996
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Organic Polymer-Constructed Chiral Particles: Preparation and Chiral Applications

&
Pages 826-859 | Received 27 Aug 2021, Accepted 11 Jan 2022, Published online: 31 Jan 2022

References

  • Pasteur, L. Recherches Sur Les Relations Qui Peuvent Exister Entre la Forme Crystalline, la Composition Chimique et le Sens de la Polarisation Rotatoire. Ann. Chim. Phys. 1848, 24, 442–459.
  • Watson, J. D.; Crick, F. H. C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737–738. DOI: 10.1038/171737a0.
  • Pauling, L.; Corey, R. B.; Branson, H. R. The Structure of Proteins; Two Hydrogen-Bonded Helical Configurations of the Polypeptide Chain . Proc. Natl. Acad. Sci. U S A. 1951, 37, 205–211. DOI: 10.1073/pnas.37.4.205.
  • Peluso, P.; Mamane, V.; Dallocchio, R.; Dessì, A.; Cossu, S. Noncovalent Interactions in High-Performance Liquid Chromatography Enantioseparations on Polysaccharide-Based Chiral Selectors. J. Chromatogr. A. 2020, 1623, 461202. DOI: 10.1016/j.chroma.2020.461202.
  • Eriksson, T.; Björkman, S.; Höglund, P. Clinical Pharmacology of Thalidomide. Eur. J. Clin. Pharmacol. 2001, 57, 365–376. DOI: 10.1007/s002280100320.
  • Ni, H.; Chan, W.-L.; Lu, Y. Phosphine-Catalyzed Asymmetric Organic Reactions. Chem. Rev. 2018, 118, 9344–9411. DOI: 10.1021/acs.chemrev.8b00261.
  • Zhang, X.; Yin, J.; Yoon, J. Recent Advances in Development of Chiral Fluorescent and Colorimetric Sensors. Chem. Rev. 2014, 114, 4918–4959. DOI: 10.1021/cr400568b.
  • Shen, J.; Okamoto, Y. Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers. Chem. Rev. 2016, 116, 1094–1138. DOI: 10.1021/acs.chemrev.5b00317.
  • Song, C.; Liu, X.; Liu, D.; Ren, C.; Yang, W.; Deng, J. Optically Active Particles of Chiral Polymers. Macromol. Rapid Commun. 2013, 34, 1426–1445. DOI: 10.1002/marc.201300498.
  • Li, W.; Huang, H.; Li, Y.; Deng, J. Particles of Polyacetylene and Its Derivatives: Preparation and Applications. Polym. Chem. 2014, 5, 1107–1118. DOI: 10.1039/C3PY01031G.
  • Zhao, B.; Deng, J. Emulsion Polymerization of Acetylenics for Constructing Optically Active Helical Polymer Nanoparticles. Polym. Rev. 2017, 57, 119–137. DOI: 10.1080/15583724.2015.1136642.
  • Zhang, Y.; Huang, H.; Zhao, B.; Deng, J. Preparation and Applications of Chiral Polymeric Particles. Isr. J. Chem. 2018, 58, 1286–1298. DOI: 10.1002/ijch.201800023.
  • Noguez, C.; Garzón, I. L. Optically Active Metal Nanoparticles. Chem. Soc. Rev. 2009, 38, 757–771. DOI: 10.1039/b800404h.
  • Ma, W.; Xu, L.; de Moura, A. F.; Wu, X.; Kuang, H.; Xu, C.; Kotov, N. A. Chiral Inorganic Nanostructures. Chem. Rev. 2017, 117, 8041–8093. DOI: 10.1021/acs.chemrev.6b00755.
  • Zhao, B.; Deng, J. Dispersion Polymerization of Substituted Acetylenes in the Presence of Chiral Source for Preparing Monodispersed Chiral Nanoparticles. Macromol. Rapid Commun. 2018, 39, 1700759. DOI: 10.1002/marc.201700759.
  • Li, G.; Dai, X.; Min, Y.; Yu, C.; Ikai, T.; Zhang, L.; Shen, J.; Okamoto, Y. Cellulose Phenylcarbamate-Derived Hybrid Bead-Type Chiral Packing Materials for Efficient Chiral Recognition. Cellulose 2021, 28, 347–358. DOI: 10.1007/s10570-020-03514-x.
  • Zhong, H.; Zhao, B.; Deng, J. Chiral Magnetic Hybrid Materials Constructed from Macromolecules and Their Chiral Applications. Nanoscale 2021, 13, 11765–11780. DOI: 10.1039/D1NR01939B.
  • Yuan, L.; Zhang, F.; Qi, X.; Yang, Y.; Yan, C.; Jiang, J.; Deng, J. Chiral Polymer Modified Nanoparticles Selectively Induce Autophagy of Cancer Cells for Tumor Ablation. J. Nanobiotechnol. 2018, 16, 55. DOI: 10.1186/s12951-018-0383-9.
  • Li, J.; Deng, J.; Li, W.; Pan, K.; Deng, J. Graphene Oxide (GO) as Stabilizer for Preparing Chirally Helical Polyacetylene/GO Hybrid Microspheres via Suspension Polymerization. Macromol. Rapid Commun. 2017, 38, 1700452. DOI: 10.1002/marc.201700452.
  • Shang, J.; Mei, S.; Zhao, D.; Deng, J. Optically Active Hybrid Particles Constructed by Chiral Helical Substituted Polyacetylene and POSS. J. Appl. Polym. Sci. 2020, 137, 49167. DOI: 10.1002/app.49167.
