859
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Material Design for Next-Generation mRNA Vaccines Using Lipid Nanoparticles

, , , , , & show all
Pages 394-436 | Received 04 Nov 2021, Accepted 01 Jul 2022, Published online: 03 Aug 2022

References

  • Krammer, F. SARS-CoV-2 Vaccines in Development. Nature 2020, 586, 516–527. DOI: 10.1038/s41586-020-2798-3.
  • Le, T. T.; Cramer, J. P.; Chen, R.; Mayhew, S. Evolution of the COVID-19 Vaccine Development Landscape. Nat. Rev. Drug Discov. 2020, 19, 667–668. DOI: 10.1038/d41573-020-00151-8.
  • Deming, M. E.; Michael, N. L.; Robb, M.; Cohen, M. S.; Neuzil, K. M. Accelerating Development of SARS-CoV-2 Vaccines - The Role for Controlled Human Infection Models. N Engl. J. Med. 2020, 383, e63. DOI: 10.1056/NEJMp2020076.
  • van Riel, D.; de Wit, E. Next-Generation Vaccine Platforms for COVID-19. Nat. Mater. 2020, 19, 810–812. DOI: 10.1038/s41563-020-0746-0.
  • Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; et al. Development of an Inactivated Vaccine Candidate for SARS-CoV-2. Science 2020, 369, 77–81. DOI: 10.1126/science.abc1932.
  • Amanat, F.; Krammer, F. SARS-CoV-2 Vaccines: Status Report. Immunity 2020, 52, 583–589. DOI: 10.1016/j.immuni.2020.03.007.
  • Wrapp, D.; Wang, N.; Corbett, K. S.; Goldsmith, J. A.; Hsieh, C. L.; Abiona, O.; Graham, B. S.; McLellan, J. S. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263. DOI: 10.1126/science.abb2507.
  • Liu, C.; Zhou, Q.; Li, Y.; Garner, L. V.; Watkins, S. P.; Carter, L. J.; Smoot, J.; Gregg, A. C.; Daniels, A. D.; Jervey, S.; Albaiu, D. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Cent. Sci. 2020, 6, 315–331. DOI: 10.1021/acscentsci.0c00272.
  • Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B. J.; Jiang, S. The Spike Protein of SARS-CoV–A Target for Vaccine and Therapeutic Development. Nat. Rev. Microbiol. 2009, 7, 226–236. DOI: 10.1038/nrmicro2090.
  • Pulendran, B.; S Arunachalam, P.; O'Hagan, D. T. Emerging Concepts in the Science of Vaccine Adjuvants. Nat. Rev. Drug Discov. 2021, 20, 454–475. DOI: 10.1038/s41573-021-00163-y.
  • Liang, Z.; Zhu, H.; Wang, X.; Jing, B.; Li, Z.; Xia, X.; Sun, H.; Yang, Y.; Zhang, W.; Shi, L.; et al. Adjuvants for Coronavirus Vaccines. Front. Immunol. 2020, 11, 589833.
  • Mousavi, T.; Sattari Saravi, S.; Valadan, R.; Haghshenas, M. R.; Rafiei, A.; Jafarpour, H.; Shamshirian, A. Different Types of Adjuvants in Prophylactic and Therapeutic Human Papillomavirus Vaccines in Laboratory Animals: A Systematic Review. Arch. Virol. 2020, 165, 263–284. DOI: 10.1007/s00705-019-04479-4.
  • Sheridan, C. First COVID-19 DNA Vaccine Approved, Others in Hot Pursuit. Nat. Biotechnol. 2021, 39, 1479–1482. DOI: 10.1038/d41587-021-00023-5.
  • Hassett, K. J.; Benenato, K. E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.; Himansu, S.; Deterling, J.; Geilich, B. M.; Ketova, T.; et al. Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines. Mol. Ther. Nucleic Acids 2019, 15, 1–11. DOI: 10.1016/j.omtn.2019.01.013.
  • Malone, R. W.; Felgner, P. L.; Verma, I. M. Cationic Liposome-Mediated RNA Transfection. Proc. Natl. Acad. Sci. USA 1989, 86, 6077–6081. DOI: 10.1073/pnas.86.16.6077.
  • Martinon, F.; Krishnan, S.; Lenzen, G.; Magne, R.; Gomard, E.; Guillet, J. G.; Levy, J. P.; Meulien, P. Induction of Virus-Specific Cytotoxic T Lymphocytes in Vivo by Liposome-Entrapped mRNA. Eur. J. Immunol. 1993, 23, 1719–1722. DOI: 10.1002/eji.1830230749.
  • Weide, B.; Carralot, J. P.; Reese, A.; Scheel, B.; Eigentler, T. K.; Hoerr, I.; Rammensee, H. G.; Garbe, C.; Pascolo, S. Results of the First Phase I/II Clinical Vaccination Trial with Direct Injection of mRNA. J. Immunother. 2008, 31, 180–188. DOI: 10.1097/CJI.0b013e31815ce501.
  • Pascolo, S. Vaccines against COVID-19: Priority to mRNA-Based Formulations. Cells 2021, 10, 2716. DOI: 10.3390/cells10102716.
  • Kariko, K.; Muramatsu, H.; Welsh, F. A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of Pseudouridine into mRNA Yields Superior Nonimmunogenic Vector with Increased Translational Capacity and Biological Stability. Mol. Ther. 2008, 16, 1833–1840. DOI: 10.1038/mt.2008.200.
  • Polack, F. P.; Thomas, S. J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J. L.; Perez Marc, G.; Moreira, E. D.; Zerbini, Cet al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. Group, C. C. T DOI: 10.1056/NEJMoa2034577.
  • Cohen, J. First Self-Copying mRNA Vaccine Proves Itself in Pandemic Trial. Science 2022, 376, 446. DOI: 10.1126/science.abq7232.
  • Zepeda-Cervantes, J.; Ramirez-Jarquin, J. O.; Vaca, L. Interaction between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) from Dendritic Cells (DCs): toward Better Engineering of VLPs. Front. Immunol. 2020, 11, 1100. DOI: 10.3389/fimmu.2020.01100.
  • Shah, V. K.; Firmal, P.; Alam, A.; Ganguly, D.; Chattopadhyay, S. Overview of Immune Response during SARS-CoV-2 Infection: Lessons from the Past. Front. Immunol. 2020, 11, 1949.
