1,375
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Recent Progress in the Development of Hyper-Cross-Linked Polymers for Adsorption of Gaseous Volatile Organic Compounds

& ORCID Icon
Pages 365-393 | Received 13 Jan 2022, Accepted 15 May 2022, Published online: 05 Jun 2022

References

  • Liu, Y.; Misztal, P. K.; Xiong, J.; Tian, Y.; Arata, C.; Weber, R. J.; Nazaroff, W. W. Characterizing Sources and Emissions of Volatile Organic Compounds in a Northern California Residence Using Space‐and Time‐Resolved Measurements. Indoor Air. 2019, 29, 630–644.
  • Bari, M. A.; Kindzierski, W. B.; Wheeler, A. J.; Héroux, M.-È.; Wallace, L. Source Apportionment of Indoor and Outdoor Volatile Organic Compounds at Homes in Edmonton, Canada. Build. Environ. 2015, 90, 114–124. DOI: 10.1016/j.buildenv.2015.03.023.
  • Cai, M.; An, C.; Guy, C.; Reviews, S. E. A Scientometric Analysis and Review of Biogenic Volatile Organic Compound Emissions: Research Hotspots, New Frontiers, and Environmental Implications. Renewable Sustainable Energy Rev. 2021, 149, 111317. DOI: 10.1016/j.rser.2021.111317.
  • Qian, Z.; Chen, Y.; Liu, Z.; Han, Y.; Zhang, Y.; Feng, Y.; Shang, Y.; Guo, H.; Li, Q.; Shen, G. Technology "Intermediate Volatile Organic Compound Emissions from Residential Solid Fuel Combustion Based on Field Measurements in Rural China. Environmental Science & Technology. 2021, 55, 5689–5700.
  • Qian, Q.; Gong, C.; Zhang, Z.; Yuan, G. Removal of VOCs by Activated Carbon Microspheres Derived from Polymer: A Comparative Study. Adsorption 2015, 21, 333–341. DOI: 10.1007/s10450-015-9673-9.
  • Zou, W.; Gao, B.; Ok, Y. S.; Dong, L. Integrated Adsorption and Photocatalytic Degradation of Volatile Organic Compounds (VOCs) Using Carbon-Based Nanocomposites: A Critical Review. Chemosphere 2019, 218, 845–859. DOI: 10.1016/j.chemosphere.2018.11.175.
  • Niu, J.; Liland, S. E.; Yang, J.; Rout, K. R.; Ran, J.; Chen, D. Effect of Oxide Additives on the Hydrotalcite Derived Ni Catalysts for CO2 Reforming of Methane. Chem. Engin. J. 2019, 377, 119763. DOI: 10.1016/j.cej.2018.08.149.
  • Lan, Y.; Yang, Z.; Wang, P.; Yan, Y.; Zhang, L.; Ran, J. A Review of Microscopic Seepage Mechanism for Shale Gas Extracted by Supercritical CO2 Flooding. Fuel 2019, 238, 412–424. DOI: 10.1016/j.fuel.2018.10.130.
  • He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem. Rev. 2019, 119, 4471–4568. DOI: 10.1021/acs.chemrev.8b00408.
  • Chen, C.; Cai, L.-X.; Tan, B.; Zhang, Y.-J.; Yang, X.-D.; Lin, S.; Zhang, J. Flexible Bipyridinium Constructed Porous Frameworks with Superior Broad-Spectrum Adsorption toward Organic Pollutants. Crystal Growth & Design. 2017, 17, 1843–1848.
  • Hwang, S.; Lee, G.; Park, J.; Kim, J.; Kim, S.; Hong, B. Removal and Recycling of Volatile Organic Compounds (VOCs) Adsorbed on Activated Carbons Using in Situ Vacuum Systems. International Journal of Environmental Science and Technology. 2019, 16, 7827–7836.
  • Xiang, W.; Zhang, X.; Chen, K.; Fang, J.; He, F.; Hu, X.; Tsang, D. C.; Ok, Y. S.; Gao, B. Enhanced Adsorption Performance and Governing Mechanisms of Ball-Milled Biochar for the Removal of Volatile Organic Compounds (VOCs). Chem. Engin. J. 2020, 385, 123842. DOI: 10.1016/j.cej.2019.123842.
  • Sabzehmeidani, M. M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V. Carbon Based Materials: A Review of Adsorbents for Inorganic and Organic Compounds. Mater. Adv. 2021, 2, 598–627. DOI: 10.1039/D0MA00087F.
  • Vellingiri, K.; Szulejko, J. E.; Kumar, P.; Kwon, E. E.; Kim, K.-H.; Deep, A.; Boukhvalov, D. W.; Brown, R. Metal Organic Frameworks as Sorption Media for Volatile and Semi-Volatile Organic Compounds at Ambient Conditions. Scientific Reports. 2016, 6, 1–11.
  • Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Adsorption Materials for Volatile Organic Compounds (VOCs) and the Key Factors for VOCs Adsorption Process: A Review. Sep. Purif. Technol. 2020, 235, 116213. DOI: 10.1016/j.seppur.2019.116213.
  • Yang, Y.; Tan, B.; Wood, C. D. Solution-Processable Hypercrosslinked Polymers by Low Cost Strategies: A Promising Platform for Gas Storage and Separation. J. Mater. Chem. A. 2016, 4, 15072–15080. DOI: 10.1039/C6TA05226F.
  • Xiong, Y.; Woodward, R. T.; Danaci, D.; Evans, A.; Tian, T.; Azzan, H.; Ardakani, M.; Petit, C. Understanding Trade-Offs in Adsorption Capacity, Selectivity and Kinetics for Propylene/Propane Separation Using Composites of Activated Carbon and Hypercrosslinked Polymer. Chem. Engin. J. 2021, 426, 131628. DOI: 10.1016/j.cej.2021.131628.
  • Wang, W.-Q.; Wang, J.; Chen, J.-G.; Fan, X.-S.; Liu, Z.-T.; Liu, Z.-W.; Jiang, J.; Hao, Z. Synthesis of Novel Hyper-Cross-Linked Polymers as Adsorbent for Removing Organic Pollutants from Humid Streams. Chem. Engin. J. 2015, 281, 34–41. DOI: 10.1016/j.cej.2015.06.095.
  • Tan, L.; Tan, B. Hypercrosslinked Porous Polymer Materials: design, Synthesis, and Applications. Chemical Society Reviews. 2017, 46, 3322–3356.
