications–Part II: Molecular and Biological Characteristics. Ceram. Int. 2018, 44, 14704–14711. DOI: 10.1016/j.ceramint.2018.05.098.
  • Kalantari, E.; Naghib, S. M.; Naimi-Jamal, M. R.; Aliahmadi, A.; Iravani, N. J.; Mozafari, M. Nanostructured Monticellite for Tissue Engineering Applications-Part I: Microstructural and Physicochemical Characteristics. Ceram. Int. 2018, 44, 12731–12738. DOI: 10.1016/j.ceramint.2018.04.076.
  • Naghib, S. M.; Rabiee, M.; Omidinia, E. Electroanalytical Validation of a Novel Nanobiosensing Strategy and Direct Electrochemistry of Phenylalanine Dehydrogenase for Clinical Diagnostic Applications. Int. J. Electrochem. Sci. 2014, 9, 2301–2315.
  • Naghib, S. M.; Rabiee, M.; Omidinia, E. Electrochemical Biosensor for L-Phenylalanine Based on a Gold Electrode Modified with Graphene Oxide Nanosheets and Chitosan. Int. J. Electrochem. Sci. 2014, 9, 2341–2353.
  • Vahid, N. F.; Marvi, M. R.; Naimi-Jamal, M. R.; Naghib, S. M.; Ghaffarinejad, A. X-Fe2O4-Buckypaper-Chitosan Nanocomposites for Nonenzymatic Electrochemical Glucose Biosensing. Anal. Bioanal. Electrochem. 2019, 11, 930–942.
  • Chen, J.; Yu, Q.; Cui, X.; Dong, M.; Zhang, J.; Wang, C.; Fan, J.; Zhu, Y.; Guo, Z. An Overview of Stretchable Strain Sensors from Conductive Polymer Nanocomposites. J. Mater. Chem. C 2019, 7, 11710–11730. DOI: 10.1039/C9TC03655E.
  • Naghib, S. M.; Zare, Y.; Rhee, K. Y. A Facile and Simple Approach to Synthesis and Characterization of Methacrylated Graphene Oxide Nanostructured Polyaniline Nanocomposites. Nanotechnol. Rev. 2020, 9, 53–60. DOI: 10.1515/ntrev-2020-0005.
  • Hao, Y.; Zhou, B.; Wang, F.; Li, J.; Deng, L.; Liu, Y.-N. Construction of Highly Ordered Polyaniline Nanowires and Their Applications in DNA Sensing. Biosens. Bioelectron. 2014, 52, 422–426. DOI: 10.1016/j.bios.2013.09.023.
  • Ndangili, P. M.; Waryo, T. T.; Muchindu, M.; Baker, P. G. L.; Ngila, C. J.; Iwuoha, E. I. Ferrocenium Hexafluorophosphate-Induced Nanofibrillarity of Polyaniline–Polyvinyl Sulfonate Electropolymer and Application in an Amperometric Enzyme Biosensor. Electrochim. Acta 2010, 55, 4267–4273. DOI: 10.1016/j.electacta.2009.04.058.
  • Wang, X.; Wang, H.; Ge, T.; Yang, T.; Luo, S.; Jiao, K. Chemically Modified Graphene and Sulfonic Acid-Doped Polyaniline Nanofiber Composites: Preparation Routes, Characterization, and Comparison of Direct DNA Detection. J. Phys. Chem. C 2015, 119, 9076–9084. DOI: 10.1021/acs.jpcc.5b00534.
  • Radhakrishnan, S.; Prakash, S.; Rao, C. R. K.; Vijayan, M. Organically Soluble Bifunctional Polyaniline–Magnetite Composites for Sensing and Supercapacitor Applications. Electrochem. Solid-State Lett. 2009, 12, A84–A87. DOI: 10.1149/1.3074315.
  • Yang, T.; Zhou, N.; Zhang, Y.; Zhang, W.; Jiao, K.; Li, G. Synergistically Improved Sensitivity for the Detection of Specific DNA Sequences Using Polyaniline Nanofibers and Multi-Walled Carbon Nanotubes Composites. Biosens. Bioelectron. 2009, 24, 2165–2170. DOI: 10.1016/j.bios.2008.11.011.