  • Rosendahl Huber, S.; van Beek, J.; de Jonge, J.; Luytjes, W.; van Baarle, D. T Cell Responses to Viral Infections - Opportunities for Peptide Vaccination. Front. Immunol. 2014, 5, 171.
  • Super, M.; Doherty, E. J.; Cartwright, M. J.; Seiler, B. T.; Langellotto, F.; Dimitrakakis, N.; White, D. A.; Stafford, A. G.; Karkada, M.; Graveline, A. R.; et al. Biomaterial Vaccines Capturing Pathogen-Associated Molecular Patterns Protect against Bacterial Infections and Septic Shock. Nat. Biomed. Eng. 2022, 6, 8–18. DOI: 10.1038/s41551-021-00756-3.
  • Thames, A. H.; Wolniak, K. L.; Stupp, S. I.; Jewett, M. C. Principles Learned from the International Race to Develop a Safe and Effective COVID-19 Vaccine. ACS Cent. Sci. 2020, 6, 1341–1347. DOI: 10.1021/acscentsci.0c00644.
  • Wadhwa, A.; Aljabbari, A.; Lokras, A.; Foged, C.; Thakur, A. Opportunities and Challenges in the Delivery of mRNA-Based Vaccines. Pharmaceutics 2020, 12, 102. DOI: 10.3390/pharmaceutics12020102.
  • Ramamoorth, M.; Narvekar, A. Non Viral Vectors in Gene Therapy- An Overview. J. Clin. Diagn. Res. 2015, 9, GE01–6.
  • Zhong, Z. F.; Mc Cafferty, S.; Combes, F.; Huysmans, H.; De Temmerman, J.; Gitsels, A.; Vanrompay, D.; Catani, J. P.; Sanders, N. N. mRNA Therapeutics Deliver a Hopeful Message. Nano Today 2018, 23, 16–39. DOI: 10.1016/j.nantod.2018.10.005.
  • Maruggi, G.; Zhang, C.; Li, J.; Ulmer, J. B.; Yu, D. mRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases. Mol. Ther. 2019, 27, 757–772. DOI: 10.1016/j.ymthe.2019.01.020.
  • Nance, K. D.; Meier, J. L. Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS Cent. Sci. 2021, 7, 748–756. DOI: 10.1021/acscentsci.1c00197.
  • Reichmuth, A. M.; Oberli, M. A.; Jaklenec, A.; Langer, R.; Blankschtein, D. mRNA Vaccine Delivery Using Lipid Nanoparticles. Ther. Deliv. 2016, 7, 319–334. DOI: 10.4155/tde-2016-0006.
  • Wittrup, A.; Ai, A.; Liu, X.; Hamar, P.; Trifonova, R.; Charisse, K.; Manoharan, M.; Kirchhausen, T.; Lieberman, J. Visualizing Lipid-Formulated siRNA Release from Endosomes and Target Gene Knockdown. Nat. Biotechnol. 2015, 33, 870–876. DOI: 10.1038/nbt.3298.
  • Arteta, M. Y.; Kjellman, T.; Bartesaghi, S.; Wallin, S.; Wu, X. Q.; Kvist, A. J.; Dabkowska, A.; Szekely, N.; Radulescu, A.; Bergenholtz, J.; Lindfors, L. Successful Reprogramming of Cellular Protein Production through mRNA Delivered by Functionalized Lipid Nanoparticles. Proc. Natl. Acad. Sci. USA 2018, 115, E3351–E3360. DOI: 10.1073/pnas.1720542115.
  • Oberli, M. A.; Reichmuth, A. M.; Dorkin, J. R.; Mitchell, M. J.; Fenton, O. S.; Jaklenec, A.; Anderson, D. G.; Langer, R.; Blankschtein, D. Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy. Nano Lett. 2017, 17, 1326–1335. DOI: 10.1021/acs.nanolett.6b03329.
  • Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA Vaccines - A New Era in Vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. DOI: 10.1038/nrd.2017.243.
  • Holtkamp, S.; Kreiter, S.; Selmi, A.; Simon, P.; Koslowski, M.; Huber, C.; Tureci, O.; Sahin, U. Modification of Antigen-Encoding RNA Increases Stability, Translational Efficacy, and T-Cell Stimulatory Capacity of Dendritic Cells. Blood 2006, 108, 4009–4017. DOI: 10.1182/blood-2006-04-015024.
  • Weissman, D. mRNA Transcript Therapy. Expert Rev. Vaccines 2015, 14, 265–281. DOI: 10.1586/14760584.2015.973859.
  • Sahin, U.; Kariko, K.; Tureci, O. mRNA-Based Therapeutics–Developing a New Class of Drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780. DOI: 10.1038/nrd4278.
  • Gallie, D. R. The Cap and Poly(A) Tail Function Synergistically to Regulate mRNA Translational Efficiency. Genes Dev. 1991, 5, 2108–2116. DOI: 10.1101/gad.5.11.2108.
  • Stepinski, J.; Waddell, C.; Stolarski, R.; Darzynkiewicz, E.; Rhoads, R. E. Synthesis and Properties of mRNAs Containing the Novel "anti-Reverse" Cap Analogs 7-Methyl(3'-O-Methyl)GpppG and 7-Methyl (3'-Deoxy)GpppG. RNA 2001, 7, 1486–1495.
  • Kariko, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity 2005, 23, 165–175. DOI: 10.1016/j.immuni.2005.06.008.
  • Kormann, M. S.; Hasenpusch, G.; Aneja, M. K.; Nica, G.; Flemmer, A. W.; Herber-Jonat, S.; Huppmann, M.; Mays, L. E.; Illenyi, M.; Schams, A.; et al. Expression of Therapeutic Proteins after Delivery of Chemically Modified mRNA in Mice. Nat. Biotechnol. 2011, 29, 154–157. DOI: 10.1038/nbt.1733.
  • Wroblewska, L.; Kitada, T.; Endo, K.; Siciliano, V.; Stillo, B.; Saito, H.; Weiss, R. Mammalian Synthetic Circuits with RNA Binding Proteins for RNA-Only Delivery. Nat. Biotechnol. 2015, 33, 839–841. DOI: 10.1038/nbt.3301.