  • Zhang, S.; Yang, Q.; Wang, C.; Luo, X.; Kim, J.; Wang, Z.; Yamauchi, Y. Porous Organic Frameworks: advanced Materials in Analytical Chemistry. Adv. Sci. (Weinh) 2018, 5, 1801116. DOI: 10.1002/advs.201801116.
  • Gao, H.; Ding, L.; Bai, H.; Liu, A.; Li, S.; Li, L. Pitch-Based Hyper-Cross-Linked Polymers with High Performance for Gas Adsorption. J. Mater. Chem. A. 2016, 4, 16490–16498. DOI: 10.1039/C6TA07033G.
  • Li, B.; Gong, R.; Wang, W.; Huang, X.; Zhang, W.; Li, H.; Hu, C.; Tan, B. A New Strategy to Microporous Polymers: knitting Rigid Aromatic Building Blocks by External Cross-Linker. Macromolecules. 2011, 44, 2410–2414.
  • Hou, S.; Tan, B. Naphthyl Substitution-Induced Fine Tuning of Porosity and Gas Uptake Capacity in Microporous Hyper-Cross-Linked Amine Polymers. Macromolecules. 2018, 51, 2923–2931.
  • Xu, S.; Song, K.; Li, T.; Tan, B. Palladium Catalyst Coordinated in Knitting N-Heterocyclic Carbene Porous Polymers for Efficient Suzuki–Miyaura Coupling Reactions. Journal of Materials Chemistry A. 2015, 3, 1272–1278.
  • Tan, L.; Tan, B. Functionalized Hierarchical Porous Polymeric Monoliths as Versatile Platforms to Support Uniform and Ultrafine Metal Nanoparticles for Heterogeneous Catalysis. Chem. Engin. J. 2020, 390, 124485. DOI: 10.1016/j.cej.2020.124485.
  • Luo, Y.; Li, B.; Wang, W.; Wu, K.; Tan, B. Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO2 Capturing Materials. Adv. Mater. 2012, 24, 5703–5707.
  • Wang, K.; Huang, L.; Razzaque, S.; Jin, S.; Tan, B. Fabrication of Hollow Microporous Carbon Spheres from Hyper-Crosslinked Microporous Polymers. Small 2016, 12, 3134–3142. DOI: 10.1002/smll.201600256.
  • Wang, S.; Song, K.; Zhang, C.; Shu, Y.; Li, T.; Tan, B. A Novel Metalporphyrin-Based Microporous Organic Polymer with High CO 2 Uptake and Efficient Chemical Conversion of CO 2 under Ambient Conditions. Journal of Materials Chemistry A. 2017, 5, 1509–1515.
  • Zhang, Q. M.; Zhai, T. L.; Wang, Z.; Cheng, G.; Ma, H.; Zhang, Q. P.; Zhao, Y. H.; Tan, B.; Zhang, C. Hyperporous Carbon from Triptycene‐Based Hypercrosslinked Polymer for Iodine Capture. Adv. Mater. Interfaces 2019, 6, 1900249. DOI: 10.1002/admi.201900249.
  • Du, J.; Ouyang, H.; Tan, B. Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide. Chem. Asian J. 2021, 16, 3833–3850. DOI: 10.1002/asia.202100991.
  • Zhan, Z.; Wang, H.; Huang, Q.; Li, S.; Yi, X.; Tang, Q.; Wang, J.; Tan, B. Grafting Hypercrosslinked Polymers on TiO2 Surface for Anchoring Ultrafine Pd Nanoparticles: Dramatically Enhanced Efficiency and Selectivity toward Photocatalytic Reduction of CO2 to CH4. Small. 2022, 18, 2105083.
  • Ouyang, H.; Song, K.; Du, J.; Zhan, Z.; Tan, B. Creating Chemisorption Sites for Enhanced CO2 Chemical Conversion Activity through Amine Modification of Metalloporphyrin-Based Hypercrosslinked Polymers. Chem. Engin. J. 2022, 431, 134326. DOI: 10.1016/j.cej.2021.134326.
  • Waheed, A.; Baig, N.; Ullah, N.; Falath, W. Removal of Hazardous Dyes, Toxic Metal Ions and Organic Pollutants from Wastewater by Using Porous Hyper-Cross-Linked Polymeric Materials: A Review of Recent Advances. J. Environ. Manage. 2021, 287, 112360. DOI: 10.1016/j.jenvman.2021.112360.
  • Detoni, C.; Gierlich, C. H.; Rose, M.; Palkovits, R. Selective Liquid Phase Adsorption of 5-Hydroxymethylfurfural on Nanoporous Hyper-Cross-Linked Polymers. ACS Sustainable Chemistry & Engineering. 2014, 2, 2407–2415.
  • Woodward, R. T.; Kessler, M.; Lima, S.; Rinaldi, R. Hypercrosslinked Microporous Polymer Sorbents for the Efficient Recycling of a Soluble Acid Catalyst in Cellulose Hydrolysis. Green Chemistry. 2018, 20, 2374–2381.
  • Ansari, M.; Bera, R.; Das, N. A Triptycene Derived Hypercrosslinked Polymer for Gas Capture and Separation Applications. J. Appl. Polym. Sci. 2022, 139, 51449. DOI: 10.1002/app.51449.
  • Zhang, Y.; Zhang, L.; Zhang, X.; Yang, D.; Du, C.; Wan, L.; Au, C.; Chen, J.; Xie, M. Pyridine-Based Hypercrosslinked Polymers as Support Materials for Palladium Photocatalysts and Their Application in Suzuki–Miyaura Coupling Reactions. New J. Chem. 2020, 44, 15202–15208. DOI: 10.1039/D0NJ01675F.
  • Gatti, G.; Errahali, M.; Tei, L.; Cossi, M.; Marchese, L. On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers. Polymers 2019, 11, 588. DOI: 10.3390/polym11040588.
  • Li, Y.; Liu, J.; Kong, J.; Qi, N.; Chen, Z. Role of Ultramicropores in the Remarkable Gas Storage in Hypercrosslinked Polystyrene Networks Studied by Positron Annihilation. Phys. Chem. Chem. Phys. 2021, 23, 13603–13611. DOI: 10.1039/d1cp01867a.
  • Shu, G.; Zhang, C.; Li, Y.; Jiang, J. X.; Wang, X.; Li, H.; Wang, F. Hypercrosslinked Silole‐Containing Microporous Organic Polymers with N‐Functionalized Pore Surfaces for Gas Storage and Separation. Journal of Applied Polymer Science. 2018, 135, 45907.