  • Spain, E.; Kojima, R.; Kaner, R. B.; Wallace, G. G.; O'Grady, J.; Lacey, K.; Barry, T.; Keyes, T. E.; Forster, R. J. High Sensitivity DNA Detection Using Gold Nanoparticle Functionalised Polyaniline Nanofibres. Biosens. Bioelectron. 2011, 26, 2613–2618. DOI: 10.1016/j.bios.2010.11.017.
  • Park, H.; Jeong, Y. R.; Yun, J.; Hong, S. Y.; Jin, S.; Lee, S.-J.; Zi, G.; Ha, J. S. Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars. ACS Nano 2015, 9, 9974–9985. DOI: 10.1021/acsnano.5b03510.
  • Scognamiglio, V. Nanotechnology in Glucose Monitoring: Advances and Challenges in the Last 10 Years. Biosens. Bioelectron. 2013, 47, 12–25. DOI: 10.1016/j.bios.2013.02.043.
  • Feng, X.; Cheng, H.; Pan, Y.; Zheng, H. Development of Glucose Biosensors Based on Nanostructured Graphene-Conducting Polyaniline Composite. Biosens. Bioelectron. 2015, 70, 411–417. DOI: 10.1016/j.bios.2015.03.046.
  • Garjonyte, R.; Malinauskas, A. Amperometric Glucose Biosensors Based on Prussian Blue–and Polyaniline–Glucose Oxidase Modified Electrodes. Biosens. Bioelectron. 2000, 15, 445–451. DOI: 10.1016/S0956-5663(00)00101-9.
  • Liu, Y.; Wang, M.; Zhao, F.; Xu, Z.; Dong, S. The Direct Electron Transfer of Glucose Oxidase and Glucose Biosensor Based on Carbon Nanotubes/Chitosan Matrix. Biosens. Bioelectron. 2005, 21, 984–988. DOI: 10.1016/j.bios.2005.03.003.
  • Wang, J. Electrochemical Glucose Biosensors. Chem. Rev. 2008, 108, 814–825. DOI: 10.1021/cr068123a.
  • Kang, X.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y. Glucose Oxidase-Graphene-Chitosan Modified Electrode for Direct Electrochemistry and Glucose Sensing. Biosens. Bioelectron. 2009, 25, 901–905. DOI: 10.1016/j.bios.2009.09.004.
  • Gerard, M.; Chaubey, A.; Malhotra, B. D. Application of Conducting Polymers to Biosensors. Biosens. Bioelectron. 2002, 17, 345–359. DOI: 10.1016/S0956-5663(01)00312-8.
  • Şenel, M. Simple Method for Preparing Glucose Biosensor Based on In-Situ Polypyrrole Cross-Linked Chitosan/Glucose Oxidase/Gold Bionanocomposite Film. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 48, 287–293. DOI: 10.1016/j.msec.2014.12.020.
  • Sergeyeva, T. A.; Lavrik, N. V.; Piletsky, S. A.; Rachkov, A. E.; El'Skaya, A. V. Polyaniline Label-Based Conductometric Sensor for IgG Detection. Sens. Actuators B 1996, 34, 283–288. DOI: 10.1016/S0925-4005(97)80006-8.
  • Grennan, K.; Killard, A. J.; Hanson, C. J.; Cafolla, A. A.; Smyth, M. R. Optimisation and Characterisation of Biosensors Based on Polyaniline. Talanta 2006, 68, 1591–1600. DOI: 10.1016/j.talanta.2005.08.036.
  • Kausaite-Minkstimiene, A.; Mazeiko, V.; Ramanaviciene, A.; Ramanavicius, A. Enzymatically Synthesized Polyaniline Layer for Extension of Linear Detection Region of Amperometric Glucose Biosensor. Biosens. Bioelectron. 2010, 26, 790–797. DOI: 10.1016/j.bios.2010.06.023.