  • Warren, L.; Manos, P. D.; Ahfeldt, T.; Loh, Y. H.; Li, H.; Lau, F.; Ebina, W.; Mandal, P. K.; Smith, Z. D.; Meissner, A.; et al. Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell 2010, 7, 618–630. DOI: 10.1016/j.stem.2010.08.012.
  • Anderson, B. R.; Muramatsu, H.; Nallagatla, S. R.; Bevilacqua, P. C.; Sansing, L. H.; Weissman, D.; Kariko, K. Incorporation of Pseudouridine into mRNA Enhances Translation by Diminishing PKR Activation. Nucleic Acids Res. 2010, 38, 5884–5892. DOI: 10.1093/nar/gkq347.
  • Kariko, K.; Muramatsu, H.; Ludwig, J.; Weissman, D. Generating the Optimal mRNA for Therapy: HPLC Purification Eliminates Immune Activation and Improves Translation of Nucleoside-Modified, Protein-Encoding mRNA. Nucleic Acids Res. 2011, 39, e142–e142. DOI: 10.1093/nar/gkr695.
  • Sedic, M.; Senn, J. J.; Lynn, A.; Laska, M.; Smith, M.; Platz, S. J.; Bolen, J.; Hoge, S.; Bulychev, A.; Jacquinet, E.; et al. Safety Evaluation of Lipid Nanoparticle-Formulated Modified mRNA in the Sprague-Dawley Rat and Cynomolgus Monkey. Vet. Pathol. 2018, 55, 341–354. DOI: 10.1177/0300985817738095.
  • Tanaka, H.; Nakatani, T.; Furihata, T.; Tange, K.; Nakai, Y.; Yoshioka, H.; Harashima, H.; Akita, H. In Vivo Introduction of mRNA Encapsulated in Lipid Nanoparticles to Brain Neuronal Cells and Astrocytes via Itracerebroventricular Administration. Mol. Pharm. 2018, 15, 2060–2067. DOI: 10.1021/acs.molpharmaceut.7b01084.
  • Dolgin, E. Covid Vaccine Flop Spotlights Mrna Design Challenges. Nature 2021, 594, 483–483. DOI: 10.1038/d41586-021-01661-0.
  • Pardi, N.; Tuyishime, S.; Muramatsu, H.; Kariko, K.; Mui, B. L.; Tam, Y. K.; Madden, T. D.; Hope, M. J.; Weissman, D. Expression Kinetics of Nucleoside-Modified mRNA Delivered in Lipid Nanoparticles to Mice by Various Routes. J. Control. Release 2015, 217, 345–351. DOI: 10.1016/j.jconrel.2015.08.007.
  • Xin, H.; Li, Y.; Cui, Y.; Yang, J. J.; Zhang, Z. G.; Chopp, M. Systemic Administration of Exosomes Released from Mesenchymal Stromal Cells Promote Functional Recovery and Neurovascular Plasticity after Stroke in Rats. J. Cereb. Blood Flow Metab. 2013, 33, 1711–1715. DOI: 10.1038/jcbfm.2013.152.
  • Kudla, G.; Lipinski, L.; Caffin, F.; Helwak, A.; Zylicz, M. High Guanine and Cytosine Content Increases mRNA Levels in Mammalian Cells. PLoS Biol. 2006, 4, e180. DOI: 10.1371/journal.pbio.0040180.
  • Thess, A.; Grund, S.; Mui, B. L.; Hope, M. J.; Baumhof, P.; Fotin-Mleczek, M.; Schlake, T. Sequence-Engineered mRNA without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. Mol. Ther. 2015, 23, 1456–1464. DOI: 10.1038/mt.2015.103.
  • Henderson, J. M.; Ujita, A.; Hill, E.; Yousif-Rosales, S.; Smith, C.; Ko, N.; McReynolds, T.; Cabral, C. R.; Escamilla-Powers, J. R.; Houston, M. E. Cap 1 Messenger RNA Synthesis with Co-Transcriptional CleanCap((R)) Analog by in Vitro Transcription. Curr. Protoc. 2021, 1, e39. DOI: 10.1002/cpz1.39.
  • Benteyn, D.; Heirman, C.; Bonehill, A.; Thielemans, K.; Breckpot, K. mRNA-Based Dendritic Cell Vaccines. Expert Rev. Vaccines. 2015, 14, 161–176. DOI: 10.1586/14760584.2014.957684.
  • Boczkowski, D.; Nair, S. K.; Snyder, D.; Gilboa, E. Dendritic Cells Pulsed with RNA Are Potent Antigen-Presenting Cells in Vitro and in Vivo. J. Exp. Med. 1996, 184, 465–472. DOI: 10.1084/jem.184.2.465.
  • Kranz, L. M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K. C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H.; et al. Systemic RNA Delivery to Dendritic Cells Exploits Antiviral Defence for Cancer Immunotherapy. Nature 2016, 534, 396–401. DOI: 10.1038/nature18300.
  • Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B. P.; Simon, P.; Lower, M.; Bukur, V.; Tadmor, A. D.; Luxemburger, U.; Schrors, B.; et al. Personalized RNA Mutanome Vaccines Mobilize Poly-Specific Therapeutic Immunity against Cancer. Nature 2017, 547, 222–226. DOI: 10.1038/nature23003.
  • Kurimoto, S.; Yoshinaga, N.; Igarashi, K.; Matsumoto, Y.; Cabral, H.; Uchida, S. PEG-OligoRNA Hybridization of mRNA for Developing Sterically Stable Lipid Nanoparticles toward in Vivo Administration. Molecules 2019, 24, 1303. DOI: 10.3390/molecules24071303.
  • Cardarelli, F.; Digiacomo, L.; Marchini, C.; Amici, A.; Salomone, F.; Fiume, G.; Rossetta, A.; Gratton, E.; Pozzi, D.; Caracciolo, G. The Intracellular Trafficking Mechanism of Lipofectamine-Based Transfection Reagents and Its Implication for Gene Delivery. Sci. Rep. 2016, 6, 25879. DOI: 10.1038/srep25879.
  • Steitz, J.; Britten, C. M.; Wolfel, T.; Tuting, T. Effective Induction of anti-Melanoma Immunity following Genetic Vaccination with Synthetic mRNA Coding for the Fusion Protein EGFP.TRP2. Cancer Immunol. Immunother. 2006, 55, 246–253. DOI: 10.1007/s00262-005-0042-5.