  • Mutalikdesai, A.; Nassir, M.; Saady, A.; Hassner, A.; Gedanken, A. Sonochemically Modified Ovalbumin Enhances Enantioenrichment of Some Amino Acids. Ultrason. Sonochem. 2019, 58, 104603. DOI: 10.1016/j.ultsonch.2019.05.020.
  • Mutalikdesai, A.; Pagidi, S.; Hassner, A.; Gedanken, A. Microspheres of Biomolecules/Macromolecules for Enantioseparation Applications. Eur. Polym. J. 2021, 142, 110145. DOI: 10.1016/j.eurpolymj.2020.110145.
  • Chankvetadze, B. Recent Trends in Preparation, Investigation and Application of Polysaccharide-Based Chiral Stationary Phases for Separation of Enantiomers in High-Performance Liquid Chromatography. TrAC Trends Anal. Chem. 2020, 122, 115709. DOI: 10.1016/j.trac.2019.115709.
  • Green, M. M.; Park, J.-W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger, R. L. B.; Selinger, J. V. The Macromolecular Route to Chiral Amplification. Angew. Chem. Int. Ed. 1999, 38, 3138–3154. DOI: 10.1002/(sici)1521-3773(19991102)38:21 < 3138::aid-anie3138 > 3.0.co;2-c.
  • Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem. Rev. 2016, 116, 13752–13990. DOI: 10.1021/acs.chemrev.6b00354.
  • Li, G. L.; Möhwald, H.; Shchukin, D. G. Precipitation Polymerization for Fabrication of Complex Core-Shell Hybrid Particles and Hollow Structures. Chem. Soc. Rev. 2013, 42, 3628–3646. DOI: 10.1039/C3CS35517A.
  • Zhang, D.; Song, C.; Deng, J.; Yang, W. Chiral Microspheres Consisting Purely of Optically Active Helical Substituted Polyacetylene: The First Preparation via Precipitation Polymerization and Application in Enantioselective Crystallization. Macromolecules 2012, 45, 7329–7338. DOI: 10.1021/ma301250u.
  • Chen, H.; Li, L.; Liu, D.; Huang, H.; Deng, J.; Yang, W. Optically Active Helical Polyacetylene/Fe3O4 Composite Microspheres: Prepared by Precipitation Polymerization and Used for Enantioselective Crystallization. RSC Adv. 2014, 4, 63611–63619. DOI: 10.1039/C4RA12267D.
  • Huang, H.; Yang, W.; Deng, J. Chiral, Fluorescent Microparticles Constructed by Optically Active Helical Substituted Polyacetylene: Preparation and Enantioselective Recognition Ability. RSC Adv. 2015, 5, 26236–26245. DOI: 10.1039/C4RA16466K.
  • Huang, H.; Yuan, Y.; Deng, J. Helix-Sense-Selective Precipitation Polymerization of Achiral Monomer for Preparing Optically Active Helical Polymer Particles. Macromolecules 2015, 48, 3406–3413. DOI: 10.1021/acs.macromol.5b00811.
  • Huang, H.; Wang, H.; Wu, Y.; Shi, Y.; Deng, J. Chiral, Crosslinked, and Micron-Sized Spheres of Substituted Polyacetylene Prepared by Precipitation Polymerization. Polymer 2018, 139, 76–85. DOI: 10.1016/j.polymer.2018.02.012.
  • Xin, Y.; Yuan, J. Schiff’s Base as a Stimuli-Responsive Linker in Polymer Chemistry. Polym. Chem. 2012, 3, 3045–3055. DOI: 10.1039/c2py20290e.
  • Zhao, D.; Yu, H.; Mei, S.; Pan, K.; Deng, J. Optically Active Microspheres Containing Schiff Base: Preparation and Enantio-Differentiating Release toward Drug Citronellal. Ind. Eng. Chem. Res. 2019, 58, 1105–1113. DOI: 10.1021/acs.iecr.8b05307.
  • Xu, A.; Masuda, T.; Zhang, A. Stimuli-Responsive Polyacetylenes and Dendronized Poly(Phenylacetylene)s. Polym. Rev. 2017, 57, 138–158. DOI: 10.1080/15583724.2016.1169547.
  • Cao, Y.; Ren, L.; Zhang, Y.; Lu, X.; Zhang, X.; Yan, J.; Li, W.; Masuda, T.; Zhang, A. Remarkable Effects of Anions on the Chirality of Thermoresponsive Helical Dendronized Poly(Phenylacetylene)s. Macromolecules 2021, 54, 7621–7631. DOI: 10.1021/acs.macromol.1c00917.
  • Zhao, Y.; Zhang, X.; Li, W.; Zhang, A. Stimuli-Responsive Poly(Phenyl Acetylene) Microparticles with Tunable Chirality. Eur. Polym. J. 2019, 118, 275–279. DOI: 10.1016/j.eurpolymj.2019.05.054.
  • Wang, S.; Feng, X.; Zhang, J.; Yu, P.; Guo, Z.; Li, Z.; Wan, X. Helical Conformations of Poly(3,5-Disubstituted Phenylacetylene)s Tuned by Pendant Structure and Solvent. Macromolecules 2017, 50, 3489–3499. DOI: 10.1021/acs.macromol.7b00615.
  • Gu, Y.; Liu, L.; Wang, Y.; Zhang, C.; Dong, H. Helical Chirality Inversion of Poly(Biphenylacetylene) with Hydroxyl Groups Induced by a Single Enantiomer and Memory of the Helices. Macromolecules 2020, 53, 10734–10743. DOI: 10.1021/acs.macromol.0c02325.
