1,207
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Recent Advances in Urea–Formaldehyde Resins: Converting Crystalline Thermosetting Polymers Back to Amorphous Ones

, &
Pages 722-756 | Received 12 Aug 2021, Accepted 29 Nov 2021, Published online: 17 Dec 2021

References

  • Tollens, B. Ueber Einige Derivate Des Formaldehyds. Ber. Dtsch. Chem. Ges. 1884, 17, 653–659. DOI: 10.1002/cber.188401701174.
  • Tollens, B. Ueber Den Methylen-Harnstoff. Ber. Dtsch. Chem. Ges. 1896, 29, 2751–2752. DOI: 10.1002/cber.18960290372.
  • Goldschmidt, C. Ueber Die Einwirkung Von Formaldehyd Auf Harnstoff. Ber. Dtsch. Chem. Ges. 1896, 29, 2438–2439. DOI: 10.1002/cber.18960290306.
  • John, H. Manufacture of Aldehyde Condensation Product Capable of Technical Utilization. U.S. Patent 834, pp 355. October 19, 1920.
  • Meyer, B. Urea-Formaldehdye Resins; Addison-Wesley Publishing Company Inc.: London, 1979.
  • Kadowaki, H.; Haashimoto, Y. The Condensation Product of Formaldehdye and Urea. Rep. Imp. Ind. Res. Inst. Osaka Jpn. 1926, 7, 2.
  • Kadowaki, H. New Compounds of Urea-Formaldehyde Condensation Products. Bull. Chem. Soc. Jpn. 1936, 11, 248–261. DOI: 10.1246/bcsj.11.248.
  • de Jong, J. I.; de Jonge, J. The Formation and Decomposition of Dimethylolurea. Recl. Trav. Chim. Pays-Bas 2010, 71, 661–667. DOI: 10.1002/recl.19520710705.
  • de Jong, J. I.; de Jonge, J. The Reaction of Urea with Formaldehyde. Recl. Trav. Chim. Pays-Bas 2010, 71, 643–660. DOI: 10.1002/recl.19520710704.
  • de Jong, J. I.; de Jonge, J. The Reaction between Urea and Formaldehyde in Concentrated Solutions. Recl. Trav. Chim. Pays-Bas 2010, 71, 890–898. DOI: 10.1002/recl.19520710907.
  • de Jong, J. I.; de Jonge, J. The Hydrolysis of Methylene Diurea. Recl. Trav. Chim. Pays-Bas 2010, 72, 202–206. DOI: 10.1002/recl.19530720305.
  • de Jong, J. I.; de Jonge, J. Kinetics of the Formation of Methylene Linkages in Solutions of Urea and Formaldehyde. Recl. Trav. Chim. Pays-Bas 1953, 72, 139–1456. DOI: 10.1002/recl.19530720211.
  • de Jong, J. I.; de Jonge, J. The Reaction of Methylene Diurea with Formaldehyde. Recl. Trav. Chim. Pays-Bas 2010, 72, 213–217. DOI: 10.1002/recl.19530720307.
  • de Jong, J. I.; de Jonge, J. Kinetics of the Reaction between Mono‐Methylolurea and Methylene Diurea. Recl. Trav. Chim. Pays-Bas 2010, 72, 207–212. DOI: 10.1002/recl.19530720306.
  • Marvel, C. S.; Elliott, J. R.; Boettner, F. E.; Yuska, H. The Structure of Urea-Formaldehyde Resins 1. J. Am. Chem. Soc. 1946, 68, 1681–1686. DOI: 10.1021/ja01213a001.
  • Nguon, O.; Lagugné-Labarthet, F.; Brandys, F. A.; Li, J.; Gillies, E. R. Microencapsulation by in Situ Polymerization of Amino Resins. Polym. Rev 2018, 58, 326–375. DOI: 10.1080/15583724.2017.1364765.
  • Rammon, R. M.; Johns, W. E.; Magnuson, J.; Dunker, A. K. The Chemical Structure of UF Resins. J. Adhes. 1986, 19, 115–135. DOI: 10.1080/00218468608071217.
  • Nair, B. R.; Francis, D. J. Kinetics and Mechanism of Urea-Formaldehyde Reaction. Polymer (Guildf). 1983, 24, 626–630. DOI: 10.1016/0032-3861(83)90118-0.