  • Kausaite-Minkstimiene, A.; Mazeiko, V.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of Amperometric Glucose Biosensors Based on Glucose Oxidase Encapsulated within Enzymatically Synthesized Polyaniline and Polypyrrole. Sens. Actuators B 2011, 158, 278–285. DOI: 10.1016/j.snb.2011.06.019.
  • Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Yu, G. Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano 2013, 7, 3540–3546. DOI: 10.1021/nn400482d.
  • Wang, Z.; Liu, S.; Wu, P.; Cai, C. Detection of Glucose Based on Direct Electron Transfer Reaction of Glucose Oxidase Immobilized on Highly Ordered Polyaniline Nanotubes. Anal. Chem. 2009, 81, 1638–1645. DOI: 10.1021/ac802421h.
  • Wan, D.; Yuan, S.; Li, G. L.; Neoh, K. G.; Kang, E. T. Glucose Biosensor from Covalent Immobilization of Chitosan-Coupled Carbon Nanotubes on Polyaniline-Modified Gold Electrode. ACS Appl. Mater. Interfaces 2010, 2, 3083–3091. DOI: 10.1021/am100591t.
  • Al-Sagur, H.; Komathi, S.; Karakaş, H.; Atilla, D.; Gürek, A. G.; Basova, T.; Farmilo, N.; Hassan, A. K. A Glucose Biosensor Based on Novel Lutetium Bis-Phthalocyanine Incorporated Silica-Polyaniline Conducting Nanobeads. Biosens. Bioelectron. 2018, 102, 637–645. DOI: 10.1016/j.bios.2017.12.004.
  • Aravamudhan, S.; Kumar, A.; Mohapatra, S.; Bhansali, S. Sensitive Estimation of Total Cholesterol in Blood Using Au Nanowires Based Micro-Fluidic Platform. Biosens. Bioelectron. 2007, 22, 2289–2294. DOI: 10.1016/j.bios.2006.11.027.
  • Vidal, J. C.; Garcia-Ruiz, E.; Castillo, J. R. Strategies for the Improvement of an Amperometric Cholesterol Biosensor Based on Electropolymerization in Flow Systems: Use of Charge-Transfer Mediators and Platinization of the Electrode. J. Pharm. Biomed. Anal. 2000, 24, 51–63. DOI: 10.1016/S0731-7085(00)00395-2.
  • Parra, A.; Casero, E.; Pariente, F.; Vazquez, L.; Lorenzo, E. Cholesterol Oxidase Modified Gold Electrodes as Bioanalytical Devices. Sens. Actuators B 2007, 124, 30–37. DOI: 10.1016/j.snb.2006.11.051.
  • Saini, D.; Chauhan, R.; Solanki, P. R.; Basu, T. Gold-Nanoparticle Decorated Graphene-Nanostructured Polyaniline Nanocomposite-Based Bienzymatic Platform for Cholesterol Sensing. ISRN Nanotechnol. 2012, 2012, 1–12. DOI: 10.5402/2012/102543.
  • Pesqueira, C. L. M.; del Castillo-Castro, T.; Castillo-Ortega, M. M.; Encinas, J. C. Chemochromic Properties of Neutral Polyaniline throughout Cholesterol Exposure. J. Polym. Res. 2013, 20, 71. DOI: 10.1007/s10965-012-0071-7.
  • Dhand, C.; Singh, S. P.; Arya, S. K.; Datta, M.; Malhotra, B. D. Cholesterol Biosensor Based on Electrophoretically Deposited Conducting Polymer Film Derived from Nano-Structured Polyaniline Colloidal Suspension. Anal. Chim. Acta 2007, 602, 244–251. DOI: 10.1016/j.aca.2007.09.028.
  • Dhand, C.; Arya, S. K.; Datta, M.; Malhotra, B. D. Polyaniline-Carbon Nanotube Composite Film for Cholesterol Biosensor. Anal. Biochem. 2008, 383, 194–199. DOI: 10.1016/j.ab.2008.08.039.
  • Khan, R.; Kaushik, A.; Mishra, A. P. Immobilization of Cholesterol Oxidase onto Electrochemically Polymerized Film of Biocompatible Polyaniline-Triton X-100. Mater. Sci. Eng. C 2009, 29, 1399–1403. DOI: 10.1016/j.msec.2008.11.001.