  • Broderick, K. E.; Humeau, L. M. Electroporation-Enhanced Delivery of Nucleic Acid Vaccines. Expert Rev. Vaccines 2015, 14, 195–204. DOI: 10.1586/14760584.2015.990890.
  • Johansson, D. X.; Ljungberg, K.; Kakoulidou, M.; Liljestrom, P. Intradermal Electroporation of Naked Replicon RNA Elicits Strong Immune Responses. PLoS One. 2012, 7, e29732. DOI: 10.1371/journal.pone.0029732.
  • Kim, J.; Eygeris, Y.; Gupta, M.; Sahay, G. Self-Assembled mRNA Vaccines. Adv. Drug Deliv. Rev. 2021, 170, 83–112. DOI: 10.1016/j.addr.2020.12.014.
  • Aldosari, B. N.; Alfagih, I. M.; Almurshedi, A. S. Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics 2021, 13, 206. DOI: 10.3390/pharmaceutics13020206.
  • Williams, D. J.; Puhl, H. L.; Ikeda, S. R. A Simple, Highly Efficient Method for Heterologous Expression in Mammalian Primary Neurons Using Cationic Lipid-Mediated mRNA Transfection. Front. Neurosci. 2010, 4, 181. DOI: 10.3389/fnins.2010.00181.
  • Fang, N.; Wang, J.; Mao, H. Q.; Leong, K. W.; Chan, V. BHEM-Chol/DOPE Liposome Induced Perturbation of Phospholipid Bilayer. Colloids Surfaces B Biointerfaces 2003, 29, 233–245. DOI: 10.1016/S0927-7765(02)00207-2.
  • Zhang, Y.; Shen, S.; Zhao, G.; Xu, C. F.; Zhang, H. B.; Luo, Y. L.; Cao, Z. T.; Shi, J.; Zhao, Z. B.; Lian, Z. X.; Wang, J. In Situ Repurposing of Dendritic Cells with CRISPR/Cas9-Based Nanomedicine to Induce Transplant Tolerance. Biomaterials 2019, 217, 119302. DOI: 10.1016/j.biomaterials.2019.119302.
  • Kauffman, K. J.; Webber, M. J.; Anderson, D. G. Materials for Non-Viral Intracellular Delivery of Messenger RNA Therapeutics. J. Control. Release 2016, 240, 227–234. DOI: 10.1016/j.jconrel.2015.12.032.
  • Guan, S.; Rosenecker, J. Nanotechnologies in Delivery of mRNA Therapeutics Using Nonviral Vector-Based Delivery Systems. Gene Ther. 2017, 24, 133–143. DOI: 10.1038/gt.2017.5.
  • Midoux, P.; Pichon, C. Lipid-Based mRNA Vaccine Delivery Systems. Expert Rev. Vaccines 2015, 14, 221–234. DOI: 10.1586/14760584.2015.986104.
  • Kaczmarek, J. C.; Patel, A. K.; Kauffman, K. J.; Fenton, O. S.; Webber, M. J.; Heartlein, M. W.; DeRosa, F.; Anderson, D. G. Polymer-Lipid Nanoparticles for Systemic Delivery of mRNA to the Lungs. Angew. Chem. Int. Ed. Engl. 2016, 55, 13808–13812. DOI: 10.1002/anie.201608450.
  • Eltoukhy, A. A.; Chen, D.; Alabi, C. A.; Langer, R.; Anderson, D. G. Degradable Terpolymers with Alkyl Side Chains Demonstrate Enhanced Gene Delivery Potency and Nanoparticle Stability. Adv. Mater. 2013, 25, 1487–1493. DOI: 10.1002/adma.201204346.
  • Su, X. F.; Fricke, J.; Kavanagh, D. G.; Irvine, D. J. In Vitro and in Vivo mRNA Delivery Using Lipid-Enveloped pH-Responsive Polymer Nanoparticles. Mol. Pharm. 2011, 8, 774–787. DOI: 10.1021/mp100390w.
  • Guerrero-Cazares, H.; Tzeng, S. Y.; Young, N. P.; Abutaleb, A. O.; Quinones-Hinojosa, A.; Green, J. J. Biodegradable Polymeric Nanoparticles Show High Efficacy and Specificity at DNA Delivery to Human Glioblastoma in Vitro and in Vivo. ACS Nano. 2014, 8, 5141–5153. DOI: 10.1021/nn501197v.
  • Mastorakos, P.; da Silva, A. L.; Chisholm, J.; Song, E.; Choi, W. K.; Boyle, M. P.; Morales, M. M.; Hanes, J.; Suk, J. S. Highly Compacted Biodegradable DNA Nanoparticles Capable of Overcoming the Mucus Barrier for Inhaled Lung Gene Therapy. Proc. Natl. Acad. Sci. USA 2015, 112, 8720–8725. DOI: 10.1073/pnas.1502281112.
  • Ross-Thriepland, D.; Bornot, A.; Butler, L.; Desai, A.; Jaiswal, H.; Peel, S.; Hunter, M. R.; Odunze, U.; Isherwood, B.; Gianni, D. Arrayed CRISPR Screening Identifies Novel Targets That Enhance the Productive Delivery of mRNA by MC3-Based Lipid Nanoparticles. SLAS Discov. 2020, 25, 605–617. DOI: 10.1177/2472555220925770.
  • Xue, H. Y.; Guo, P.; Wen, W. C.; Wong, H. L. Lipid-Based Nanocarriers for RNA Delivery. Curr. Pharm. Des. 2015, 21, 3140–3147. DOI: 10.2174/1381612821666150531164540.
  • Viger-Gravel, J.; Schantz, A.; Pinon, A. C.; Rossini, A. J.; Schantz, S.; Emsley, L. Structure of Lipid Nanoparticles Containing siRNA or mRNA by Dynamic Nuclear Polarization-Enhanced NMR Spectroscopy. J. Phys. Chem. B 2018, 122, 2073–2081. DOI: 10.1021/acs.jpcb.7b10795.