  • Steinhof, O.; Kibrik, É. J.; Scherr, G.; Hasse, H. Quantitative and Qualitative 1H, 13C, and 15N NMR Spectroscopic Investigation of the Urea-Formaldehyde Resin Synthesis. Magn. Reson. Chem. 2014, 52, 138–162. DOI: 10.1002/mrc.4044.
  • Chuang, I. S.; Maciel, G. E. 13C CP/MAS NMR Study of the Structural Dependence of Urea-Formaldehyde Resins on Formaldehyde-to-Urea Molar Ratios at Different Urea Concentrations and PH Values. Macromolecules 1992, 25, 3204–3226. DOI: 10.1021/ma00038a029.
  • Pizzi, A. Advanced Wood Adhesives Technology; CRC Press: Boca Raton,  FL, 1994; p 304.
  • Crowe, G. A.; Lynch, C. C. Polarographic Urea–Formaldehyde Kinetic Studies. J. Am. Chem. Soc. 1949, 71, 3731–3733. DOI: 10.1021/ja01179a040.
  • Kircher, R.; Schmitz, N.; Berje, J.; Münnemann, K.; Thiel, W. R.; Burger, J.; Hasse, H. Generalized Chemical Equilibrium Constant of Formaldehyde Oligomerization. Ind. Eng. Chem. Res. 2020, 59, 11431–11440. DOI: 10.1021/acs.iecr.0c00974.
  • Hahnenstein, I.; Hasse, H.; Kreiter, C. G.; Maurer, G. 1H- and 13C-NMR-Spectroscopic Study of Chemical Equilibria in Solutions of Formaldehyde in Water, Deuterium Oxide, and Methanol. Ind. Eng. Chem. Res. 1994, 33, 1022–1029. DOI: 10.1021/ie00028a033.
  • Dunky, M. Urea–Formaldehyde (UF) Adhesive Resins for Wood. Int. J. Adhes. Adhes. 1998, 18, 95–107. DOI: 10.1016/S0143-7496(97)00054-7.
  • Wang, H.; Cao, M.; Li, T.; Yang, L.; Duan, Z.; Zhou, X.; Du, G. Characterization of the Low Molar Ratio Urea-Formaldehyde Resin with 13C NMR and ESI-MS: Negative Effects of the Post-Added Urea on the Urea-Formaldehyde Polymers. Polymers (Basel) 2018, 10, 602. DOI: 10.3390/polym10060602.
  • Ormondroyd, G. A. Adhesives for Wood Composites. In Wood Composites; Elsevier: Amsterdam, Netherlands, 2015; pp 47–66. DOI: 10.1016/B978-1-78242-454-3.00003-2.
  • Frihart, C. R. Handbook of Wood Chemistry and Wood Composites; Rowell, R. M., Ed.; CRC Press: Boca Raton,  FL, 2012. DOI: 10.1201/b12487.
  • Antov, P.; Savov, V.; Krišťák, Ľ.; Réh, R.; Mantanis, G. I. Eco-Friendly, High-Density Fiberboards Bonded with Urea-Formaldehyde and Ammonium Lignosulfonate. Polymers (Basel) 2021, 13, 213–220. DOI: 10.3390/polym13020220.
  • Maskew, R. Applications of Urea‐Formaldehyde Resin Glues. Aircraft Eng.Aerospace Tech. 1941, 13, 171–172. DOI: 10.1108/eb030790.
  • Pizzi, A.; Mittal, K. L. Handbook of Adhesive Technology, 3rd ed.; CRC Press: Boca Raton,  FL, 2018.
  • Collett, B. M. A Review of Surface and Interfacial Adhesion in Wood Science and Related Fields. Wood Sci. Technol. 1972, 6, 1–42. DOI: 10.1007/BF00351806.
  • Wittmann, O. Die Nachträgliche Formaldehydabspaltung Bei Spanplatten. Holz Als Roh-Und. Werkstoff. 1962, 20, 221–224. DOI: 10.1007/BF02616050.
  • Neusser, H.; M. Z. Uber Die Ursachen Und Die Beseitigung Des Formaldehydgeruches Von Holzhaltigen Baustoffen, Insbesondere Von Spanplatten. Holzforsch. Artzverwertung 1968, 20, 101–112.