  • Ye, Q.; Zheng, F.; Zhang, E.; Bisoyi, H. H.; Zheng, S.; Zhu, D.; Lu, Q.; Zhang, H.; Li, Q. Solvent Polarity Driven Helicity Inversion and Circularly Polarized Luminescence in Chiral Aggregation Induced Emission Fluorophores. Chem. Sci. 2020, 11, 9989–9993. DOI: 10.1039/d0sc04179c.
  • Zhang, L.; Wang, H.-X.; Li, S.; Liu, M. Supramolecular Chiroptical Switches. Chem. Soc. Rev. 2020, 49, 9095–9120. DOI: 10.1039/d0cs00191k.
  • Lv, Z.; Chen, Z.; Shao, K.; Qing, G.; Sun, T. Stimuli-Directed Helical Chirality Inversion and Bio-Applications. Polymers 2016, 8, 310. DOI: 10.3390/polym8080310.
  • Alzubi, M.; Arias, S.; Rodríguez, R.; Quiñoá, E.; Riguera, R.; Freire, F. Chiral Conflict as a Method to Create Stimuli-Responsive Materials Based on Dynamic Helical Polymers. Angew. Chem. Int. Ed. Engl. 2019, 58, 13365–13369. DOI: 10.1002/anie.201907069.
  • Guan, X.; Wang, S.; Shi, G.; Zhang, J.; Wan, X. Thermoswitching of Helical Inversion of Dynamic Polyphenylacetylenes through cis-trans Isomerization of Amide Pendants. Macromolecules 2021, 54, 4592–4600. DOI: 10.1021/acs.macromol.1c00538.
  • Kousar, A.; Liu, J.; Mehwish, N.; Wang, F.; Dang-I, A. Y.; Feng, C. pH-Regulated Supramolecular Chirality of Phenylalanine-Based Hydrogels. Mater. Today Chem. 2019, 11, 217–224. DOI: 10.1016/j.mtchem.2018.11.005.
  • Jin, Y.-J.; Kwak, G. Properties, Functions, Chemical Transformation, Nano-, and Hybrid Materials of Poly(Diphenylacetylene)s toward Sensor and Actuator Applications. Polym. Rev. 2017, 57, 175–199. DOI: 10.1080/15583724.2015.1125919.
  • Wang, X.; Sun, J. Z.; Tang, B. Z. Poly(Disubstituted Acetylene)s: Advances in Polymer Preparation and Materials Application. Prog. Polym. Sci. 2018, 79, 98–120. DOI: 10.1016/j.progpolymsci.2017.11.004.
  • Zhang, Y.; Wu, Y.; Xu, R.; Deng, J. Chiral Helical Disubstituted Polyacetylenes Form Optically Active Particles through Precipitation Polymerization. Polym. Chem. 2019, 10, 2290–2297. DOI: 10.1039/C9PY00248K.
  • Li, Z.; Tan, B. H.; Lin, T.; He, C. Recent Advances in Stereocomplexation of Enantiomeric PLA-Based Copolymers and Applications. Prog. Polym. Sci. 2016, 62, 22–72. DOI: 10.1016/j.progpolymsci.2016.05.003.
  • Wen, T.; Wang, H.-F.; Li, M.-C.; Ho, R.-M. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers. Acc. Chem. Res. 2017, 50, 1011–1021. DOI: 10.1021/acs.accounts.7b00025.
  • Gao, Q.; Duan, L.; Feng, X.; Xu, W. Superiority of Poly(L-Lactic Acid) Microspheres as Dermal Fillers. Chin. Chem. Lett. 2021, 32, 577–582. DOI: 10.1016/j.cclet.2020.03.071.
  • Yong, X.; Hu, Q.; Zhou, E.; Deng, J.; Wu, Y. Polylactide-Based Chiral Porous Monolithic Materials Prepared Using the High Internal Phase Emulsion Template Method for Enantioselective Release. ACS Biomater. Sci. Eng. 2019, 5, 5072–5081. DOI: 10.1021/acsbiomaterials.9b01276.
  • Yang, B.; Raza, S.; Li, S.; Deng, J. Ring Opening Precipitation Polymerization for Preparing Polylactide Particles with Tunable Size and Porous Structure and Their Application as Chiral Material. Polymer 2017, 127, 214–219. DOI: 10.1016/j.polymer.2017.09.013.
  • Yang, B.; Deng, J. Chiral PLLA Particles with Tunable Morphology and Lamellar Structure for Enantioselective Crystallization. J. Mater. Sci. 2018, 53, 11932–11941. DOI: 10.1007/s10853-018-2448-4.
  • Abuaf, M.; Mastai, Y. Synthesis of Multi Amino Acid Chiral Polymeric Microparticles for Enantioselective Chemistry. Macromol. Chem. Phys. 2020, 221, 2000328. DOI: 10.1002/macp.202000328.
  • Debnath, M. K.; Oyama, W.; Ono, Y.; Sugimoto, T.; Watanabe, R.; Haraguchi, N. Synthesis of Polymer Microsphere-Supported Chiral Pyrrolidine Catalysts by Precipitation Polymerization and Their Application to Asymmetric Michael Addition Reactions. J. Polym. Sci. 2021, 59, 1072–1083. DOI: 10.1002/pol.20210128.
  • Zhao, B.; Deng, J. Micelle-Provided Microenvironment Facilitating the Formation of Single-Handed Helical Polymer-Based Nanoparticles. RSC Adv. 2016, 6, 59066–59072. DOI: 10.1039/C6RA10610B.