  • Wang, H.; Mu, S. Bioelectrochemical Characteristics of Cholesterol Oxidase Immobilized in a Polyaniline Film. Sens. Actuators B 1999, 56, 22–30. DOI: 10.1016/S0925-4005(99)00025-8.
  • Abdelwahab, A. A.; Won, M. S.; Shim, Y. B. Direct Electrochemistry of Cholesterol Oxidase Immobilized on a Conducting Polymer: Application for a Cholesterol Biosensor. Electroanalysis 2010, 22, 21–25. DOI: 10.1002/elan.200900363.
  • Srivastava, M.; Srivastava, S. K.; Nirala, N. R.; Prakash, R. A Chitosan-Based Polyaniline–Au Nanocomposite Biosensor for Determination of Cholesterol. Anal. Methods 2014, 6, 817–824. DOI: 10.1039/C3AY41812J.
  • Singh, S.; Solanki, P. R.; Pandey, M. K.; Malhotra, B. D. Cholesterol Biosensor Based on Cholesterol Esterase, Cholesterol Oxidase and Peroxidase Immobilized onto Conducting Polyaniline Films. Sens. Actuators B 2006, 115, 534–541. DOI: 10.1016/j.snb.2005.10.025.
  • Langer, J. J.; Filipiak, M.; Ke, J.; Jasnowska, J.; Włodarczak, J.; Buładowski, B. Polyaniline Biosensor for Choline Determination. Surf. Sci. 2004, 573, 140–145. DOI: 10.1016/j.susc.2004.05.140.
  • Valizadeh, A.; Sohrabi, N.; Badrzadeh, F. Electrochemical Detection of HIV-1 by Nanomaterials. Artif. Cells. Nanomed. Biotechnol. 2017, 45, 1467–1477. DOI: 10.1080/21691401.2017.1282494.
  • Chang, H.; Yuan, Y.; Shi, N.; Guan, Y. Electrochemical DNA Biosensor Based on Conducting Polyaniline Nanotube Array. Anal. Chem. 2007, 79, 5111–5115. DOI: 10.1021/ac070639m.
  • Gong, Q.; Han, H.; Yang, H.; Zhang, M.; Sun, X.; Liang, Y.; Liu, Z.; Zhang, W.; Qiao, J. Sensitive Electrochemical DNA Sensor for the Detection of HIV Based on a Polyaniline/Graphene Nanocomposite. J. Materiomics 2019, 5, 313–319. DOI: 10.1016/j.jmat.2019.03.004.
  • Mo, X.; Wu, Z.; Huang, J.; Zhao, G.; Dou, W. A Sensitive and Regenerative Electrochemical Immunosensor for Quantitative Detection of Escherichia coli O157: H7 Based on Stable Polyaniline Coated Screen-Printed Carbon Electrode and rGO-NR-Au@ Pt. Anal. Methods 2019, 11, 1475–1482. DOI: 10.1039/C8AY02594K.
  • Zeng, R.; Luo, Z.; Zhang, L.; Tang, D. Platinum Nanozyme-Catalyzed Gas Generation for Pressure-Based Bioassay Using Polyaniline Nanowires-Functionalized Graphene Oxide Framework. Anal. Chem. 2018, 90, 12299–12306. DOI: 10.1021/acs.analchem.8b03889.
  • Chen, Y.; Guo, S.; Zhao, M.; Zhang, P.; Xin, Z.; Tao, J.; Bai, L. Amperometric DNA Biosensor for Mycobacterium tuberculosis Detection Using Flower-Like Carbon Nanotubes-Polyaniline Nanohybrid and Enzyme-Assisted Signal Amplification Strategy. Biosens. Bioelectron. 2018, 119, 215–220. DOI: 10.1016/j.bios.2018.08.023.