  • Myers, G. E. Resin Hydrolysis and Mechanisms of Formaldehyde Release from Bonded Wood Products. In Wood Adhesives in 1985: Status and Needs; Forest Products Research Society: Madison, WI, 1986; pp 119–156.
  • Myers, G. E. Formaldehyde Emission from Particleboard and Plywood Paneling: Measurement, Mechanism, and Product Standards. For. Prod. J. 1983, 33, 27–37.
  • Myers, G. E. Effect of Ventilation Rate and Board Loading on Formaldehyde Concentration: A Critical Review of the Literature. For. Prod. J. 1984, 34, 59–68.
  • Myers, G. E. How Mole Ratio of UF Resin Affects Formaldehyde Emission and Other Properties: A Literature Critique. For. Prod. J. 1984, 34, 35–41.
  • Myers, G. E. The Effects of Temperature and Humidity on Formaldehyde Emission from UF-Bonded Boards: A Literature Critique. For. Prod. J. 1985, 35, 20–31.
  • Myers, G. E. Effect of Separate Additions to Furnish or Veneer on Formaldehyde Emission and Other Properties : A Literature Review (1960–1984). For. Prod. J. 1985, 35, 57–62.
  • Myers, G. E. Effects of Post-Manufacture Board Treatments on Formaldehyde Emission : A Literature Review (1960–1984). For. Prod. J. 1986, 36, 41–51.
  • Angelatos, A. S.; Burgar, M. I.; Dunlop, N.; Separovic, F. NMR Structural Elucidation of Amino Resins. J. Appl. Polym. Sci. 2004, 91, 3504–3512. DOI: 10.1002/app.13538.
  • Tohmura, S. I.; Hse, C. Y.; Higuchi, M. Formaldehyde Emission and High-Temperature Stability of Cured Urea-Formaldehyde Resins. J. Wood Sci. 2000, 46, 303–309. DOI: 10.1007/BF00766221.
  • Park, B. D.; Jeong, H.-W. Effects of Acid Hydrolysis on Microstructure of Cured Urea-Formaldehyde Resins Using Atomic Force Microscopy. J. Appl. Polym. Sci. 2011, 122, 3255–3262. DOI: 10.1002/app.34387.
  • Lubis, M. A. R.; Hong, M. K.; Park, B. D. Hydrolytic Removal of Cured Urea–Formaldehyde Resins in Medium-Density Fiberboard for Recycling. J. Wood Chem. Technol. 2018, 38, 1–14. DOI: 10.1080/02773813.2017.1316741.
  • Dutkiewicz, J. Hydrolytic Degradation of Cured Urea–Formaldehyde Resin. J. Appl. Polym. Sci. 1983, 28, 3313–3320. DOI: 10.1002/app.1983.070281101.
  • Park, B. D.; Jeong, H. W. Hydrolytic Stability and Crystallinity of Cured Urea–Formaldehyde Resin Adhesives with Different Formaldehyde/Urea Mole Ratios. Int. J. Adhes. Adhes. 2011, 31, 524–529. DOI: 10.1016/j.ijadhadh.2011.05.001.
  • Braun, D.; Günther, P.; Romeira, S. M. Model Compounds for the Urea‐Formaldehyde Condensation. 1. Methylenediurea. Angew. Makromol. Chem. 1983, 118, 119–132. DOI: 10.1002/apmc.1983.051180109.
  • Ludlam, P. R. Thin-Layer Chromatography of Simple Urea -Formaldehyde -Methanol Reaction Products: Part II. Analyst 1973, 98, 116–121. DOI: 10.1039/an9739800116.
  • Hse, C. Y.; Xia, Z. Y.; Tomita, B. Effects of Reaction PH on Properties and Performance of Urea-Formaldehyde Resins. Holzforschung 1994, 48, 527–532. DOI: 10.1515/hfsg.1994.48.6.527.
  • Que, Z.; Furuno, T.; Katoh, S.; Nishino, Y. Effects of Urea–Formaldehyde Resin Mole Ratio on the Properties of Particleboard. Build. Environ. 2007, 42, 1257–1263. DOI: 10.1016/j.buildenv.2005.11.028.
  • Kim, M. G.; Amos, L. W. Quantitative Carbon-13 NMR Study of Urea-Formaldehyde Resins in Relation to the Formaldehyde Emission Levels. Ind. Eng. Chem. Res. 1990, 29, 208–212. DOI: 10.1021/ie00098a010.