  • Corbett, K. S.; Edwards, D.; Leist, S. R.; Abiona, O. M.; Boyoglu-Barnum, S.; Gillespie, R. A.; Himansu, S.; Schafer, A.; Ziwawo, C. T.; DiPiazza, A. T.; et al. SARS-CoV-2 mRNA Vaccine Development Enabled by Prototype Pathogen Preparedness. bioRxiv 2020. Doi: 10.1101/2020.06.11.145920.
  • Guevara, M. L.; Persano, S.; Persano, F. Lipid-Based Vectors for Therapeutic mRNA-Based anti-Cancer Vaccines. Curr. Pharm. Des. 2019, 25, 1443–1454. DOI: 10.2174/1381612825666190619150221.
  • Nabhan, J. F.; Wood, K. M.; Rao, V. P.; Morin, J.; Bhamidipaty, S.; LaBranche, T. P.; Gooch, R. L.; Bozal, F.; Bulawa, C. E.; Guild, B. C. Intrathecal Delivery of Frataxin mRNA Encapsulated in Lipid Nanoparticles to Dorsal Root Ganglia as a Potential Therapeutic for Friedreich's Ataxia. Sci. Rep. 2016, 6, 20019. DOI: 10.1038/srep20019.
  • Kon, E.; Hazan-Halevy, I.; Rosenblum, D.; Cohen, N.; Chatterjee, S.; Veiga, N.; Raanani, P.; Bairey, O.; Benjamini, O.; Nagler, A.; Peer, D. Resveratrol Enhances mRNA and siRNA Lipid Nanoparticles Primary CLL Cell Transfection. Pharmaceutics 2020, 12, 520. DOI: 10.3390/pharmaceutics12060520.
  • Mukherjee, A.; MacDonald, K. D.; Kim, J.; Henderson, M. I.; Eygeris, Y.; Sahay, G. Engineered Mutant alpha-ENaC Subunit mRNA Delivered by Lipid Nanoparticles Reduces Amiloride Currents in Cystic Fibrosis-Based Cell and Mice Models. Sci. Adv. 2020, 6, eabc5911.
  • Zhang, H. R.; Leal, J.; Soto, M. R.; Smyth, H. D. C.; Ghosh, D. Aerosolizable Lipid Nanoparticles for Pulmonary Delivery of mRNA through Design of Experiments. Pharmaceutics 2020, 12, 1042. DOI: 10.3390/pharmaceutics12111042.
  • Riley, R. S.; Kashyap, M. V.; Billingsley, M. M.; White, B.; Alameh, M. G.; Bose, S. K.; Zoltick, P. W.; Li, H.; Zhang, R.; Cheng, A. Y.; et al. Ionizable Lipid Nanoparticles for in Utero mRNA Delivery. Sci Adv 2021, 7, eaba1028.
  • Billingsley, M. M.; Singh, N.; Ravikumar, P.; Zhang, R.; June, C. H.; Mitchell, M. J. Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering. Nano Lett. 2020, 20, 1578–1589. DOI: 10.1021/acs.nanolett.9b04246.
  • Richner, J. M.; Himansu, S.; Dowd, K. A.; Butler, S. L.; Salazar, V.; Fox, J. M.; Julander, J. G.; Tang, W. W.; Shresta, S.; Pierson, T. C.; et al. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell 2017, 168, 1114–1125 e10. DOI: 10.1016/j.cell.2017.02.017.
  • Buschmann, M. D.; Carrasco, M. J.; Alishetty, S.; Paige, M.; Alameh, M. G.; Weissman, D. Nanomaterial Delivery Systems for mRNA Vaccines. Vaccines (Basel) 2021, 9, 65. DOI: 10.3390/vaccines9010065.
  • Dong, Y.; Love, K. T.; Dorkin, J. R.; Sirirungruang, S.; Zhang, Y.; Chen, D.; Bogorad, R. L.; Yin, H.; Chen, Y.; Vegas, A. J.; et al. Lipopeptide Nanoparticles for Potent and Selective siRNA Delivery in Rodents and Nonhuman Primates. Proc. Natl. Acad. Sci. USA 2014, 111, 3955–3960. DOI: 10.1073/pnas.1322937111.
  • Cheng, Q.; Wei, T.; Jia, Y.; Farbiak, L.; Zhou, K.; Zhang, S.; Wei, Y.; Zhu, H.; Siegwart, D. J. Dendrimer-Based Lipid Nanoparticles Deliver Therapeutic FAH mRNA to Normalize Liver Function and Extend Survival in a Mouse Model of Hepatorenal Tyrosinemia Type I. Adv. Mater. 2018, 30, e1805308. DOI: 10.1002/adma.201805308.
  • Markov, O. V.; Mironova, N. L.; Shmendel, E. V.; Serikov, R. N.; Morozova, N. G.; Maslov, M. A.; Vlassov, V. V.; Zenkova, M. A. Multicomponent Mannose-Containing Liposomes Efficiently Deliver RNA in Murine Immature Dendritic Cells and Provide Productive anti-Tumour Response in Murine Melanoma Model. J. Control. Release 2015, 213, 45–56. DOI: 10.1016/j.jconrel.2015.06.028.
  • Love, K. T.; Mahon, K. P.; Levins, C. G.; Whitehead, K. A.; Querbes, W.; Dorkin, J. R.; Qin, J.; Cantley, W.; Qin, L. L.; Racie, T.; et al. Lipid-like Materials for Low-Dose, in Vivo Gene Silencing. Proc. Natl. Acad. Sci. USA 2010, 107, 1864–1869. DOI: 10.1073/pnas.0910603106.
  • Zhang, X.; Zhao, W.; Nguyen, G. N.; Zhang, C.; Zeng, C.; Yan, J.; Du, S.; Hou, X.; Li, W.; Jiang, J.; et al. Functionalized Lipid-like Nanoparticles for in Vivo mRNA Delivery and Base Editing. Sci. Adv. 2020, 6, eabc2315.
  • Kaczmarek, J. C.; Kauffman, K. J.; Fenton, O. S.; Sadtler, K.; Patel, A. K.; Heartlein, M. W.; DeRosa, F.; Anderson, D. G. Optimization of a Degradable Polymer-Lipid Nanoparticle for Potent Systemic Delivery of mRNA to the Lung Endothelium and Immune Cells. Nano Lett. 2018, 18, 6449–6454. DOI: 10.1021/acs.nanolett.8b02917.