  • Zhang, Y.; Deng, J.; Pan, K. Chiral Helical Polymer Nanomaterials with Tunable Morphology: Prepared with Chiral Solvent to Induce Helix-Sense-Selective Precipitation Polymerization. Macromolecules 2018, 51, 8878–8886. DOI: 10.1021/acs.macromol.8b02008.
  • Chern, C. S. Emulsion Polymerization Mechanisms and Kinetics. Prog. Polym. Sci 2006, 31, 443–486. DOI: 10.1016/j.progpolymsci.2006.02.001.
  • Lovell, P. A.; Schork, F. J. Fundamentals of Emulsion Polymerization. Biomacromolecules 2020, 21, 4396–4441. DOI: 10.1021/acs.biomac.0c00769.
  • Czajka, A.; Armes, S. P. Time-Resolved Small-Angle X-ray Scattering Studies during Aqueous Emulsion Polymerization. J. Am. Chem. Soc. 2021, 143, 1474–1484. DOI: 10.1021/jacs.0c11183.
  • O'Donnell, J. M. Reversible Addition-Fragmentation Chain Transfer Polymerization in Microemulsion. Chem. Soc. Rev. 2012, 41, 3061–3076. DOI: 10.1039/C2CS15275D.
  • Antonietti, M.; Landfester, K. Polyreactions in Miniemulsions. Prog. Polym. Sci. 2002, 27, 689–757. DOI: 10.1016/S0079-6700(01)00051-X.
  • Zhang, Y.; Pan, X.; Zhu, J. Synthesis of Selenium-Containing Polystyrene Microspheres and Using as Catalyst for Oxidation of Acrolein. Polymers 2021, 13, 1632. DOI: 10.3390/polym13101632.
  • Wang, N.; Teng, H.; Yang, F.; You, J.; Zhang, J.; Wang, D. Synthesis of K-Carrageenan Flame-Retardant Microspheres and Its Application for Waterborne Epoxy Resin with Functionalized Graphene. Polymers 2019, 11, 1708. DOI: 10.3390/polym11101708.
  • Deng, J.; Chen, B.; Luo, X.; Yang, W. Synthesis of Nano-Latex Particles of Optically Active Helical Substituted Polyacetylenes via Catalytic Microemulsion Polymerization in Aqueous Systems. Macromolecules 2009, 42, 933–938. DOI: 10.1021/ma8026468.
  • Lin, J.; Huang, H.; Wang, M.; Deng, J. Optically Active Hollow Nanoparticles Constructed by Chirally Helical Substituted Polyacetylene. Polym. Chem. 2016, 7, 1675–1681. DOI: 10.1039/C5PY01945A.
  • Preiss, L. C.; Werber, L.; Fischer, V.; Hanif, S.; Landfester, K.; Mastai, Y.; Muñoz-Espí, R. Amino-Acid-Based Chiral Nanoparticles for Enantioselective Crystallization. Adv. Mater. 2015, 27, 2728–2732. DOI: 10.1002/adma.201405531.
  • Preiss, L. C.; Wagner, M.; Mastai, Y.; Landfester, K.; Muñoz-Espí, R. Amino-Acid-Based Polymerizable Surfactants for the Synthesis of Chiral Nanoparticles. Macromol. Rapid Commun. 2016, 37, 1421–1426. DOI: 10.1002/marc.201600210.
  • Gong, Z.; Hueckel, T.; Yi, G.-R.; Sacanna, S. Patchy Particles Made by Colloidal Fusion. Nature 2017, 550, 234–238. DOI: 10.1038/nature23901.
  • Yu, B.; Cong, H.; Peng, Q.; Gu, C.; Tang, Q.; Xu, X.; Tian, C.; Zhai, F. Current Status and Future Developments in Preparation and Application of Nonspherical Polymer Particles. Adv. Colloid Interface Sci. 2018, 256, 126–151. DOI: 10.1016/j.cis.2018.04.010.
  • Zou, H.; Zhai, S. Synthetic Strategies for Raspberry-like Polymer Composite Particles. Polym. Chem. 2020, 11, 3370–3392. DOI: 10.1039/D0PY00394H.
  • Sickinger, A.; Mecking, S. Origin of the Anisotropy and Structure of Ellipsoidal Poly(Fluorene) Nanoparticles. Macromolecules 2021, 54, 5267–5277. DOI: 10.1021/acs.macromol.1c00597.
  • Yu, H.; Pan, K.; Deng, J. Cellulose Concurrently Induces Predominantly One-Handed Helicity in Helical Polymers and Controls the Shape of Optically Active Particles Thereof. Macromolecules 2018, 51, 5656–5664. DOI: 10.1021/acs.macromol.8b01282.
  • Li, P.; Pan, K.; Deng, J. Nonspherical Chiral Helical Polymer Particles with Programmable Morphology Prepared by Electrospraying. Nanoscale 2019, 11, 23197–23205. DOI: 10.1039/c9nr07816a.
  • Siriwardane, D. A.; Kulikov, O.; Reuther, J. F.; Novak, B. M. Rigid, Helical Arm Stars through Living Nickel Polymerization of Carbodiimides. Macromolecules 2017, 50, 832–840. DOI: 10.1021/acs.macromol.6b02456.
  • Walther, A.; Müller, A. H. E. Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. 2013, 113, 5194–5261. DOI: 10.1021/cr300089t.