  • Fu, S.; Yao, J.; Yang, Z.; Sun, H.; Liu, W. Silane-Based Hyper-Cross-Linked Porous Polymers and Their Applications in Gas Storage and Water Treatment. J. Mater. Sci. 2018, 53, 10469–10478. DOI: 10.1007/s10853-018-2243-2.
  • Ramezanipour Penchah, H.; Ghaemi, A.; Ganadzadeh Gilani, H. Benzene-Based Hyper-Cross-Linked Polymer with Enhanced Adsorption Capacity for CO2 Capture. Fuels 2019, 33, 12578–12586. [Mismatch
  • Sadak, A. E. J. M. A Comparative Gas Sorption Study of Dicarbazole-Derived Microporous Hyper-Crosslinked Polymers. Microporous Mesoporous Mater. 2021, 311, 110727. DOI: 10.1016/j.micromeso.2020.110727.
  • Hou, S.; Razzaque, S.; Tan, B. Effects of Synthesis Methodology on Microporous Organic Hyper-Cross-Linked Polymers with Respect to Structural Porosity, Gas Uptake Performance and Fluorescence Properties. Polymer Chemistry. 2019, 10, 1299–1311.
  • Prince, L.; Guggenberger, P.; Santini, E.; Kleitz, F.; Woodward, R. T. J. M. Metal-Free Hyper-Cross-Linked Polymers from Benzyl Methyl Ethers: A Route to Polymerization Catalyst Recycling. Macromolecules. 2021, 54, 9217–9222.
  • Zhao, Q.; Wang, K.; Wang, J.; Guo, Y.; Yoshida, A.; Abudula, A.; Guan, G. Cu2O Nanoparticle Hyper-Cross-Linked Polymer Composites for the Visible-Light Photocatalytic Degradation of Methyl Orange. ACS Applied Nano Materials. 2019, 2, 2706–2712.
  • Li, L.; Han, D.; Wang, M.; Han, Y.; Yan, H. Molybdenum Disulfide–Hypercrosslinked Polymer Composite as an Adsorbent for Determination of Polycyclic Aromatic Hydrocarbons in Environmental Water Coupled with HPLC–FLD. Microchimica Acta. 2020, 187, 1–8.
  • Castaldo, R.; Avolio, R.; Cocca, M.; Gentile, G.; Errico, M. E.; Avella, M.; Carfagna, C.; Ambrogi, V. A Versatile Synthetic Approach toward Hyper-Cross-Linked Styrene-Based Polymers and Nanocomposites. Macromolecules. 2017, 50, 4132–4143.
  • Guerritore, M.; Castaldo, R.; Silvestri, B.; Avolio, R.; Cocca, M.; Errico, M. E.; Avella, M.; Gentile, G.; Ambrogi, V. Hyper-Crosslinked Polymer Nanocomposites Containing Mesoporous Silica Nanoparticles with Enhanced Adsorption towards Polar Dyes. Polymers. 2020, 12, 1388.
  • Gao, H.; Ding, L.; Li, W.; Ma, G.; Bai, H.; Li, L. Hyper-Cross-Linked Organic Microporous Polymers Based on Alternating Copolymerization of Bismaleimide. ACS Macro Lett. 2016, 5, 377–381. DOI: 10.1021/acsmacrolett.6b00015.
  • Gu, Y.; Son, S. U.; Li, T.; Tan, B. Low‐Cost Hypercrosslinked Polymers by Direct Knitting Strategy for Catalytic Applications. Adv. Funct. Mater. 2021, 31, 2008265. DOI: 10.1002/adfm.202008265.
  • Lu, S.; Liu, Q.; Han, R.; Guo, M.; Shi, J.; Song, C.; Ji, N.; Lu, X.; Ma, D. Potential Applications of Porous Organic Polymers as Adsorbent for the Adsorption of Volatile Organic Compounds. J. Environ. Sci. (China) 2021, 105, 184–203. DOI: 10.1016/j.jes.2021.01.007.
  • Ramezanipour Penchah, H.; Ghanadzadeh Gilani, H.; Ghaemi, A.; Data, E. CO2, N2, and H2 Adsorption by Hyper-Cross-Linked Polymers and Their Selectivity Evaluation by Gas–Solid Equilibrium. Journal of Chemical & Engineering Data. 2020, 65, 4905–4913.
  • Velazco-Medel, M. A.; Camacho-Cruz, L. A.; Lugo-González, J. C.; Bucio, E. Cross-Linked Polymer-Based Adsorbents and Membranes for Dye Removal. In Membrane Based Methods for Dye Containing Wastewater; Springer, 2022; pp 263–289.
  • Bezzu, C. G.; Carta, M.; Tonkins, A.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. A Spirobifluorene-Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation. Adv. Mater. 2012, 24, 5930–5933. DOI: 10.1002/adma.201202393.
  • Du, N.; Park, H. B.; Robertson, G. P.; Dal-Cin, M. M.; Visser, T.; Scoles, L.; Guiver, M. Polymer Nanosieve Membranes for CO2-Capture Applications. Nat. Mater. 2011, 10, 372–375. DOI: 10.1038/nmat2989.
  • Long, C.; Li, Y.; Yu, W.; Li, A. Adsorption Characteristics of Water Vapor on the Hypercrosslinked Polymeric Adsorbent. Chem. Engin. J. 2012, 180, 106–112. DOI: 10.1016/j.cej.2011.11.019.
  • Wang, S.; Zhang, C.; Shu, Y.; Jiang, S.; Xia, Q.; Chen, L.; Jin, S.; Hussain, I.; Cooper, A. I.; Tan, B. Layered Microporous Polymers by Solvent Knitting Method. Sci. Adv. 2017, 3, e1602610. DOI: 10.1126/sciadv.1602610.
  • Paul, G.; Begni, F.; Melicchio, A.; Golemme, G.; Bisio, C.; Marchi, D.; Cossi, M.; Marchese, L.; Gatti, G. Hyper-Cross-Linked Polymers for the Capture of Aromatic Volatile Compounds. ACS Appl. Polym. Mater. 2020, 2, 647–658. DOI: 10.1021/acsapm.9b01000.