  • Park, B. D. C.; Kang, E.; Yong Park, J. Effects of Formaldehyde to Urea Mole Ratio on Thermal Curing Behavior of Urea–Formaldehyde Resin and Properties of Particleboard. J. Appl. Polym. Sci. 2006, 101, 1787–1792. DOI: 10.1002/app.23538.
  • Park, B. D.; Frihart, C. R.; Yu, Y.; Singh, A. P. Hardness Evaluation of Cured Urea-Formaldehyde Resins with Different Formaldehyde/Urea Mole Ratios Using Nanoindentation Method. Eur. Polym. J. 2013, 49, 3089–3094. DOI: 10.1016/j.eurpolymj.2013.06.013.
  • Park, B. D.; Kim, J. W. Dynamic Mechanical Analysis of Urea–Formaldehyde Resin Adhesives with Different Formaldehyde-to-Urea Molar Ratios. J. Appl. Polym. Sci. 2008, 108, 2045–2051. DOI: 10.1002/app.27595.
  • Pizzi, A.; Lipschitz, L.; Valenzuela, J. Theory and Practice of the Preparation of Low Formaldehyde Emission Uf Adhesives. Holzforschung 1994, 48, 254–261. DOI: 10.1515/hfsg.1994.48.3.254.
  • Christjanson, P.; Siimer, K.; Pehk, T.; Lasn, I. Structural Changes in Urea-Formaldehyde Resins during Storage. Holz. Als. Roh – Und. Werkst. 2002, 60, 379–384. DOI: 10.1007/s00107-002-0326-9.
  • Pratt, T. J.; Johns, W. E.; Rammon, R. M.; Walter, L.; Plagemann, P. A Novel Concept on the Structure of Cured Urea-Formaldehyde Resin. J. Adhes. 1985, 17, 275–295. DOI: 10.1080/00218468508081165.
  • Stuligross, J.; Koutsky, J. A. A Morphological Study of Urea-Formaldehyde Resins. J. Adhes. 1985, 18, 281–299. DOI: 10.1080/00218468508080464.
  • Nuryawan, A.; Singh, A. P.; Zanetti, M.; Park, B. D.; Causin, V. Insights into the Development of Crystallinity in Liquid Urea-Formaldehyde Resins. Int. J. Adhes. Adhes. 2017, 72, 62–69. DOI: 10.1016/j.ijadhadh.2016.10.004.
  • Dunker, A. K.; John, W. E.; Rammon, R.; Farmer, B.; Johns, S. J. Slightly Bizarre Protein Chemistry: Urea-Formaldehyde Resin from a Biochemical Perspective. J. Adhes. 1986, 19, 153–176. DOI: 10.1080/00218468608071219.
  • Despres, A.; Pizzi, A. Colloidal Aggregation of Aminoplastic Polycondensation Resins: Urea–Formaldehyde versus Melamine–Formaldehyde and Melamine–Urea–Formaldehyde Resins. J. Appl. Polym. Sci. 2006, 100, 1406–1412. DOI: 10.1002/app.23230.
  • Ferra, J. M. M.; Mendes, A. M.; Costa, M. R. N.; Carvalho, L. H.; Magalhães, F. D. A Study on the Colloidal Nature of Urea-Formaldehyde Resins and Its Relation with Adhesive Performance. J. Appl. Polym. Sci. 2010, 116, n/a–n/a. DOI: 10.1002/app.31112.
  • Park, B. D.; Jeong, H. W.; Lee, S. M. Morphology and Chemical Elements Detection of Cured Urea-Formaldehyde Resins. J. Appl. Polym. Sci. 2011, 120, 1475–1482. DOI: 10.1002/app.33247.
  • Singh, A. P.; Causin, V.; Nuryawan, A.; Park, B. D. Morphological, Chemical and Crystalline Features of Urea-Formaldehyde Resin Cured in Contact with Wood. Eur. Polym. J. 2014, 56, 185–193. DOI: 10.1016/j.eurpolymj.2014.04.014.
  • Hao, Z.; Guo, Y.; Mansuer, M.; Zhu, J.; Zhu, Z. Role of the Excess Monomer in the Growth of Urea and Formaldehyde Resin Deposit Particles. J. Colloid Interface Sci. 2014, 430, 239–248. DOI: 10.1016/j.jcis.2014.05.044.