  • Patel, S.; Ashwanikumar, N.; Robinson, E.; Xia, Y.; Mihai, C.; Griffith, J. P.; Hou, S.; Esposito, A. A.; Ketova, T.; Welsher, K.; et al. Naturally-Occurring Cholesterol Analogues in Lipid Nanoparticles Induce Polymorphic Shape and Enhance Intracellular Delivery of mRNA. Nat. Commun. 2020, 11, 983. DOI: 10.1038/s41467-020-14527-2.
  • Robinson, E.; MacDonald, K. D.; Slaughter, K.; McKinney, M.; Patel, S.; Sun, C.; Sahay, G. Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis. Mol. Ther. 2018, 26, 2034–2046. DOI: 10.1016/j.ymthe.2018.05.014.
  • Novakowski, S.; Jiang, K.; Prakash, G.; Kastrup, C. Delivery of mRNA to Platelets Using Lipid Nanoparticles. Sci. Rep. 2019, 9. DOI: 10.1038/s41598-018-36910-2.
  • Luo, X.; Li, B.; Zhang, X.; Zhao, W.; Bratasz, A.; Deng, B.; McComb, D. W.; Dong, Y. Dual-Functional Lipid-like Nanoparticles for Delivery of mRNA and MRI Contrast Agents. Nanoscale 2017, 9, 1575–1579. DOI: 10.1039/c6nr08496f.
  • Patel, S.; Ashwanikumar, N.; Robinson, E.; DuRoss, A.; Sun, C.; Murphy-Benenato, K. E.; Mihai, C.; Almarsson, O.; Sahay, G. Boosting Intracellular Delivery of Lipid Nanoparticle-Encapsulated mRNA. Nano Lett. 2017, 17, 5711–5718. DOI: 10.1021/acs.nanolett.7b02664.
  • Li, B.; Luo, X.; Deng, B.; Wang, J.; McComb, D. W.; Shi, Y.; Gaensler, K. M.; Tan, X.; Dunn, A. L.; Kerlin, B. A.; Dong, Y. An Orthogonal Array Optimization of Lipid-like Nanoparticles for mRNA Delivery in Vivo. Nano Lett. 2015, 15, 8099–8107. DOI: 10.1021/acs.nanolett.5b03528.
  • Kanasty, R.; Dorkin, J. R.; Vegas, A.; Anderson, D. Delivery Materials for siRNA Therapeutics. Nat. Mater. 2013, 12, 967–977. DOI: 10.1038/nmat3765.
  • Bahl, K.; Senn, J. J.; Yuzhakov, O.; Bulychev, A.; Brito, L. A.; Hassett, K. J.; Laska, M. E.; Smith, M.; Almarsson, O.; Thompson, J.; et al. Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Mol. Ther. 2017, 25, 1316–1327. DOI: 10.1016/j.ymthe.2017.03.035.
  • Tam, H. H.; Melo, M. B.; Kang, M.; Pelet, J. M.; Ruda, V. M.; Foley, M. H.; Hu, J. K.; Kumari, S.; Crampton, J.; Baldeon, A. D.; et al. Sustained Antigen Availability during Germinal Center Initiation Enhances Antibody Responses to Vaccination. Proc. Natl. Acad. Sci. USA 2016, 113, E6639–E6648.
  • Pardi, N.; Hogan, M. J.; Pelc, R. S.; Muramatsu, H.; Andersen, H.; DeMaso, C. R.; Dowd, K. A.; Sutherland, L. L.; Scearce, R. M.; Parks, R.; et al. Zika Virus Protection by a Single Low-Dose Nucleoside-Modified mRNA Vaccination. Nature 2017, 543, 248–251. DOI: 10.1038/nature21428.
  • Havenar-Daughton, C.; Lee, J. H.; Crotty, S. Tfh Cells and HIV bnAbs, an Immunodominance Model of the HIV Neutralizing Antibody Generation Problem. Immunol. Rev. 2017, 275, 49–61. DOI: 10.1111/imr.12512.
  • Kauffman, K. J.; Dorkin, J. R.; Yang, J. H.; Heartlein, M. W.; DeRosa, F.; Mir, F. F.; Fenton, O. S.; Anderson, D. G. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett. 2015, 15, 7300–7306. DOI: 10.1021/acs.nanolett.5b02497.
  • Guevara, M. L.; Persano, F.; Persano, S. Advances in Lipid Nanoparticles for mRNA-Based Cancer Immunotherapy. Front. Chem. 2020, 8, 589959.
  • Fan, Y. N.; Li, M.; Luo, Y. L.; Chen, Q.; Wang, L.; Zhang, H. B.; Shen, S.; Gu, Z.; Wang, J. Cationic Lipid-Assisted Nanoparticles for Delivery of mRNA Cancer Vaccine. Biomater. Sci. 2018, 6, 3009–3018. DOI: 10.1039/c8bm00908b.
  • Li, Q.; Chan, C.; Peterson, N.; Hanna, R. N.; Alfaro, A.; Allen, K. L.; Wu, H.; Dall'Acqua, W. F.; Borrok, M. J.; Santos, J. L. Engineering Caveolae-Targeted Lipid Nanoparticles to Deliver mRNA to the Lungs. ACS Chem. Biol. 2020, 15, 830–836. DOI: 10.1021/acschembio.0c00003.
  • Espeseth, A. S.; Cejas, P. J.; Citron, M. P.; Wang, D.; DiStefano, D. J.; Callahan, C.; Donnell, G. O.; Galli, J. D.; Swoyer, R.; Touch, S.; et al. Modified mRNA/Lipid Nanoparticle-Based Vaccines Expressing Respiratory Syncytial Virus F Protein Variants Are Immunogenic and Protective in Rodent Models of RSV Infection. NPJ Vaccines. 2020, 5, 16. DOI: 10.1038/s41541-020-0163-z.
  • Cullis, P. R.; Hope, M. J. Lipid Nanoparticle Systems for Enabling Gene Therapies. Mol. Ther. 2017, 25, 1467–1475. DOI: 10.1016/j.ymthe.2017.03.013.