  • Zhu, J.-H.; Chen, Q.; Sui, Z.-Y.; Pan, L.; Yu, J.; Han, B.-H. Preparation and Adsorption Performance of Cross-Linked Porous Polycarbazoles. J. Mater. Chem. A. 2014, 2, 16181–16189. DOI: 10.1039/C4TA01537A.
  • Lee, J.-S. M.; Cooper, A. Advances in Conjugated Microporous Polymers. Chem. Rev. 2020, 120, 2171–2214. DOI: 10.1021/acs.chemrev.9b00399.
  • Tsyurupa, M.; Pastukhov, A.; Davankov, V. Hyper-Cross-Linked Polystyrene, a Polymer in Nonclassical Physical State. In Doklady Physical Chemistry; Pleiades Publishing, Ltd.(Плеадес Паблишинг, Итд), 1997; pp. 9–10.
  • Davankov, V.; Ilyin, M.; Tsyurupa, M.; Timofeeva, G.; Dubrovina, L. From a Dissolved Polystyrene Coil to an Intramolecularly-Hyper-Cross-Linked “Nanosponge. Macromolecules. 1996, 29, 8398–8403.
  • Ahn, J.-H.; Jang, J.-E.; Oh, C.-G.; Ihm, S.-K.; Cortez, J.; Sherrington, D. Rapid Generation and Control of Microporosity, Bimodal Pore Size Distribution, and Surface Area in Davankov-Type Hyper-Cross-Linked Resins. Macromolecules 2006, 39, 627–632. DOI: 10.1021/ma051152n.
  • Xu, S.; Luo, Y.; Tan, B. Recent Development of Hypercrosslinked Microporous Organic Polymers. Macromol. Rapid Commun. 2013, 34, 471–484. DOI: 10.1002/marc.201200788.
  • Germain, J.; Fréchet, J. M.; Svec, F. Hypercrosslinked Polyanilines with Nanoporous Structure and High Surface Area: potential Adsorbents for Hydrogen Storage. Journal of Materials Chemistry. 2007, 17, 4989–4997.
  • Wood, C. D.; Tan, B.; Trewin, A.; Niu, H.; Bradshaw, D.; Rosseinsky, M. J.; Khimyak, Y. Z.; Campbell, N. L.; Kirk, R.; Stöckel, E. Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks. Chemistry of Materials. 2007, 19, 2034–2048.
  • Wood, C. D.; Tan, B.; Trewin, A.; Su, F.; Rosseinsky, M. J.; Bradshaw, D.; Sun, Y.; Zhou, L.; Cooper, A. Microporous Organic Polymers for Methane Storage. Advanced Materials. 2008, 20, 1916–1921.
  • Cheng, Y.; Razzaque, S.; Zhan, Z.; Tan, B. Construction and Gas Uptake Performance of Cyano-Functional Hypercrosslinked Polymers via Knitting Strategy. Chem. Engin. J. 2021, 426, 130731. DOI: 10.1016/j.cej.2021.130731.
  • Li, B.; Guan, Z.; Wang, W.; Yang, X.; Hu, J.; Tan, B.; Li, T. Highly Dispersed Pd Catalyst Locked in Knitting Aryl Network Polymers for Suzuki-Miyaura Coupling Reactions of Aryl Chlorides in Aqueous Media. Adv. Mater. 2012, 24, 3390–3395. DOI: 10.1002/adma.201200804.
  • Dawson, R.; Stevens, L. A.; Drage, T. C.; Snape, C. E.; Smith, M. W.; Adams, D. J.; Cooper, A. Impact of Water Coadsorption for Carbon Dioxide Capture in Microporous Polymer Sorbents. J. Am. Chem. Soc. 2012, 134, 10741–10744. DOI: 10.1021/ja301926h.
  • Zhang, J.; Qiao, Z. A.; Mahurin, S. M.; Jiang, X.; Chai, S. H.; Lu, H.; Nelson, K.; Dai, S. Hypercrosslinked Phenolic Polymers with Well-Developed Mesoporous Frameworks. Angew. Chem. Int. Ed. Engl. 2015, 54, 4582–4586. DOI: 10.1002/anie.201500305.
  • Dou, B.; Hu, Q.; Li, J.; Qiao, S.; Hao, Z. Adsorption Performance of VOCs in Ordered Mesoporous Silicas with Different Pore Structures and Surface Chemistry. J. Hazard. Mater. 2011, 186, 1615–1624. DOI: 10.1016/j.jhazmat.2010.12.051.
  • Carter, E. M.; Katz, L. E.; Speitel, G. E.; Jr.; Ramirez, D. Technology "Gas-Phase Formaldehyde Adsorption Isotherm Studies on Activated Carbon: correlations of Adsorption Capacity to Surface Functional Group Density. Environmental Science & Technology. 2011, 45, 6498–6503.
  • Xia, X.; Sun, P.; Sun, X.; Wang, Y.; Yang, S.; Jia, Y.; Peng, B.; Nie, C. Hyper-Crosslinked Polymers with Controlled Multiscale Porosity for Effective Removal of Benzene from Cigarette Smoke. e-Polymers. 2021, 22, 19–29. DOI: 10.1515/epoly-2022-0006.
  • Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K. Design and Preparation of Porous Polymers. Chem. Rev. 2012, 112, 3959–4015. DOI: 10.1021/cr200440z.
  • Ding, L.; Gao, H.; Xie, F.; Li, W.; Bai, H.; Li, L. Porosity-Enhanced Polymers from Hyper-Cross-Linked Polymer Precursors. Macromolecules 2017, 50, 956–962. DOI: 10.1021/acs.macromol.6b02715.
  • Sai, H.; Tan, K. W.; Hur, K.; Asenath-Smith, E.; Hovden, R.; Jiang, Y.; Riccio, M.; Muller, D. A.; Elser, V.; Estroff, L. A.; et al. Hierarchical Porous Polymer Scaffolds from Block Copolymers. Science 2013, 341, 530–534. DOI: 10.1126/science.1238159.
  • Seo, M.; Kim, S.; Oh, J.; Kim, S.-J.; Hillmyer, M. Hierarchically Porous Polymers from Hyper-Cross-Linked Block Polymer Precursors. J. Am. Chem. Soc. 2015, 137, 600–603. DOI: 10.1021/ja511581w.
  • Saba, S. A.; Mousavi, M. P. S.; Bühlmann, P.; Hillmyer, M. A. Hierarchically Porous Polymer Monoliths by Combining Controlled Macro-and Microphase Separation. J. Am. Chem. Soc. 2015, 137, 8896–8899.