  • Singh, A. P.; Nuryawan, A.; Park, B. D.; Lee, K. H. Urea-Formaldehyde Resin Penetration into Pinus Radiata Tracheid Walls Assessed by TEM-EDXS. Holzforschung 2015, 69, 303–306. DOI: 10.1515/hf-2014-0103.
  • Nuryawan, A.; Singh, A. P.; Park, B. D.; Causin, V. Micro-Morphological Features of Cured Urea-Formaldehyde Adhesives Detected by Transmission Electron Microscopy. J. Adhes. 2016, 92, 121–134. DOI: 10.1080/00218464.2014.1003545.
  • Levendis, D.; Pizzi, A.; Ferg, E. The Correlation of Strength and Formaldehyde Emission with the Crystalline/Amorphous Structure of UF Resins. Holzforschung 1992, 46, 263–269. DOI: 10.1515/hfsg.1992.46.3.263.
  • Ferg, E. E.; Pizzi, A.; Levendis, D. C. 13C NMR Analysis Method for Urea–Formaldehyde Resin Strength and Formaldehyde Emission. J. Appl. Polym. Sci. 1993, 50, 907–915. DOI: 10.1002/app.1993.070500519.
  • Park, B. D.; Causin, V. Crystallinity and Domain Size of Cured Urea–Formaldehyde Resin Adhesives with Different Formaldehyde/Urea Mole Ratios. Eur. Polym. J. 2013, 49, 532–537. DOI: 10.1016/j.eurpolymj.2012.10.029.
  • Wibowo, E. S.; Park, B. D. Crystalline Lamellar Structure of Thermosetting Urea–Formaldehyde Resins at a Low Molar Ratio. Macromolecules 2021, 54, 2366–2375. DOI: 10.1021/acs.macromol.1c00073.
  • Li, J.; Zhang, Y. Morphology and Crystallinity of Urea-Formaldehyde Resin Adhesives with Different Molar Ratios. Polymers (Basel) 2021, 13, 673–617. DOI: 10.3390/polym13050673.
  • Liu, M.; Thirumalai, R. V. K. G.; Wu, Y.; Wan, H. Characterization of the Crystalline Regions of Cured Urea Formaldehyde Resin. RSC Adv. 2017, 7, 49536–49541. DOI: 10.1039/C7RA08082D.
  • Drnovšek, N.; Kocen, R.; Gantar, A.; Drobnič-Košorok, M.; Leonardi, A.; Križaj, I.; Rečnik, A.; Novak, S. Size of Silk Fibroin β-Sheet Domains Affected by Ca2. +. J. Mater. Chem. B. 2016, 4, 6597–6608. DOI: 10.1039/c6tb01101b.
  • Atkins, E. D. T.; Hill, M.; Hong, S. K.; Keller, A.; Organ, S. Lamellar Structure and Morphology of Nylon 46 Crystals. A New Chain Folding Mechanism for Nylons. Macromolecules 1992, 25, 917–924. DOI: 10.1021/ma00028a063.
  • Atkins, E. D. T.; Hill, M. J.; Jones, N. A.; Cooper, S. J. Structure and Morphology of Nylon 2 4 Lamellar Crystals: Comparison with Polypeptides and Relationship with Other Nylons. J. Polym. Sci. B Polym. Phys. 1998, 36, 2401–2412. DOI: 10.1002/(SICI)1099-0488(19980930)36:13<2401::AID-POLB15>3.0.CO;2-7.
  • Wibowo, E. S.; Lubis, M. A. R.; Park, B.-D.; Kim, J. S.; Causin, V. Converting Crystalline Thermosetting Urea–Formaldehyde Resins to Amorphous Polymer Using Modified Nanoclay. J. Ind. Eng. Chem. 2020, 87, 78–89. DOI: 10.1016/j.jiec.2020.03.014.
  • Wibowo, E. S.; Park, B. D. Determination of Crystallinity of Thermosetting Urea-Formaldehyde Resins Using Deconvolution Method. Macromol. Res. 2020, 28, 615–624. DOI: 10.1007/s13233-020-8076-2.
  • Shen, X.; Hu, W.; Russell, T. P. Measuring the Degree of Crystallinity in Semicrystalline Regioregular Poly(3-Hexylthiophene). Macromolecules 2016, 49, 4501–4509. DOI: 10.1021/acs.macromol.6b00799.