  • Hu, J.; Zhou, S.; Sun, Y.; Fang, X.; Wu, L. Fabrication, Properties and Applications of Janus Particles. Chem. Soc. Rev. 2012, 41, 4356–4378. DOI: 10.1039/c2cs35032g.
  • Zhang, X.; Fu, Q.; Duan, H.; Song, J.; Yang, H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS Nano. 2021, 15, 6147–6191. DOI: 10.1021/acsnano.1c01146.
  • Zhang, Y.; Kang, L.; Huang, H.; Deng, J. Optically Active Janus Particles Constructed by Chiral Helical Polymers through Emulsion Polymerization Combined with Solvent Evaporation-Induced Phase Separation. ACS Appl. Mater. Interfaces 2020, 12, 6319–6327. DOI: 10.1021/acsami.9b21222.
  • Kawaguchi, S.; Ito, K. Dispersion Polymerization. Adv. Polym. Sci. 2005, 175, 299–328. DOI: 10.1007/b100118.
  • Wang, X.; Shen, L.; An, Z. Dispersion Polymerization in Environmentally Benign Solvents via Reversible Deactivation Radical Polymerization. Prog. Polym. Sci. 2018, 83, 1–27. DOI: 10.1016/j.progpolymsci.2018.05.003.
  • Cheng, X.; Miao, T.; Ma, H.; Yin, L.; Zhang, W.; Zhang, Z.; Zhu, X. The Construction of Photoresponsive Polymer Particles with Supramolecular Helicity from Achiral Monomers by Helix-Sense-Selective Polymerization. Polym. Chem. 2020, 11, 2089–2097. DOI: 10.1039/C9PY01868A.
  • Brooks, B. Suspension Polymerization Processes. Chem. Eng. Technol. 2010, 33, 1737–1744. DOI: 10.1002/ceat.201000210.
  • Chaudhary, V.; Sharma, S. Suspension Polymerization Technique: Parameters Affecting Polymer Properties and Application in Oxidation Reactions. J. Polym. Res. 2019, 26, 102. DOI: 10.1007/s10965-019-1767-8.
  • Liang, J.; Yang, B.; Deng, J. Polylactide-Based Chiral Particles with Enantio-Differentiating Release Ability. Chem. Eng. J. 2018, 344, 262–269. DOI: 10.1016/j.cej.2018.03.076.
  • Liang, J.; Deng, J. Chiral Particles Consisting of Helical Polylactide and Helical Substituted Polyacetylene: Preparation and Synergistic Effects in Enantio-Differentiating Release. Macromolecules 2018, 51, 4003–4011. DOI: 10.1021/acs.macromol.8b00580.
  • Gonçalves, D. P. N.; Hegmann, T. Chirality Transfer from an Innately Chiral Nanocrystal Core to a Nematic Liquid Crystal: Surface-Modified Cellulose Nanocrystals. Angew. Chem. Int. Ed. Engl. 2021, 60, 17344–17349. DOI: 10.1002/anie.202105357.
  • Qu, D.; Archimi, M.; Camposeo, A.; Pisignano, D.; Zussman, E. Circularly Polarized Laser with Chiral Nematic Cellulose Nanocrystal Cavity. ACS Nano. 2021, 15, 8753–8760. DOI: 10.1021/acsnano.1c01001.
  • Wang, X.; Li, H.; Quan, K.; Zhao, L.; Qiu, H.; Li, Z. Preparation and Applications of Cellulose-Functionalized Chiral Stationary Phases: A Review. Talanta 2021, 225, 121987. DOI: 10.1016/j.talanta.2020.121987.
  • Yong, X.; Wu, Y.; Deng, J. Chiral Helical Substituted Polyacetylene Grafted on Hollow Polymer Particles: Preparation and Enantioselective Adsorption towards Cinchona Alkaloids. Polym. Chem. 2019, 10, 4441–4448. DOI: 10.1039/C9PY00823C.
  • Cong, H.; Xing, J.; Ding, X.; Zhang, S.; Shen, Y.; Yu, B. Preparation of Porous Sulfonated Poly(Styrene-Divinylbenzene) Microspheres and Its Application in Hydrophilic and Chiral separation. Talanta 2020, 210, 120586. DOI: 10.1016/j.talanta.2019.120586.
  • Li, L.; Yuan, X.-T.; Shi, Z.-G.; Xu, L.-Y. Chiral Stationary Phase Based on Cellulose Derivative Coated Polymer Microspheres and Its Separation Performance. J. Chromatogr. A. 2020, 1623, 461154. DOI: 10.1016/j.chroma.2020.461154.
  • Raza, S.; Yong, X.; Deng, J. Optically Active Biobased Hollow Polymer Particles: Preparation, Chiralization, and Adsorption toward Chiral Amines. Ind. Eng. Chem. Res. 2019, 58, 4090–4098. DOI: 10.1021/acs.iecr.8b05884.
  • Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421. DOI: 10.1126/science.1070821.
  • Liu, M.; Zhang, L.; Wang, T. Supramolecular Chirality in Self-Assembled Systems. Chem. Rev. 2015, 115, 7304–7397. DOI: 10.1021/cr500671p.
  • MacFarlane, L. R.; Shaikh, H.; Garcia-Hernandez, J. D.; Vespa, M.; Fukui, T.; Manners, I. Functional Nanoparticles through π-Conjugated Polymer Self-Assembly. Nat. Rev. Mater. 2021, 6, 7–26. DOI: 10.1038/s41578-020-00233-4.
  • Scanga, R. A.; Reuther, J. F. Helical Polymer Self-Assembly and Chiral Nanostructure Formation. Polym. Chem. 2021, 12, 1857–1897. DOI: 10.1039/D0PY01558J.