  • You, H.; Mu, Z.; Zhao, M.; Zhou, J.; Yuan, Y.; Bai, L. Functional Fullerene-Molybdenum Disulfide Fabricated Electrochemical DNA Biosensor for Sul1 Detection Using Enzyme-Assisted Target Recycling and a New Signal Marker for Cascade Amplification. Sens. Actuators B 2020, 305, 127483. DOI: 10.1016/j.snb.2019.127483.
  • Singh, A.; Trivedi, P.; Jain, N. K. Advances in siRNA Delivery in Cancer Therapy. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 274–283. DOI: 10.1080/21691401.2017.1307210.
  • Kazemi, F.; Naghib, S. M.; Mohammadpour, Z. Multifunctional Micro-/Nanoscaled Structures Based on Polyaniline: An Overview of Modern Emerging Devices. Mater. Today Chem. 2020, 16, 100249. DOI: 10.1016/j.mtchem.2020.100249.
  • Salahandish, R.; Ghaffarinejad, A.; Naghib, S. M.; Majidzadeh-A, K.; Zargartalebi, H.; Sanati-Nezhad, A. Nano-Biosensor for Highly Sensitive Detection of HER2 Positive Breast Cancer. Biosens. Bioelectron. 2018, 117, 104–111. DOI: 10.1016/j.bios.2018.05.043.
  • Salahandish, R.; Ghaffarinejad, A.; Omidinia, E.; Zargartalebi, H.; Majidzadeh-A, K.; Naghib, S. M.; Sanati-Nezhad, A. Label-Free Ultrasensitive Detection of Breast Cancer miRNA-21 Biomarker Employing Electrochemical Nano-Genosensor Based on Sandwiched AgNPs in PANI and N-Doped Graphene. Biosens. Bioelectron. 2018, 120, 129–136. DOI: 10.1016/j.bios.2018.08.025.
  • Feng, D.; Li, L.; Fang, X.; Han, X.; Zhang, Y. Dual Signal Amplification of Horseradish Peroxidase Functionalized Nanocomposite as Trace Label for the Electrochemical Detection of Carcinoembryonic Antigen. Electrochim. Acta 2014, 127, 334–341. DOI: 10.1016/j.electacta.2014.02.072.
  • Zhang, Q.; Li, X.; Qian, C.; Dou, L.; Cui, F.; Chen, X. Label-Free Electrochemical Immunoassay for Neuron Specific Enolase Based on 3D Macroporous Reduced Graphene Oxide/Polyaniline Film. Anal. Biochem. 2018, 540–541, 1–8. DOI: 10.1016/j.ab.2017.10.009.
  • Wang, J.; Wang, X.; Tang, H.; Gao, Z.; He, S.; Li, J.; Han, S. Ultrasensitive Electrochemical Detection of Tumor Cells Based on Multiple Layer CdS Quantum Dots-Functionalized Polystyrene Microspheres and Graphene Oxide - Polyaniline Composite. Biosens. Bioelectron. 2018, 100, 1–7. DOI: 10.1016/j.bios.2017.07.077.
  • Zheng, Y.; Wang, X.; He, S.; Gao, Z.; Di, Y.; Lu, K.; Li, K.; Wang, J. Aptamer-DNA Concatamer-Quantum Dots Based Electrochemical Biosensing Strategy for Green and Ultrasensitive Detection of Tumor Cells via Mercury-Free Anodic Stripping Voltammetry. Biosens. Bioelectron. 2019, 126, 261–268. DOI: 10.1016/j.bios.2018.09.076.
  • Yang, Q.; Li, N.; Li, Q.; Chen, S.; Wang, H.-L.; Yang, H. Amperometric Sarcosine Biosensor Based on Hollow Magnetic Pt-Fe3O4@C Nanospheres. Anal. Chim. Acta 2019, 1078, 161–167. DOI: 10.1016/j.aca.2019.06.031.
  • Anu Prathap, M. U.; Castro-Perez, E.; Jimenez-Torres, J. A.; Setaluri, V.; Gunasekaran, S. A Flow-Through Microfluidic System for the Detection of Circulating Melanoma Cells. Biosens. Bioelectron. 2019, 142, 111522. DOI: 10.1016/j.bios.2019.111522.