  • Ma, Y.; Zhou, T.; Su, G.; Li, Y.; Zhang, A. Understanding the Crystallization Behavior of Polyamide 6/Polyamide 66 Alloys from the Perspective of Hydrogen Bonds: Projection Moving-Window 2D Correlation FTIR Spectroscopy and the Enthalpy. RSC Adv. 2016, 6, 87405–87415. DOI: 10.1039/C6RA09611E.
  • Skrovanek, D. J.; Howe, S. E.; Painter, P. C.; Coleman, M. M. Hydrogen Bonding in Polymers: Infrared Temperature Studies of an Amorphous Polyamide. Macromolecules 1985, 18, 1676–1683. DOI: 10.1021/ma00151a006.
  • Joseph, J.; Jemmis, E. D. Red-, Blue-, or No-Shift in Hydrogen Bonds: A Unified Explanation. J. Am. Chem. Soc. 2007, 129, 4620–4632. DOI: 10.1021/ja067545z.
  • Myers, G. E. Investigation of Urea–Formaldehyde Polymer Cure by Infrared. J. Appl. Polym. Sci. 1981, 26, 747–764. DOI: 10.1002/app.1981.070260301.
  • Wibowo, E. S.; Park, B. D.; Causin, V. Hydrogen-Bond-Induced Crystallization in Low-Molar-Ratio Urea–Formaldehyde Resins during Synthesis. Ind. Eng. Chem. Res. 2020, 59, 13095–13104. DOI: 10.1021/acs.iecr.0c02268.
  • Zarycz, M. N. C.; Fonseca Guerra, C. NMR 1H-Shielding Constants of Hydrogen-Bond Donor Reflect Manifestation of the Pauli Principle. J. Phys. Chem. Lett. 2018, 9, 3720–3724. DOI: 10.1021/acs.jpclett.8b01502.
  • Gowda, C. M.; Vasconcelos, F.; Schwartz, E.; van Eck, E. R. H.; Marsman, M.; Cornelissen, J. J. L. M.; Rowan, A. E.; de Wijs, G. A.; Kentgens, A. P. M. Hydrogen Bonding and Chemical Shift Assignments in Carbazole Functionalized Isocyanides from Solid-State NMR and First-Principles Calculations. Phys. Chem. Chem. Phys. 2011, 13, 13082–13095. DOI: 10.1039/c1cp20304e.
  • Yamauchi, K.; Kuroki, S.; Fujii, K.; Ando, I. The Amide Proton NMR Chemical Shift and Hydrogen-Bonded Structure of Peptides and Polypeptides in the Solid State as Studied by High-Frequency Solid-State1H NMR. Chem. Phys. Lett. 2000, 324, 435–439. DOI: 10.1016/S0009-2614(00)00543-1.
  • Yao, L.; Grishaev, A.; Cornilescu, G.; Bax, A. The Impact of Hydrogen Bonding on Amide 1H Chemical Shift Anisotropy Studied by Cross-correlated Relaxation and Liquid Crystal NMR Spectroscopy. J. Am. Chem. Soc. 2010, 132, 10866–10875. DOI: 10.1021/ja103629e.
  • Taylor, R.; Pragnell, R. J.; McLaren, J. V.; Snape, C. E. Evaluation of NMR Spectroscopy for the Quantitative Characterization of Urea-Formaldehyde Resins. Talanta 1982, 29, 489–494. DOI: 10.1016/0039-9140(82)80200-2.
  • Park, B. D.; Kim, Y. S.; Singh, A. P.; Lim, K. P. Reactivity, Chemical Structure, and Molecular Mobility of Urea-Formaldehyde Adhesives Synthesized under Different Conditions Using FTIR and Solid-State 13C CP/MAS NMR Spectroscopy. J. Appl. Polym. Sci. 2003, 88, 2677–2687. DOI: 10.1002/app.12115.
  • Gonçalves, C.; Pereira, J.; Paiva, N.; Ferra, J.; Martins, J.; Magalhães, F.; Barros-Timmons, A.; Carvalho, L. Study of the Synthesis Parameters of a Urea-Formaldehyde Resin Synthesized According to Alkaline-Acid Process. Int. J. Adhes. Adhes. 2020, 102, 102646. DOI: 10.1016/j.ijadhadh.2020.102646.