  • Zhang, C.; Li, M.; Lu, H.-Y.; Chen, C.-F. Synthesis, Chiroptical Properties, and Self-Assembled Nanoparticles of Chiral Conjugated Polymers Based on Optically Stable Helical Aromatic Esters. RSC Adv. 2018, 8, 1014–1021. DOI: 10.1039/C7RA12652B.
  • Vattikunta, R.; Annadhasan, M.; Jada, R.; Prasad, M. D.; Mitetelo, N.; Zhdanova, K.; Mamonov, E.; Müllen, K.; Murzina, T.; Chandrasekar, R. Multifunctional Chiral π-Conjugated Polymer Microspheres: Production and Confinement of NLO Signal, Detection of Circularly Polarized Light, and Display of Laser-Triggered NLO Emission Shifts. Adv. Optical Mater. 2020, 8, 2000431. DOI: 10.1002/adom.202000431.
  • Oki, O.; Kulkarni, C.; Yamagishi, H.; Meskers, S. C. J.; Lin, Z.-H.; Huang, J.-S.; Meijer, E. W.; Yamamoto, Y. Robust Angular Anisotropy of Circularly Polarized Luminescence from a Single Twisted-Bipolar Polymeric Microsphere. J. Am. Chem. Soc. 2021, 143, 8772–8779. DOI: 10.1021/jacs.1c03185.
  • Ho, R.-M.; Chiang, Y.-W.; Lin, S.-C.; Chen, C.-K. Helical Architectures from Self-Assembly of Chiral Polymers and Block Copolymers. Prog. Polym. Sci. 2011, 36, 376–453. DOI: 10.1016/j.progpolymsci.2010.09.001.
  • Yang, K.-C.; Ho, R.-M. Spiral Hierarchical Superstructures from Twisted Ribbons of Self-Assembled Chiral Block Copolymers. ACS Macro Lett. 2020, 9, 1130–1134. DOI: 10.1021/acsmacrolett.0c00415.
  • Xu, L.; Wang, C.; Li, Y.-X.; Xu, X.-H.; Zhou, L.; Liu, N.; Wu, Z.-Q. Crystallization-Driven Asymmetric Helical Assembly of Conjugated Block Copolymers and the Aggregation Induced White-light Emission and Circularly Polarized Luminescence . Angew. Chem. Int. Ed. Engl. 2020, 59, 16675–16682. DOI: 10.1002/anie.202006561.
  • Li, H.; Mao, X.; Wang, H.; Geng, Z.; Xiong, B.; Zhang, L.; Liu, S.; Xu, J.; Zhu, J. Kinetically Dependent Self-Assembly of Chiral Block Copolymers under 3D Confinement. Macromolecules 2020, 53, 4214–4223. DOI: 10.1021/acs.macromol.0c00406.
  • Chen, J.; Wang, S.; Shi, G.; Wang, R.; Cai, S.; Zhang, J.; Wan, X. Amphiphilic Rod-Rod Block Copolymers Based on Phenylacetylene and 3,5-Disubstituted Phenylacetylene: Synthesis, Helical Conformation, and Self-Assembly. Macromolecules 2018, 51, 7500–7508. DOI: 10.1021/acs.macromol.8b01512.
  • Cai, S.; Chen, J.; Wang, S.; Zhang, J.; Wan, X. Allostery-Mimicking Self-Assembly of Helical Poly(Phenylacetylene) Block Copolymers and the Chirality Transfer. Angew. Chem. Int. Ed. Engl. 2021, 60, 9686–9692. DOI: 10.1002/anie.202100551.
  • Zhang, W.-B.; Zhang, J.; Qiao, Z.; Liu, H.-Y.; Wu, Z.-Q.; Yin, J. Facile Fabrication of Positively-Charged Helical Poly(Phenyl Isocyanide) Modified Multi-Stimuli-Responsive Nanoassembly Capable of High Efficiency Cell-Penetrating, Ratiometric Fluorescence Imaging, and Rapid Intracellular Drug Release. Polym. Chem. 2018, 9, 4233–4242. DOI: 10.1039/C8PY00865E.
  • Liu, W.-B.; Kang, S.-M.; Xu, X.-H.; Zhou, L.; Liu, N.; Wu, Z.-Q. Controlled Synthesis of Shell Cross-Linked Helical Poly(Phenylborate Isocyanide) Nanoparticles with H2O2/Redox Dual Responsiveness and Their Application in Antitumor Drug Delivery. ACS Appl. Bio. Mater. 2020, 3, 5620–5626. DOI: 10.1021/acsabm.0c00523.
  • Zhao, Z.; Bian, Z.; Chen, Y.; Kang, C.; Gao, L.; Zhu, G. Self-Assembly of Chiral Oligo(Methylene-p-henylene-Ethynylene)s into Vesicle-like Particles Independent of Hydrophobicity/Hydrophilicity of Side Chains and Solvents. Soft Matter. 2021, 17, 637–644. DOI: 10.1039/d0sm01648a.
  • Habel, A.; Khan, I. M. A Comparative Study of the Self-Assembly of Achiral and Chiral Hairy Nanoparticles with Polystyrene Cores and Poly(2-Hydroxyethylmethacrylate) Hairs. RSC Adv. 2020, 10, 37358–37368. DOI: 10.1039/D0RA04951D.
  • Penfold, N. J. W.; Yeow, J.; Boyer, C.; Armes, S. P. Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Lett. 2019, 8, 1029–1054. DOI: 10.1021/acsmacrolett.9b00464.