  • Huang, J.; Zhou, X.; Lamprou, A.; Maya, F.; Svec, F.; Turner, S. Nanoporous Polymers from Cross-Linked Polymer Precursors via Tert-Butyl Group Deprotection and Their Carbon Dioxide Capture Properties. Chemistry of Materials. 2015, 27, 7388–7394.
  • Stubenrauch, C.; Menner, A.; Bismarck, A.; Drenckhan, W. Emulsion and Foam Templating-Promising Routes to Tailor-Made Porous Polymers. Angew. Chem. Int. Ed. Engl. 2018, 57, 10024–10032. DOI: 10.1002/anie.201801466.
  • Ghafari, M.; Atkinson, J. Impact of Styrenic Polymer One-Step Hyper-Cross-Linking on Volatile Organic Compound Adsorption and Desorption Performance. J. Hazard. Mater. 2018, 351, 117–123. DOI: 10.1016/j.jhazmat.2018.02.051.
  • Li, B.; Guan, Z.; Yang, X.; Wang, W. D.; Wang, W.; Hussain, I.; Song, K.; Tan, B.; Li, T. Multifunctional Microporous Organic Polymers. J. Mater. Chem. A. 2014, 2, 11930–11939. DOI: 10.1039/C4TA01081G.
  • Shao, L.; Sang, Y.; Liu, N.; Wei, Q.; Wang, F.; Zhan, P.; Luo, W.; Huang, J.; Chen, J.; Technology, P. One-Step Synthesis of N-Containing Hyper-Cross-Linked Polymers by Two Crosslinking Strategies and Their CO2 Adsorption and Iodine Vapor Capture. Sep. Purif. Technol. 2021, 262, 118352. DOI: 10.1016/j.seppur.2021.118352.
  • Wei, H.; Deng, S.; Hu, B.; Chen, Z.; Wang, B.; Huang, J.; Yu, G. Granular Bamboo‐Derived Activated Carbon for High CO2 Adsorption: The Dominant Role of Narrow Micropores. ChemSusChem. 2012, 5, 2354–2360.
  • Gu, Z.-Y.; Yang, C.-X.; Chang, N.; Yan, X.-P. Metal-Organic Frameworks for Analytical Chemistry: From Sample Collection to Chromatographic Separation. Acc. Chem. Res. 2012, 45, 734–745. DOI: 10.1021/ar2002599.
  • Li, B.; Gong, R.; Luo, Y.; Tan, B. Tailoring the Pore Size of Hypercrosslinked Polymers. Soft Matter. 2011, 7, 10910–10916. DOI: 10.1039/c1sm06113e.
  • Peyravi, A.; Hashisho, Z.; Crompton, D.; Anderson, J.; Science, I. Porous Carbon Black-Polymer Composites for Volatile Organic Compound Adsorption and Efficient Microwave-Assisted Desorption. J. Colloid Interface Sci. 2022, 612, 181–193. DOI: 10.1016/j.jcis.2021.12.097.
  • Peyravi, A.; Ahmadijokani, F.; Arjmand, M.; Hashisho, Z. Graphene Oxide Enhances Thermal Stability and Microwave Absorption/Regeneration of a Porous Polymer. J. Hazard. Mater. 2022, 433, 128792. DOI: 10.1016/j.jhazmat.2022.128792.
  • Long, C.; Yu, W.; Li, A. Adsorption of n-Hexane Vapor by Macroporous and Hypercrosslinked Polymeric Resins: Equilibrium and Breakthrough Analysis. Chem. Engin. J. 2013, 221, 105–110. DOI: 10.1016/j.cej.2013.01.083.
  • Wang, J.; Wang, W.-Q.; Hao, Z.; Wang, G.; Li, Y.; Chen, J.-G.; Li, M.; Cheng, J.; Liu, Z.-T. A Superhydrophobic Hyper-Cross-Linked Polymer Synthesized at Room Temperature Used as an Efficient Adsorbent for Volatile Organic Compounds. RSC Adv. 2016, 6, 97048–97054. DOI: 10.1039/C6RA18687D.
  • Peng, R.; Chen, G.; Zhou, F.; Man, R.; Huang, J. Catalyst-Free Synthesis of Triazine-Based Porous Organic Polymers for Hg2+ Adsorptive Removal from Aqueous Solution. Chem. Engin. J. 2019, 371, 260–266. DOI: 10.1016/j.cej.2019.04.063.
  • Wang, Y.; Gan, Y.; Huang, J. Hyper-Cross-Linked Phenolic Hydroxyl Polymers with Hierarchical Porosity and Their Efficient Adsorption Performance. Ind. Eng. Chem. Res. 2020, 59, 11275–11283. DOI: 10.1021/acs.iecr.9b06621.
  • Zhao, X.; Zeng, X.; Qin, Y.; Li, X.; Zhu, T.; Tang, X. An Experimental and Theoretical Study of the Adsorption Removal of Toluene and Chlorobenzene on Coconut Shell Derived Carbon. Chemosphere 2018, 206, 285–292. DOI: 10.1016/j.chemosphere.2018.04.126.
  • Tefera, D. T.; Jahandar Lashaki, M.; Fayaz, M.; Hashisho, Z.; Philips, J. H.; Anderson, J. E.; Nichols, M. Two-Dimensional Modeling of Volatile Organic Compounds Adsorption onto Beaded Activated Carbon. Environ. Sci. Technol. 2013, 47, 11700–11710. DOI: 10.1021/es402369u.
  • Zhou, F.; Man, R.; Huang, J. Alkoxy-Modified Hyper-Cross-Linked Polymers with Hierarchical Porosity and Their Adsorption of Salicylic Acid from Aqueous Solution. Ind. Eng. Chem. Res. 2018, 57, 12420–12428. DOI: 10.1021/acs.iecr.8b03121.
  • Tang, D.; Kupgan, G.; Colina, C. M.; Sholl, D. Rapid Prediction of Adsorption Isotherms of a Diverse Range of Molecules in Hyper-Cross-Linked Polymers. J. Phys. Chem. C. 2019, 123, 17884–17893. DOI: 10.1021/acs.jpcc.9b04413.
  • Zhang, J.; Guo, F.; Wang, X. An Optimized and General Synthetic Strategy for Fabrication of Polymeric Carbon Nitride Nanoarchitectures. Advanced Functional Materials. 2013, 23, 3008–3014.