  • Ferra, J. M. M.; Henriques, A.; Mendes, A. M.; Costa, M. R. N.; Carvalho, L. H.; Magalhães, F. D. Comparison of UF Synthesis by Alkaline-Acid and Strongly Acid Processes. J. Appl. Polym. Sci. 2012, 123, 1764–1772. DOI: 10.1002/app.34642.
  • Lubis, M. A. R.; Park, B. D. Enhancing the Performance of Low Molar Ratio Urea–Formaldehyde Resin Adhesives via in-Situ Modification with Intercalated Nanoclay. J. Adhes. 2020, 00, 1–20. DOI: 10.1080/00218464.2020.1753515.
  • Wibowo, E. S.; Park, B. D. Cure Kinetics of Low-Molar-Ratio Urea-Formaldehyde Resins Reinforced with Modified Nanoclay Using Different Kinetic Analysis Methods. Thermochim. Acta 2020, 686, 178552. DOI: 10.1016/j.tca.2020.178552.
  • Yadav, S. M.; Lubis, M. A. R.; Wibowo, E. S.; Park, B. D. Effects of Nanoclay Modification with Transition Metal Ion on the Performance of Urea–Formaldehyde Resin Adhesives. Polym. Bull. 2021, 78, 2375–2388. DOI: 10.1007/s00289-020-03214-3.
  • Alexandre, M.; Dubois, P. Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng. R Rep. 2000, 28, 1–63. DOI: 10.1016/S0927-796X(00)00012-7.
  • Park, J. H.; Jana, S. C. Mechanism of Exfoliation of Nanoclay Particles in Epoxy-Clay Nanocomposites. Macromolecules 2003, 36, 2758–2768. DOI: 10.1021/ma021509c.
  • Vijayan, P. P.; Puglia, D.; Kenny, J. M.; Thomas, S. Effect of Organically Modified Nanoclay on the Miscibility, Rheology, Morphology and Properties of Epoxy/Carboxyl-Terminated (Butadiene-Co. Acrylonitrile) Blend. Soft Matter 2013, 9, 2899–2911. DOI: 10.1039/c2sm27386a.
  • Pospíšil, M.; Čapková, P.; Weiss, Z.; Maláč, Z.; Šimoník, J. Intercalation of Octadecylamine into Montmorillonite: Molecular Simulations and XRD Analysis. J Colloid Interface Sci. 2002, 245, 126–132. DOI: 10.1006/jcis.2001.7956.
  • Prakalathan, K.; Mohanty, S.; Nayak, S. K. Influence of Transition Metal Ion-Adsorbed Montmorillonite on Thermal Stability, Isothermal Crystallization Kinetics and Mechanical Performance of Polylactic Acid Nanocomposites. J. Thermoplast. Compos. Mater 2014, 27, 1631–1650. DOI: 10.1177/0892705712475004.
  • Nawani, P.; Gelfer, M. Y.; Hsiao, B. S.; Frenkel, A.; Gilman, J. W.; Khalid, S. Surface Modification of Nanoclays by Catalytically Active Transition Metal Ions. Langmuir 2007, 23, 9808–9815. DOI: 10.1021/la700908m.
  • Vico, L. I. Acid-Base Behaviour and Cu2 + and Zn2 + Complexation Properties of the Sepiolite/Water Interface. Chem. Geol. 2003, 198, 213–222. DOI: 10.1016/S0009-2541(03)00002-0.
  • Sun, Q. N.; Hse, C. Y.; Shupe, T. F. Effect of Different Catalysts on Urea-Formaldehyde Resin Synthesis. J. Appl. Polym. Sci. 2014, 131, n/a–7. DOI: 10.1002/app.40644.
  • Salari, A.; Tabarsa, T.; Khazaeian, A.; Saraeian, A. Effect of Nanoclay on Some Applied Properties of Oriented Strand Board (OSB) Made from Underutilized Low Quality Paulownia (Paulownia Fortunei) Wood. J. Wood Sci. 2012, 58, 513–524. DOI: 10.1007/s10086-012-1278-2.
  • Cademartori, P. H. G. d.; Artner, M. A.; Alves de Freitas, R.; Magalhães, W. L. E. Alumina Nanoparticles as Formaldehyde Scavenger for Urea-Formaldehyde Resin: Rheological and in-Situ Cure Performance. Compos. Part B Eng 2019, 176, 107281. DOI: 10.1016/j.compositesb.2019.107281.