  • Kauffman, K. J.; Mir, F. F.; Jhunjhunwala, S.; Kaczmarek, J. C.; Hurtado, J. E.; Yang, J. H.; Webber, M. J.; Kowalski, P. S.; Heartlein, M. W.; DeRosa, F.; Anderson, D. G. Efficacy and Immunogenicity of Unmodified and Pseudouridine-Modified mRNA Delivered Systemically with Lipid Nanoparticles in Vivo. Biomaterials 2016, 109, 78–87. DOI: 10.1016/j.biomaterials.2016.09.006.
  • Ball, R. L.; Hajj, K. A.; Vizelman, J.; Bajaj, P.; Whitehead, K. A. Lipid Nanoparticle Formulations for Enhanced Co-Delivery of siRNA and mRNA. Nano Lett. 2018, 18, 3814–3822. DOI: 10.1021/acs.nanolett.8b01101.
  • Hajj, K. A.; Ball, R. L.; Deluty, S. B.; Singh, S. R.; Strelkova, D.; Knapp, C. M.; Whitehead, K. A. Branched-Tail Lipid Nanoparticles Potently Deliver mRNA in Vivo Due to Enhanced Ionization at Endosomal pH. Small 2019, 15, e1805097.
  • Zhao, P.; Hou, X.; Yan, J.; Du, S.; Xue, Y.; Li, W.; Xiang, G.; Dong, Y. Long-Term Storage of Lipid-like Nanoparticles for mRNA Delivery. Bioact. Mater. 2020, 5, 358–363. DOI: 10.1016/j.bioactmat.2020.03.001.
  • Miwa, T.; Saito, H.; Akita, H. Lipid Nanoparticles-Encapsulated Brain-Derived Neurotrophic Factor mRNA Delivered through the Round Window Niche in the Cochleae of guinea Pigs. Exp. Brain Res. 2021, 239, 425–433. DOI: 10.1007/s00221-020-05970-0.
  • Nogueira, S. S.; Schlegel, A.; Maxeiner, K.; Weber, B.; Barz, M.; Schroer, M. A.; Blanchet, C. E.; Svergun, D. I.; Ramishetti, S.; Peer, D.; et al. Polysarcosine-Functionalized Lipid Nanoparticles for Therapeutic mRNA Delivery. ACS Appl. Nano Mater. 2020, 3, 10634–10645. DOI: 10.1021/acsanm.0c01834.
  • Pichon, C.; Midoux, P. Mannosylated and Histidylated LPR Technology for Vaccination with Tumor Antigen mRNA. Methods Mol. Biol. 2013, 969, 247–274.
  • Zhuang, X.; Qi, Y.; Wang, M.; Yu, N.; Nan, F.; Zhang, H.; Tian, M.; Li, C.; Lu, H.; Jin, N. mRNA Vaccines Encoding the HA Protein of Influenza a H1N1 Virus Delivered by Cationic Lipid Nanoparticles Induce Protective Immune Responses in Mice. Vaccines (Basel) 2020, 8, 123. DOI: 10.3390/vaccines8010123.
  • Pappalardo, J. S.; Salmaso, S.; Levchenko, T. S.; Mastrotto, F.; Bersani, S.; Langellotti, C. A.; Vermeulen, M.; Ghersa, F.; Quattrocchi, V.; Zamorano, P. I.; et al. Characterization of a Nanovaccine Platform Based on an Alpha 1,2-Mannobiose Derivative Shows Species-Non-Specific Targeting to Human, Bovine, Mouse, and Teleost Fish Dendritic Cells. Mol. Pharm. 2021, 18, 2540–2555. DOI: 10.1021/acs.molpharmaceut.1c00048.
  • Kumar, V.; Qin, J.; Jiang, Y.; Duncan, R. G.; Brigham, B.; Fishman, S.; Nair, J. K.; Akinc, A.; Barros, S. A.; Kasperkovitz, P. V. Shielding of Lipid Nanoparticles for siRNA Delivery: Impact on Physicochemical Properties, Cytokine Induction, and Efficacy. Mol. Ther. Nucleic Acids. 2014, 3, e210. DOI: 10.1038/mtna.2014.61.
  • Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S. Poly(Ethylene Glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem. Int. Ed. Engl. 2010, 49, 6288–6308. DOI: 10.1002/anie.200902672.
  • Gangloff, N.; Ulbricht, J.; Lorson, T.; Schlaad, H.; Luxenhofer, R. Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering. Chem. Rev. 2016, 116, 1753–1802. DOI: 10.1021/acs.chemrev.5b00201.
  • Secker, C.; Brosnan, S. M.; Luxenhofer, R.; Schlaad, H. Poly(alpha-Peptoid)s Revisited: Synthesis, Properties, and Use as Biomaterial. Macromol. Biosci. 2015, 15, 881–891. DOI: 10.1002/mabi.201500023.
  • Fenaroli, F.; Repnik, U.; Xu, Y. T.; Johann, K.; Van Herck, S.; Dey, P.; Skjeldal, F. M.; Frei, D. M.; Bagherifam, S.; Kocere, A.; et al. Enhanced Permeability and Retention-like Extravasation of Nanoparticles from the Vasculature into Tuberculosis Granulomas in Zebrafish and Mouse Models. ACS Nano. 2018, 12, 8646–8661. DOI: 10.1021/acsnano.8b04433.
  • Weber, B.; Seidl, C.; Schwiertz, D.; Scherer, M.; Bleher, S.; Suss, R.; Barz, M. Polysarcosine-Based Lipids: From Lipopolypeptoid Micelles to Stealth-Like Lipids in Langmuir Blodgett Monolayers. Polymers (Basel) 2016, 8, 427. DOI: 10.3390/polym8120427.
  • Whitehead, K. A.; Dorkin, J. R.; Vegas, A. J.; Chang, P. H.; Veiseh, O.; Matthews, J.; Fenton, O. S.; Zhang, Y.; Olejnik, K. T.; Yesilyurt, V.; et al. Degradable Lipid Nanoparticles with Predictable in Vivo siRNA Delivery Activity. Nat. Commun. 2014, 5, 4277. DOI: 10.1038/ncomms5277.
  • Guimaraes, P. P. G.; Zhang, R.; Spektor, R.; Tan, M.; Chung, A.; Billingsley, M. M.; El-Mayta, R.; Riley, R. S.; Wang, L.; Wilson, J. M.; Mitchell, M. J. Ionizable Lipid Nanoparticles Encapsulating Barcoded mRNA for Accelerated in Vivo Delivery Screening. J. Control. Release 2019, 316, 404–417. DOI: 10.1016/j.jconrel.2019.10.028.