  • Li, N.; Zheng, M.; Feng, S.; Lu, H.; Zhao, B.; Zheng, J.; Zhang, S.; Ji, G.; Cao, J. Fabrication of Hierarchical Macroporous/Mesoporous Carbons via the Dual-Template Method and the Restriction Effect of Hard Template on Shrinkage of Mesoporous Polymers. The Journal of Physical Chemistry C. 2013, 117, 8784–8792.
  • Wang, X.; He, J.; Huang, J. Amino-Modified Hyper-Cross-Linked Polymers with Hierarchical Porosity for Adsorption of Salicylic Acid from Aqueous Solution. J. Chem. Thermodynamics 2019, 131, 1–8. DOI: 10.1016/j.jct.2018.10.018.
  • Wang, X.; Ou, H.; Huang, J.; science, i. One-Pot Synthesis of Hyper-Cross-Linked Polymers Chemically Modified with Pyrrole, Furan, and Thiophene for Phenol Adsorption from Aqueous Solution. J. Colloid Interface Sci. 2019, 538, 499–506. DOI: 10.1016/j.jcis.2018.12.021.
  • Qi, S.-C.; Liu, Y.; Peng, A.-Z.; Xue, D.-M.; Liu, X.; Liu, X.-Q.; Sun, L.-B. Fabrication of Porous Carbons from Mesitylene for Highly Efficient CO2 Capture: A Rational Choice Improving the Carbon Loop. Chem. Engin. J. 2019, 361, 945–952. DOI: 10.1016/j.cej.2018.12.167.
  • Rong, M.; Yang, L.; Wang, L.; Xing, H.; Yu, J.; Qu, H.; Liu, H. Fabrication of Microporous Aminal-Linked Polymers with Tunable Porosity toward Highly Efficient Adsorption of CO2. Ind. Eng. Chem. Res. 2019, 58, 17369–17379. DOI: 10.1021/acs.iecr.9b03126.
  • Hunter-Sellars, E.; Tee, J.; Parkin, I. P.; Williams, D.; Materials, M. Adsorption of Volatile Organic Compounds by Industrial Porous Materials: Impact of Relative Humidity. Microporous Mesoporous Mater. 2020, 298, 110090. DOI: 10.1016/j.micromeso.2020.110090.
  • Kraus, M.; Trommler, U.; Holzer, F.; Kopinke, F.-D.; Roland, U. Competing Adsorption of Toluene and Water on Various Zeolites. Chem. Engin. J. 2018, 351, 356–363. DOI: 10.1016/j.cej.2018.06.128.
  • Chevalier, V.; Martin, J.; Peralta, D.; Roussey, A.; Tardif, F. Performance of HKUST-1 Metal-Organic Framework for a VOCs Mixture Adsorption at Realistic Concentrations Ranging from 0.5 to 2.5 Ppmv under Different Humidity Conditions. J. Environ. Chem. Eng. 2019, 7, 103131. DOI: 10.1016/j.jece.2019.103131.
  • Wang, S.; Zhang, L.; Long, C.; Li, A.; science, i. Enhanced Adsorption and Desorption of VOCs Vapor on Novel Micro-Mesoporous Polymeric Adsorbents. J. Colloid Interface Sci. 2014, 428, 185–190. DOI: 10.1016/j.jcis.2014.04.055.
  • Jia, L.; Ma, J.; Shi, Q.; Long, C. Technology "Prediction of Adsorption Equilibrium of VOCs onto Hyper-Cross-Linked Polymeric Resin at Environmentally Relevant Temperatures and Concentrations Using Inverse Gas Chromatography. Environ. Sci. Technol. 2017, 51, 522–530. DOI: 10.1021/acs.est.6b05039.
  • Urbano, B. F.; Bustamante, S.; Palacio, D. A.; Vera, M.; Rivas, B. Polymer Supports for the Removal and Degradation of Hazardous Organic Pollutants: An Overview. Polym. Int. 2020, 69, 333–345. DOI: 10.1002/pi.5961.
  • Long, C.; Li, Y.; Yu, W.; Li, A. Removal of Benzene and Methyl Ethyl Ketone Vapor: comparison of Hypercrosslinked Polymeric Adsorbent with Activated Carbon. J. Hazard. Mater. 2012, 203–204, 251–256. DOI: 10.1016/j.jhazmat.2011.12.010.
  • Long, C.; Li, Q.; Li, Y.; Liu, Y.; Li, A.; Zhang, Q. Adsorption Characteristics of Benzene–Chlorobenzene Vapor on Hypercrosslinked Polystyrene Adsorbent and a Pilot-Scale Application Study. Chem. Engin. J. 2010, 160, 723–728. DOI: 10.1016/j.cej.2010.03.074.
  • Ghafari, M.; Atkinson, J. One-Step Hyper-Cross-Linking of Porous Styrenic Polymers Using Dichloroalkane Cross-Linkers to Maintain Hydrophobicity. Polymer 2017, 116, 278–286. DOI: 10.1016/j.polymer.2017.03.082.
  • Zhu, L.; Shen, D.; Luo, K. A Critical Review on VOCs Adsorption by Different Porous Materials: Species, Mechanisms and Modification Methods. J. Hazard. Mater. 2020, 389, 122102. DOI: 10.1016/j.jhazmat.2020.122102.
  • Zhang, L.; Song, X.; Wu, J.; Long, C.; Li, A.; Zhang, Q. Preparation and Characterization of Micro-Mesoporous Hypercrosslinked Polymeric Adsorbent and Its Application for the Removal of VOCs. Chem. Engin. J. 2012, 192, 8–12. DOI: 10.1016/j.cej.2012.03.071.
  • Liu, H.; Wang, L.; Zhang, J.; Liang, X.; Long, C. Mechanistic Insights into and Modeling the Effects of Relative Humidity on Low-Concentration VOCs Adsorption on Hyper-Cross-Linked Polymeric Resin by Inverse Gas Chromatography. J. Hazard. Mater. 2021, 418, 126335. DOI: 10.1016/j.jhazmat.2021.126335.
  • Wang, X.; Ma, C.; Xiao, J.; Xia, Q.; Wu, J.; Li, Z. Benzene/Toluene/Water Vapor Adsorption and Selectivity of Novel C-PDA Adsorbents with High Uptakes of Benzene and Toluene. Chem. Engin. J. 2018, 335, 970–978. DOI: 10.1016/j.cej.2017.10.102.