  • Zhang, P.; Huang, H.; Wang, N.; Li, H.; Shen, D.; Ma, H. Duplex Voltammetric Immunoassay for the Cancer Biomarkers Carcinoembryonic Antigen and Alpha-Fetoprotein by Using Metal-Organic Framework Probes and a Glassy Carbon Electrode Modified with Thiolated Polyaniline Nanofibers. Microchim. Acta 2017, 184, 4037–4045. DOI: 10.1007/s00604-017-2437-3.
  • Soni, A.; Pandey, C. M.; Solanki, S.; Kotnala, R. K.; Sumana, G. Electrochemical Genosensor Based on Template Assisted Synthesized Polyaniline Nanotubes for Chronic Myelogenous Leukemia detection. Talanta 2018, 187, 379–389. DOI: 10.1016/j.talanta.2018.05.038.
  • Salahandish, R.; Ghaffarinejad, A.; Naghib, S. M.; Majidzadeh, A. K.; Zargartalebi, H.; Sanati-Nezhad, A. Nano-Biosensor for Highly Sensitive Detection of HER2 Positive Breast Cancer. Biosens. Bioelectron. 2018, 117, 104–111. DOI: 10.1016/j.bios.2018.05.043.
  • Hui, N.; Sun, X.; Niu, S.; Luo, X. PEGylated Polyaniline Nanofibers: Antifouling and Conducting Biomaterial for Electrochemical DNA Sensing. ACS Appl. Mater. Interfaces 2017, 9, 2914–2923. DOI: 10.1021/acsami.6b11682.
  • Wang, J.; Hui, N. Zwitterionic Poly(carboxybetaine) Functionalized Conducting Polymer Polyaniline Nanowires for the Electrochemical Detection of Carcinoembryonic Antigen in Undiluted Blood Serum. Bioelectrochemistry 2019, 125, 90–96. DOI: 10.1016/j.bioelechem.2018.09.006.
  • Long, D.; Chen, C.; Cui, C.; Yao, Z.; Yang, P. A High Precision MUA-Spaced Single-Cell Sensor for Cellular Receptor Assay Based on Bifunctional Au@Cu-PbCQD Nanoprobes. Nanoscale 2018, 10, 18597–18605. DOI: 10.1039/c8nr03847c.
  • Ren, X.; Ma, H.; Zhang, T.; Zhang, Y.; Yan, T.; Du, B.; Wei, Q. Sulfur-Doped Graphene-Based Immunological Biosensing Platform for Multianalysis of Cancer Biomarkers. ACS Appl. Mater. Interfaces 2017, 9, 37637–37644. DOI: 10.1021/acsami.7b13416.
  • Zheng, Y.; Wang, H.; Ma, Z. A Nanocomposite Containing Prussian Blue, Platinum Nanoparticles and Polyaniline for Multi-Amplification of the Signal of Voltammetric Immunosensors: Highly Sensitive Detection of Carcinoma Antigen 125. Microchim. Acta 2017, 184, 4269–4277. DOI: 10.1007/s00604-017-2470-2.
  • Liu, N.; Song, J.; Lu, Y.; Davis, J. J.; Gao, F.; Luo, X. Electrochemical Aptasensor for Ultralow Fouling Cancer Cell Quantification in Complex Biological Media Based on Designed Branched Peptides. Anal. Chem. 2019, 91, 8334–8340. DOI: 10.1021/acs.analchem.9b01129.
  • Soni, A.; Pandey, C. M.; Pandey, M. K.; Sumana, G. Highly Efficient Polyaniline-MoS2 Hybrid Nanostructures Based Biosensor for Cancer Biomarker Detection. Anal. Chim. Acta 2019, 1055, 26–35. DOI: 10.1016/j.aca.2018.12.033.
  • Soni, A.; Pandey, C. M.; Solanki, S.; Sumana, G. Synthesis of 3D-Coral like Polyaniline Nanostructures Using Reactive Oxide Templates and Their High Performance for Ultrasensitive Detection of Blood Cancer. Sens. Actuators B 2019, 281, 634–642. DOI: 10.1016/j.snb.2018.10.126.