  • Liu, C.; Hong, C.-Y.; Pan, C.-Y. Polymerization Techniques in Polymerization-Induced Self-Assembly (PISA). Polym. Chem. 2020, 11, 3673–3689. DOI: 10.1039/D0PY00455C.
  • Phan, H.; Taresco, V.; Penelle, J.; Couturaud, B. Polymerisation-Induced Self-Assembly (PISA) as a Straightforward Formulation Strategy for Stimuli-Responsive Drug Delivery Systems and Biomaterials: Recent Advances. Biomater. Sci. 2021, 9, 38–50. DOI: 10.1039/D0BM01406K.
  • Jimaja, S.; Varlas, S.; Xie, Y.; Foster, J. C.; Taton, D.; Dove, A. P.; O’Reilly, R. K. Nickel-Catalyzed Coordination Polymerization-Induced Self-Assembly of Helical Poly(Aryl Isocyanide)s. ACS Macro Lett. 2020, 9, 226–232. DOI: 10.1021/acsmacrolett.9b00972.
  • Jimaja, S.; Xie, Y.; Foster, J. C.; Taton, D.; Dove, A. P.; O'Reilly, R. K. Functional Nanostructures by NiCCo-PISA of Helical Poly(Aryl Isocyanide) Copolymers. Polym. Chem. 2021, 12, 105–112. DOI: 10.1039/D0PY00791A.
  • Chen, J.; Cai, S.; Wang, R.; Wang, S.; Zhang, J.; Wan, X. Polymerization-Induced Self-Assembly of Conjugated Block Copoly(Phenylacetylene)s. Macromolecules 2020, 53, 1638–1644. DOI: 10.1021/acs.macromol.9b02504.
  • Cheng, X.; Miao, T.; Yin, L.; Ji, Y.; Li, Y.; Zhang, Z.; Zhang, W.; Zhu, X. In Situ Controlled Construction of a Hierarchical Supramolecular Chiral Liquid-Crystalline Polymer Assembly. Angew. Chem. Int. Ed. Engl. 2020, 59, 9669–9677. DOI: 10.1002/anie.202001657.
  • Wang, Q.; Huang, J.; Jiang, Z.-Q.; Zhou, L.; Liu, N.; Wu, Z.-Q. Synthesis of Core Cross-Linked Star Polymers Carrying Helical Poly(Phenyl Isocyanide) Arms via “Core-First” Strategy and Their Surface Chiral Recognition Ability. Polymer 2018, 136, 92–100. DOI: 10.1016/j.polymer.2017.12.057.
  • Wang, Q.; Chu, B.-F.; Chu, J.-H.; Liu, N.; Wu, Z.-Q. Facile Synthesis of Optically Active and Thermoresponsive Star Block Copolymers Carrying Helical Polyisocyanide Arms and Their Thermo-Triggered Chiral Resolution Ability. ACS Macro Lett. 2018, 7, 127–131. DOI: 10.1021/acsmacrolett.7b00875.
  • Zhao, S.-Q.; Hu, G.; Xu, X.-H.; Kang, S.-M.; Liu, N.; Wu, Z.-Q. Synthesis of Redox-Responsive Core Cross-Linked Micelles Carrying Optically Active Helical Poly(Phenyl Isocyanide) Arms and Their Applications in Drug Delivery. ACS Macro Lett. 2018, 7, 1073–1079. DOI: 10.1021/acsmacrolett.8b00610.
  • Gedanken, A. Preparation and Properties of Proteinaceous Microspheres Made Sonochemically. Chemistry 2008, 14, 3840–3853. DOI: 10.1002/chem.200701541.
  • Kumar, V. B.; Steinberg, Y.; Porat, Z.; Nassir, M.; Saady, A.; Hassner, A.; Gedanken, A. A New Approach to Chiral Enrichment by Exposure of Racemates of Amino Acids to Sonochemically-Prepared BSA Microspheres. ChemistrySelect 2017, 2, 8234–8238. DOI: 10.1002/slct.201701525.
  • Mutalikdesai, A.; Zoabi, A.; Kumar, V. B.; Abu-Reziq, R.; Hassner, A.; Gedanken, A. Enantioselective Separation of Racemic Tryptophan with Sonochemically Prepared Egg Albumin Microspheres. ChemistrySelect 2018, 3, 4004–4008. DOI: 10.1002/slct.201800337.
  • He, T.; Jokerst, J. V. Structured Micro/Nano Materials Synthesized via Electrospray: A Review. Biomater. Sci. 2020, 8, 5555–5573. DOI: 10.1039/D0BM01313G.
  • Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev. 2016, 45, 2137–2211. DOI: 10.1039/C6CS00061D.
  • BelBruno, J. J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. DOI: 10.1021/acs.chemrev.8b00171.
  • Monier, M.; Shafik, A. L.; Abdel-Latif, D. A. Surface Molecularly Imprinted Amino-Functionalized Alginate Microspheres for Enantio-Selective Extraction of L-Ascorbic Acid. Carbohydr. Polym. 2018, 195, 652–661. DOI: 10.1016/j.carbpol.2018.04.106.
  • Noyori, R. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 2002, 41, 2008–2022. DOI: 10.1002/1521-3773(20020617)41:12 < 2008::AID-ANIE2008 > 3.0.CO;2-4.
  • Hong, L.; Sun, W.; Yang, D.; Li, G.; Wang, R. Additive Effects on Asymmetric Catalysis. Chem. Rev. 2016, 116, 4006–4123. DOI: 10.1021/acs.chemrev.5b00676.