  • Karde, V.; Ghoroi, C. Fine Powder Flow under Humid Environmental Conditions from the Perspective of Surface Energy. Int. J. Pharm. 2015, 485, 192–201. DOI: 10.1016/j.ijpharm.2015.03.021.
  • Grajek, H.; Paciura-Zadrozna, J.; Witkiewicz, Z. Chromatographic Characterisation of Ordered Mesoporous Silicas: Part I. J. Chromatogr. A. 2010, 1217, 3105–3115.
  • Wang, X.; Mu, P.; Zhang, C.; Chen, Y.; Zeng, J.; Wang, F.; Jiang, J.-X. Interfaces "Control Synthesis of Tubular Hyper-Cross-Linked Polymers for Highly Porous Carbon Nanotubes. ACS Appl. Mater. Interfaces 2017, 9, 20779–20786. DOI: 10.1021/acsami.7b05345.
  • Hou, S.; Wang, S.; Long, X.; Tan, B. Knitting Polycyclic Aromatic Hydrocarbon-Based Microporous Organic Polymers for Efficient CO 2 Capture. RSC Advances. 2018, 8, 10347–10354.
  • Lee, J. S. M.; Briggs, M. E.; Hasell, T.; Cooper, A. Hyperporous Carbons from Hypercrosslinked Polymers. Adv. Mater. 2016, 28, 9804–9810.
  • Liu, Y.; Wang, S.; Meng, X.; Ye, Y.; Song, X.; Liang, Z.; Zhao, Y. Molecular Expansion for Constructing Porous Organic Polymers with High Surface Areas and Well-Defined Nanopores. Angew. Chem. Int. Ed. Engl. 2020, 59, 19487–19493. DOI: 10.1002/anie.202002702.
  • Li, D.; Chen, W.; Wu, J.; Jia, C. Q.; Jiang, X. The Preparation of Waste Biomass-Derived N-Doped Carbons and Their Application in Acid Gas Removal: Focus on N Functional Groups. J. Mater. Chem. A. 2020, 8, 24977–24995. DOI: 10.1039/D0TA07977D.
  • Chen, Q.; Liu, D. P.; Luo, M.; Feng, L. J.; Zhao, Y. C.; Han, B. Nitrogen-Containing Microporous Conjugated Polymers via Carbazole-Based Oxidative Coupling Polymerization: preparation, Porosity, and Gas Uptake. Small 2014, 10, 308–315. DOI: 10.1002/smll.201301618.
  • Shang, Q.; Cheng, Y.; Gong, Z.; Yan, Y.; Han, B.; Liao, G.; Wang, D. Constructing Novel Hyper-Crosslinked Conjugated Polymers through Molecular Expansion for Enhanced Gas Adsorption Performance. J. Hazard. Mater. 2022, 426, 127850. DOI: 10.1016/j.jhazmat.2021.127850.
  • Liu, P.; Long, C.; Li, Q.; Qian, H.; Li, A.; Zhang, Q. Adsorption of Trichloroethylene and Benzene Vapors onto Hypercrosslinked Polymeric Resin. J. Hazard. Mater. 2009, 166, 46–51. DOI: 10.1016/j.jhazmat.2008.10.124.
  • Meng, Q. B.; Yang, G.-S.; Lee, Y.-S.; materials, m. Preparation of Highly Porous Hypercrosslinked Polystyrene Adsorbents: Effects of Hydrophilicity on the Adsorption and Microwave-Assisted Desorption Behavior toward Benzene. Microporous Mesoporous Mater. 2013, 181, 222–227. DOI: 10.1016/j.micromeso.2013.07.027.
  • Wang, G.; Dou, B.; Wang, J.; Wang, W.; Hao, Z. Adsorption Properties of Benzene and Water Vapor on Hyper-Cross-Linked Polymers. RSC Adv. 2013, 3, 20523–20531. DOI: 10.1039/c3ra41450g.
  • Pan, L.; Chen, Q.; Zhu, J.-H.; Yu, J.-G.; He, Y.-J.; Han, B.-H. Hypercrosslinked Porous Polycarbazoles via One-Step Oxidative Coupling Reaction and Friedel–Crafts Alkylation. Polymer Chemistry. 2015, 6, 2478–2487.
  • Zhou, B.; Sun, B.; Qiu, W.; Zhou, Y.; He, J.; Lu, X.; Lu, H. Adsorption/Desorption of Toluene on a Hypercrosslinked Polymeric Resin in a Highly Humid Gas Stream. Chin. J. Chem. Eng. 2019, 27, 863–868. DOI: 10.1016/j.cjche.2018.09.027.
  • Jia, L.; Yu, W.; Long, C.; Li, A.; Research, P. Adsorption Equilibrium and Dynamics of Gasoline Vapors onto Polymeric Adsorbents. Environ. Sci. Pollut. Res. Int. 2014, 21, 3756–3763. DOI: 10.1007/s11356-013-2328-z.
  • Long, C.; Liu, P.; Li, Y.; Li, A.; Zhang, Q. Characterization of Hydrophobic Hypercrosslinked Polymer as an Adsorbent for Removal of Chlorinated Volatile Organic Compounds. Technology 2011, 45, 4506–4512.
  • Na, C.-J.; Yoo, M.-J.; Tsang, D. C.; Kim, H. W.; Kim, K.-H. High-Performance Materials for Effective Sorptive Removal of Formaldehyde in Air. J. Hazard. Mater. 2019, 366, 452–465. DOI: 10.1016/j.jhazmat.2018.12.011.
  • Szulejko, J. E.; Kim, K.-H.; Technology, P. Is the Maximum Adsorption Capacity Obtained at High VOC Pressures (> 1000 Pa) Really Meaningful in Real-World Applications for the Sorptive Removal of VOCs under Ambient Conditions (< 1 Pa)?. Separation and Purification Technology. 2019, 228, 115729.
  • Ncube, T.; Kumar Reddy, K. S.; Al Shoaibi, A.; Srinivasakannan, C. Benzene, Toluene, m-Xylene Adsorption on Silica-Based Adsorbents. Fuels 2017, 31, 1882–1888.
  • Srirachat, W.; Wannachod, T.; Pancharoen, U.; Kheawhom, S. Effect of Polarity and Temperature on the Binary Interaction between D2EHPA Extractant and Organic Solvents (Kerosene, n-Heptane, Chlorobenzene and 1-Octanol): Experimental and Thermodynamics. Fluid Phase Equilib. 2017, 434, 117–129. DOI: 10.1016/j.fluid.2016.11.029.