  • Jeong, B.; Park, B.-D.; Causin, V. Influence of Synthesis Method and Melamine Content of Urea-Melamine-Formaldehyde Resins to Their Features in Cohesion, Interphase, and Adhesion Performance. J. Ind. Eng. Chem. 2019, 79, 87–96. DOI: 10.1016/j.jiec.2019.05.017.
  • Wibowo, E. S.; Park, B. D. Enhancing Adhesion of Thermosetting Urea-Formaldehyde Resins by Preventing the Formation of H-Bonds with Multi-Reactive Melamine. J. Adhes. 2020, 00, 1–29. DOI: 10.1080/00218464.2020.1830069.
  • Essawy, H. A.; Moustafa, A.-A. B.; Elsayed, N. H. Improving the Performance of Urea-Formaldehyde Wood Adhesive System Using Dendritic Poly(Amidoamine)s and Their Corresponding Half Generations. J. Appl. Polym. Sci. 2009, 114, 1348–1355. DOI: 10.1002/app.30696.
  • Essawy, H. A.; Moustafa, A.-A. B.; Elsayed, N. H. Enhancing the Properties of Urea Formaldehyde Wood Adhesive System Using Different Generations of Core-Shell Modifiers Based on Hydroxyl-Terminated Dendritic Poly(Amidoamine)S. J. Appl. Polym. Sci. 2010, 115, 370–375. DOI: 10.1002/app.30572.
  • Zhang, J.; Amirou, S.; Essawy, H. A.; Pizzi, A.; Gao, Q.; Li, J. Hyperbranched Poly(Amidoamine)s as Additives for Urea Formaldehyde Resin and Their Application in Particleboard Fabrication. BioResources 2014, 10, 782–792. DOI: 10.15376/biores.10.1.782-792.
  • Jiang, S.; Hu, M.; Du, G.; Duan, Z.; Zhou, X.; Li, T. Highly Branched Polyurea-Enhanced Urea-Formaldehyde Resin. ACS Appl. Polym. Mater. 2021, 3, 1157–1170. DOI: 10.1021/acsapm.0c01362.
  • Wibowo, E. S.; Adly, M.; Lubis, R.; Park, B. D. In-Situ Modification of Low Molar Ratio Urea – Formaldehyde Resins with Cellulose Nanofibrils for Plywood. J. Adhes. Sci. Technol. 2021, 0, 1–14. DOI: 10.1080/01694243.2021.1890370.
  • Park, S. P. B. Crystallinity of Low Molar Ratio Urea-Formaldehyde Resins Modified with Cellulose Nanomaterials. J. Korean Wood Sci. Technol. 2021, 49, 0–2. DOI: 10.5658/WOOD.2021.49.2.169..
  • Artner, M. A.; de Cademartori, P. H. G.; Avelino, F.; Lomonaco, D.; Magalhães, W. L. E. A Novel Design for Nanocellulose Reinforced Urea–Formaldehyde Resin: A Breakthrough in Amino Resin Synthesis and Biocomposite Manufacturing. Cellulose 2021, 28, 3435–3450. DOI: 10.1007/s10570-021-03739-4.
  • Veigel, S.; Müller, U.; Keckes, J.; Obersriebnig, M.; Gindl-Altmutter, W. Cellulose Nanofibrils as Filler for Adhesives: Effect on Specific Fracture Energy of Solid Wood-Adhesive Bonds. Cellulose (Lond). 2011, 18, 1227–1237. DOI: 10.1007/s10570-011-9576-1.
  • Mahrdt, E.; Pinkl, S.; Schmidberger, C.; van Herwijnen, H. W. G.; Veigel, S.; Gindl-Altmutter, W. Effect of Addition of Microfibrillated Cellulose to Urea-Formaldehyde on Selected Adhesive Characteristics and Distribution in Particle Board. Cellulose 2016, 23, 571–580. DOI: 10.1007/s10570-015-0818-5.
  • Khonakdar Dazmiri, M.; Valizadeh Kiamahalleh, M.; Dorieh, A.; Pizzi, A. Effect of the Initial F/U Molar Ratio in Urea-Formaldehyde Resins Synthesis and Its Influence on the Performance of Medium Density Fiberboard Bonded with Them. Int. J. Adhes. Adhes. 2019, 95, 102440. DOI: 10.1016/j.ijadhadh.2019.102440.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.