  • Salahandish, R.; Ghaffarinejad, A.; Naghib, S. M.; Niyazi, A.; Majidzadeh-A, K.; Janmaleki, M.; Sanati-Nezhad, A. Sandwich-Structured Nanoparticles-Grafted Functionalized Graphene Based 3D Nanocomposites for High-Performance Biosensors to Detect Ascorbic Acid Biomolecule. Sci. Rep. 2019, 9, 1–11. DOI: 10.1038/s41598-018-37573-9.
  • Salahandish, R.; Ghaffarinejad, A.; Naghib, S. M.; Majidzadeh-A, K.; Sanati-Nezhad, A. A Novel Graphene-Grafted Gold Nanoparticles Composite for Highly Sensitive Electrochemical Biosensing. IEEE Sens. J. 2018, 18, 2513–2519. DOI: 10.1109/JSEN.2018.2789433.
  • Teixeira, S. R.; Lloyd, C.; Yao, S.; Andrea Salvatore, G.; Whitaker, I. S.; Francis, L. Polyaniline-Graphene Based Alpha-Amylase Biosensor with a Linear Dynamic Range in Excess of 6 Orders of Magnitude. Biosens. Bioelectron. 2016, 85, 395–402. DOI: 10.1016/j.bios.2016.05.034.
  • Gao, J.; Huang, W.; Chen, Z.; Yi, C.; Jiang, L. Simultaneous Detection of Glucose, Uric Acid and Cholesterol Using Flexible Microneedle Electrode Array-Based Biosensor and Multi-Channel Portable Electrochemical Analyzer. Sens. Actuators B 2019, 287, 102–110. DOI: 10.1016/j.snb.2019.02.020.
  • Lou, C.; Jing, T.; Zhou, J.; Tian, J.; Zheng, Y.; Wang, C.; Zhao, Z.; Lin, J.; Liu, H.; Zhao, C.; et al. Laccase Immobilized Polyaniline/Magnetic Graphene Composite Electrode for Detecting Hydroquinone. Int. J. Biol. Macromol. 2020, 149, 1130–1138. DOI: 10.1016/j.ijbiomac.2020.01.248.
  • Swaminathan, N.; Nerthigan, Y.; Wu, H.-F. Polyaniline Stabilized Silver (I) Oxide Nanocubes for Sensitive and Selective Detection of Hemoglobin in Urine for Hematuria Evaluation. Microchem. J. 2020, 155, 104723. DOI: 10.1016/j.microc.2020.104723.
  • Mohamad, A.; Rizwan, M.; Keasberry, N. A.; Nguyen, A. S.; Lam, T. D.; Ahmed, M. U. Gold-Microrods/Pd-Nanoparticles/Polyaniline-Nanocomposite-Interface as a Peroxidase-Mimic for Sensitive Detection of Tropomyosin. Biosens. Bioelectron. 2020, 155, 112108. DOI: 10.1016/j.bios.2020.112108.
  • Hussain, K. K.; Gurudatt, N. G.; Akhtar, M. H.; Seo, K.-D.; Park, D.-S.; Shim, Y.-B. Nano-Biosensor for the In Vitro Lactate Detection using Bi-Functionalized Conducting Polymer/N, S-Doped Carbon; the Effect of αCHC Inhibitor on Lactate Level in Cancer Cell Lines. Biosens. Bioelectron. 2020, 155, 112094. DOI: 10.1016/j.bios.2020.112094.
  • Gautam, V.; Singh, K. P.; Yadav, V. L. Polyaniline/Multiwall Carbon Nanotubes/Starch Nanocomposite Material and Hemoglobin Modified Carbon Paste Electrode for Hydrogen Peroxide and Glucose Biosensing. Int. J. Biol. Macromol. 2018, 111, 1124–1132. DOI: 10.1016/j.ijbiomac.2018.01.094.