  • Qiu, X.; Zhang, Y.; Zhu, Y.; Long, C.; Su, L.; Liu, S.; Tang, Z. Applications of Nanomaterials in Asymmetric Photocatalysis: Recent Progress, Challenges, and Opportunities. Adv. Mater. 2021, 33, 2001731. DOI: 10.1002/adma.202001731.
  • Deng, J.; Deng, J. Optically Active Microspheres from Helical Substituted Polyacetylene with Pendent Ferrocenyl Amino-Acid Derivative. Preparation and Recycling Use for Direct Asymmetric Aldol Reaction in Water. Polymer 2017, 125, 200–207. DOI: 10.1016/j.polymer.2017.08.022.
  • Zhang, Q.; Xue, S.; Li, A.; Ren, S. Functional Materials in Chiral Capillary Electrophoresis. Coord. Chem. Rev. 2021, 445, 214108. DOI: 10.1016/j.ccr.2021.214108.
  • Jaworska, M. M.; Antos, D.; Górak, A. Review on the Application of Chitin and Chitosan in Chromatography. React. Funct. Polym 2020, 152, 104606. DOI: 10.1016/j.reactfunctpolym.2020.104606.
  • Lorenz, H.; Seidel-Morgenstern, A. Processes to Separate Enantiomers. Angew. Chem. Int. Ed. Engl. 2014, 53, 1218–1250. DOI: 10.1002/anie.201302823.
  • Medina, D. D.; Mastai, Y. Chiral Polymers and Polymeric Particles for Enantioselective Crystallization. Isr. J. Chem. 2018, 58, 1330–1337. DOI: 10.1002/ijch.201800174.
  • Pfund, L. Y.; Price, C. P.; Frick, J. J.; Matzger, A. J. Controlling Pharmaceutical Crystallization with Designed Polymeric Heteronuclei. J. Am. Chem. Soc. 2015, 137, 871–875. DOI: 10.1021/ja511106j.
  • Ye, X.; Cui, J.; Li, B.; Li, N.; Zhang, J.; Wan, X. Self-Reporting Inhibitors: A Single Crystallization Process to Obtain Two Optically Pure Enantiomers. Angew. Chem. Int. Ed. Engl. 2018, 57, 8120–8124. DOI: 10.1002/anie.201803480.
  • Ye, X.; Cui, J.; Li, B.; Li, N.; Wang, R.; Yan, Z.; Tan, J.; Zhang, J.; Wan, X. Enantiomer-Selective Magnetization of Conglomerates for Quantitative Chiral Separation. Nat. Commun. 2019, 10, 1964. DOI: 10.1038/s41467-019-09997-y.
  • Ye, X.; Wang, Z.; Zhang, J.; Wan, X. Noncovalently Functionalized Commodity Polymers as Tailor-Made Additives for Stereoselective Crystallization. Angew. Chem. Int. Ed. Engl. 2021, 60, 20243–20248. DOI: 10.1002/anie.202106603.
  • Li, B.; Li, N.; Wang, Z.; Ye, X.; Zhang, J.; Wan, X. High-Performance Nano-Splitters Containing Aggregation-Induced Emission Luminogens for Stereoselective Crystallization Obtained via Polymerization-Induced Self-Assembly. Aggregate 2021, 2, e129. DOI: 10.1002/agt2.129.
  • Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in Cancer Therapy: Challenges, Opportunities, and Clinical applications. J. Control. Release 2015, 200, 138–157. DOI: 10.1016/j.jconrel.2014.12.030.
  • Song, L.; Pan, M.; Zhao, R.; Deng, J.; Wu, Y. Recent Advances, Challenges and Perspectives in Enantioselective Release. J. Control Release. 2020, 324, 156–171. DOI: 10.1016/j.jconrel.2020.05.019.
  • Duddu, S. P.; Vakilynejad, M.; Jamali, F.; Grant, D. J. W. Stereoselective Dissolution of Propranolol Hydrochloride from Hydroxypropyl Methylcellulose Matrices. Pharm. Res. 1993, 10, 1648–1653. DOI: 10.1023/A:1018937123058.
  • Yu, H.; Yong, X.; Liang, J.; Deng, J.; Wu, Y. Materials Established for Enantioselective Release of Chiral Compounds. Ind. Eng. Chem. Res. 2016, 55, 6037–6048. DOI: 10.1021/acs.iecr.6b01031.
  • Deng, X.; Liang, J.; Deng, J. Boronic Acid-Containing Optically Active Microspheres: Preparation, Chiral Adsorption and Chirally Controlled Release towards Drug DOPA. Chem. Eng. J. 2016, 306, 1162–1171. DOI: 10.1016/j.cej.2016.08.061.
  • Ganda, S.; Stenzel, M. H. Concepts, Fabrication Methods and Applications of Living Crystallization-Driven Self-Assembly of Block Copolymers. Prog. Polym. Sci. 2020, 101, 101195. DOI: 10.1016/j.progpolymsci.2019.101195.
  • MacFarlane, L.; Zhao, C.; Cai, J.; Qiu, H.; Manners, I. Emerging Applications for Living Crystallization-Driven Self-Assembly. Chem. Sci. 2021, 12, 4661–4682. DOI: 10.1039/d0sc06878k.
  • Sang, Y.; Han, J.; Zhao, T.; Duan, P.; Liu, M. Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application. Adv. Mater. 2020, 32, 1900110. DOI: 10.1002/adma.201900110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.