  • Wang, X.; Mao, X.; Huang, J.; Physicochemical, S. A.; Aspects, E. Hierarchical Porous Hyper-Cross-Linked Polymers Modified with Phenolic Hydroxyl Groups and Their Efficient Adsorption of Aniline from Aqueous Solution. Colloids Surf, A. 2018, 558, 80–87. DOI: 10.1016/j.colsurfa.2018.08.060.
  • Yang, S.-J.; Ding, X.; Han, B.-H. Conjugated Microporous Polymers with Extended π-Structures for Organic Vapor Adsorption. Macromolecules 2018, 51, 947–953. DOI: 10.1021/acs.macromol.7b02515.
  • Wang, C.; Yin, H.; Tian, P.; Sun, X.; Pan, X.; Chen, K.; Chen, W.-J.; Wu, Q.-H.; Luo, S. Remarkable Adsorption Performance of MOF-199 Derived Porous Carbons for Benzene Vapor. Environ. Res. 2020, 184, 109323. DOI: 10.1016/j.envres.2020.109323.
  • Liu, B.; Younis, S. A.; Kim, K.-H. The Dynamic Competition in Adsorption between Gaseous Benzene and Moisture on Metal-Organic Frameworks across Their Varying Concentration Levels. Chem. Engin. J. 2021, 421, 127813. DOI: 10.1016/j.cej.2020.127813.
  • Vikrant, K.; Na, C.-J.; Younis, S. A.; Kim, K.-H.; Kumar, S. Evidence for Superiority of Conventional Adsorbents in the Sorptive Removal of Gaseous Benzene under Real-World Conditions: Test of Activated Carbon against Novel Metal-Organic Frameworks. Journal of Cleaner Production. 2019, 235, 1090–1102.
  • Zheng, X.; Liu, S.; Rehman, S.; Li, Z.; Zhang, P. Highly Improved Adsorption Performance of Metal-Organic Frameworks CAU-1 for Trace Toluene in Humid Air via Sequential Internal and External Surface Modification. Chem. Engin. J. 2020, 389, 123424. DOI: 10.1016/j.cej.2019.123424.
  • Vellingiri, K.; Kumar, P.; Deep, A.; Kim, K.-H. Metal-Organic Frameworks for the Adsorption of Gaseous Toluene under Ambient Temperature and Pressure. Chemical Engineering Journal. 2017, 307, 1116–1126.
  • Baytar, O.; Şahin, Ö.; Horoz, S.; Kutluay, S.; Research, P. High-Performance Gas-Phase Adsorption of Benzene and Toluene on Activated Carbon: response Surface Optimization, Reusability, Equilibrium, Kinetic, and Competitive Adsorption Studies. Environ. Sci. Pollut. Res. Int. 2020, 27, 26191–26210. DOI: 10.1007/s11356-020-08848-4.
  • Yin, T.; Meng, X.; Jin, L.; Yang, C.; Liu, N.; Shi, L. Prepared Hydrophobic Y Zeolite for Adsorbing Toluene in Humid Environment. Microporous. Mesoporous. Mater. 2020, 305, 110327. DOI: 10.1016/j.micromeso.2020.110327.
  • Jiao, J.; Qin, B.; Du, Y.; Ma, J.; Li, W.; Li, R. Adsorption and Diffusion Properties of Toluene on Y Zeolites by Steam–Acid Treatment: Effects of Mesoporosity and Surface Acidity. Journal of Chemical & Engineering Data. 2019, 64, 3483–3492.
  • Li, R.; Xue, T.; Bingre, R.; Gao, Y.; Louis, B.; Wang, Q. Microporous Zeolite@Vertically Aligned Mg-Al Layered Double Hydroxide Core@Shell Structures with Improved Hydrophobicity and Toluene Adsorption Capacity under Wet Conditions. ACS Appl. Mater. Interfaces 2018, 10, 34834–34839. DOI: 10.1021/acsami.8b15118.
  • Lan, L.; Huang, Y.; Dan, Y.; Jiang, L. J. R. Conjugated Porous Polymers for Gaseous Toluene Adsorption in Humid Atmosphere. React. Funct. Polym. 2021, 159, 104804. DOI: 10.1016/j.reactfunctpolym.2020.104804.
  • Wang, J.; Wang, G.; Wang, W.; Zhang, Z.; Liu, Z.; Hao, Z. Hydrophobic Conjugated Microporous Polymer as a Novel Adsorbent for Removal of Volatile Organic Compounds. J. Mater. Chem. A. 2014, 2, 14028–14037. DOI: 10.1039/C4TA02605E.
  • Bellat, J.-P.; Bezverkhyy, I.; Weber, G.; Royer, S.; Averlant, R.; Giraudon, J.-M.; Lamonier, J.-F. Capture of Formaldehyde by Adsorption on Nanoporous Materials. J. Hazard. Mater. 2015, 300, 711–717. DOI: 10.1016/j.jhazmat.2015.07.078.
  • Furukawa, H.; Yaghi, O. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc. 2009, 131, 8875–8883. DOI: 10.1021/ja9015765.
  • Kim, S.; Thirion, D.; Nguyen, T. S.; Kim, B.; Dogan, N. A.; Yavuz, C. Sustainable Synthesis of Superhydrophobic Perfluorinated Nanoporous Networks for Small Molecule Separation. Chemistry of Materials. 2019, 31, 5206–5213.
  • Vikrant, K.; Qu, Y.; Kim, K.-H.; Boukhvalov, D. W.; Ahn, W.-S. Amine-Functionalized Microporous Covalent Organic Polymers for Adsorptive Removal of a Gaseous Aliphatic Aldehyde Mixture. Environmental Science: Nano. 2020, 7, 3447–3468.
  • Lara-Ibeas, I.; Megias-Sayago, C.; Louis, B.; Le Calvé, S. Adsorptive Removal of Gaseous Formaldehyde at Realistic Concentrations. J. Environ. Chem. Eng. 2020, 8, 103986. DOI: 10.1016/j.jece.2020.103986.
  • Virdis, T.; Walgraeve, C.; Ioannidis, A.; Van Langenhove, H.; Denayer, J. Multi-Component Ppm Level Adsorption of VOCs on the ZIF-8 and UiO-66 MOFs: Breakthrough Analysis with Selected Ion Flow Tube Mass Spectrometry. J. Environ. Chem. Eng. 2021, 9, 106568. DOI: 10.1016/j.jece.2021.106568.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.