  • Kafi, A. K. M.; Wali, Q.; Jose, R.; Biswas, T. K.; Yusoff, M. M. A Glassy Carbon Electrode Modified with SnO2 Nanofibers, Polyaniline and Hemoglobin for Improved Amperometric Sensing of Hydrogen Peroxide. Microchim. Acta 2017, 184, 4443–4450. DOI: 10.1007/s00604-017-2479-6.
  • Neampet, S.; Ruecha, N.; Qin, J.; Wonsawat, W.; Chailapakul, O.; Rodthongkum, N. A Nanocomposite Prepared from Platinum Particles, Polyaniline and a Ti3C2 MXene for Amperometric Sensing of Hydrogen Peroxide and Lactate. Mikrochim. Acta 2019, 186, 752. DOI: 10.1007/s00604-019-3845-3.
  • Yang, Z.; Zheng, X.; Zheng, J. Non-Enzymatic Sensor Based on a Glassy Carbon Electrode Modified with Ag Nanoparticles/Polyaniline/Halloysite Nanotube Nanocomposites for Hydrogen Peroxide Sensing. RSC Adv. 2016, 6, 58329–58335. DOI: 10.1039/C6RA06366G.
  • Tang, J.; Huang, L.; Cheng, Y.; Zhuang, J.; Li, P.; Tang, D. Nonenzymatic Sensing of Hydrogen Peroxide Using a Glassy Carbon Electrode Modified with Graphene Oxide, a Polyamidoamine Dendrimer, and with Polyaniline Deposited by the Fenton reaction. Mikrochim. Acta 2018, 185, 569. DOI: 10.1007/s00604-018-3089-7.
  • Yukird, J.; Wongtangprasert, T.; Rangkupan, R.; Chailapakul, O.; Pisitkun, T.; Rodthongkum, N. Label-Free Immunosensor based on Graphene/Polyaniline Nanocomposite for Neutrophil Gelatinase-Associated Lipocalin Detection. Biosens. Bioelectron. 2017, 87, 249–255. DOI: 10.1016/j.bios.2016.08.062.
  • Durai, L.; Badhulika, S. Ultra-Selective, Trace Level Detection of As3+ Ions in Blood Samples Using PANI Coated BiVO4 Modified SPCE via Differential Pulse Anode Stripping Voltammetry. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 111, 110806. DOI: 10.1016/j.msec.2020.110806.
  • Do, J.-S.; Chang, Y.-H.; Tsai, M.-L. Highly Sensitive Amperometric Creatinine Biosensor Based on Creatinine Deiminase/Nafion®-Nanostructured Polyaniline Composite Sensing Film Prepared with Cyclic Voltammetry. Mater. Chem. Phys. 2018, 219, 1–12. DOI: 10.1016/j.matchemphys.2018.07.057.
  • Zhang, Q.; Prabhu, A.; San, A.; Al-Sharab, J. F.; Levon, K. A Polyaniline Based Ultrasensitive Potentiometric Immunosensor for Cardiac Troponin Complex Detection. Biosens. Bioelectron. 2015, 72, 100–106. DOI: 10.1016/j.bios.2015.04.084.
  • Liu, S.; Xing, X.; Yu, J.; Lian, W.; Li, J.; Cui, M.; Huang, J. A Novel Label-Free Electrochemical Aptasensor based on Graphene-Polyaniline Composite Film for Dopamine Determination. Biosens. Bioelectron. 2012, 36, 186–191. DOI: 10.1016/j.bios.2012.04.011.
  • Naseri, M.; Fotouhi, L.; Ehsani, A. Recent Progress in the Development of Conducting Polymer-Based Nanocomposites for Electrochemical Biosensors Applications: A Mini-Review. Chem. Rec. 2018, 18, 599–618. DOI: 10.1002/tcr.201700101.
  • Shoaie, N.; Daneshpour, M.; Azimzadeh, M.; Mahshid, S.; Khoshfetrat, S. M.; Jahanpeyma, F.; Gholaminejad, A.; Omidfar, K.; Foruzandeh, M. Electrochemical Sensors and Biosensors Based on the Use of Polyaniline and Its Nanocomposites: A Review on Recent Advances. Mikrochim. Acta 2019, 186, 465. DOI: 10.1007/s00604-019-3588-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.