  • Lou, G.; Anderluzzi, G.; Schmidt, S. T.; Woods, S.; Gallorini, S.; Brazzoli, M.; Giusti, F.; Ferlenghi, I.; Johnson, R. N.; Roberts, C. W.; et al. Delivery of Self-Amplifying mRNA Vaccines by Cationic Lipid Nanoparticles: The Impact of Cationic Lipid Selection. J. Control. Release 2020, 325, 370–379. DOI: 10.1016/j.jconrel.2020.06.027.
  • Lee, E. R.; Marshall, J.; Siegel, C. S.; Jiang, C.; Yew, N. S.; Nichols, M. R.; Nietupski, J. B.; Ziegler, R. J.; Lane, M. B.; Wang, K. X.; et al. Detailed Analysis of Structures and Formulations of Cationic Lipids for Efficient Gene Transfer to the Lung. Hum. Gene Ther. 1996, 7, 1701–1717. DOI: 10.1089/hum.1996.7.14-1701.
  • Gao, X.; Huang, L. A Novel Cationic Liposome Reagent for Efficient Transfection of Mammalian Cells. Biochem. Biophys. Res. Commun. 1991, 179, 280–285. DOI: 10.1016/0006-291X(91)91366-K.
  • Ewert, K.; Ahmad, A.; Evans, H. M.; Schmidt, H. W.; Safinya, C. R. Efficient Synthesis and Cell-Transfection Properties of a New Multivalent Cationic Lipid for Nonviral Gene Delivery. J. Med. Chem. 2002, 45, 5023–5029. DOI: 10.1021/jm020233w.
  • Kichler, A.; Mechtler, K.; Behr, J. P.; Wagner, E. Influence of Membrane-Active Peptides on Lipospermine/DNA Complex Mediated Gene Transfer. Bioconjug. Chem. 1997, 8, 213–221. DOI: 10.1021/bc970009z.
  • Jayaraman, M.; Ansell, S. M.; Mui, B. L.; Tam, Y. K.; Chen, J.; Du, X.; Butler, D.; Eltepu, L.; Matsuda, S.; Narayanannair, J. K.; et al. Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing in Vivo. Angew. Chem. Int. Ed. Engl. 2012, 51, 8529–8533. DOI: 10.1002/anie.201203263.
  • Kulkarni, J. A.; Cullis, P. R.; van der Meel, R. Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility. Nucleic Acid Ther. 2018, 28, 146–157. DOI: 10.1089/nat.2018.0721.
  • Schlich, M.; Palomba, R.; Costabile, G.; Mizrahy, S.; Pannuzzo, M.; Peer, D.; Decuzzi, P. Cytosolic Delivery of Nucleic Acids: The Case of Ionizable Lipid Nanoparticles. Bioeng. Transl. Med. 2021, 6, e10213. DOI: 10.1002/btm2.10213.
  • Maugeri, M.; Nawaz, M.; Papadimitriou, A.; Angerfors, A.; Camponeschi, A.; Na, M.; Holtta, M.; Skantze, P.; Johansson, S.; Sundqvist, M.; et al. Linkage between Endosomal Escape of LNP-mRNA and Loading into EVs for Transport to Other Cells. Nat. Commun. 2019, 10, 4333. DOI: 10.1038/s41467-019-12275-6.
  • Ramishetti, S.; Hazan-Halevy, I.; Palakuri, R.; Chatterjee, S.; Naidu Gonna, S.; Dammes, N.; Freilich, I.; Kolik Shmuel, L.; Danino, D.; Peer, D. A Combinatorial Library of Lipid Nanoparticles for RNA Delivery to Leukocytes. Adv. Mater. 2020, 32, e1906128. DOI: 10.1002/adma.201906128.
  • Maier, M. A.; Jayaraman, M.; Matsuda, S.; Liu, J.; Barros, S.; Querbes, W.; Tam, Y. K.; Ansell, S. M.; Kumar, V.; Qin, J.; et al. Biodegradable Lipids Enabling Rapidly Eliminated Lipid Nanoparticles for Systemic Delivery of RNAi Therapeutics. Mol. Ther. 2013, 21, 1570–1578. DOI: 10.1038/mt.2013.124.
  • Hobo, W.; Novobrantseva, T. I.; Fredrix, H.; Wong, J.; Milstein, S.; Epstein-Barash, H.; Liu, J.; Schaap, N.; van der Voort, R.; Dolstra, H. Improving Dendritic Cell Vaccine Immunogenicity by Silencing PD-1 Ligands Using siRNA-Lipid Nanoparticles Combined with Antigen mRNA Electroporation. Cancer Immunol. Immunother. 2013, 62, 285–297. DOI: 10.1007/s00262-012-1334-1.
  • Hajj, K. A.; Melamed, J. R.; Chaudhary, N.; Lamson, N. G.; Ball, R. L.; Yerneni, S. S.; Whitehead, K. A. A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing in Vivo. Nano Lett. 2020, 20, 5167–5175. DOI: 10.1021/acs.nanolett.0c00596.
  • Xiong, H.; Liu, S.; Wei, T.; Cheng, Q.; Siegwart, D. J. Theranostic Dendrimer-Based Lipid Nanoparticles Containing PEGylated BODIPY Dyes for Tumor Imaging and Systemic mRNA Delivery In Vivo. J. Control. Release 2020, 325, 198–205. DOI: 10.1016/j.jconrel.2020.06.030.
  • Matsui, H.; Sato, Y.; Hatakeyama, H.; Akita, H.; Harashima, H. Size-Dependent Specific Targeting and Efficient Gene Silencing in Peritoneal Macrophages Using a pH-Sensitive Cationic Liposomal siRNA Carrier. Int. J. Pharm. 2015, 495, 171–178. DOI: 10.1016/j.ijpharm.2015.08.044.
  • Islam, M. A.; Xu, Y.; Tao, W.; Ubellacker, J. M.; Lim, M.; Aum, D.; Lee, G. Y.; Zhou, K.; Zope, H.; Yu, M.; et al. Restoration of Tumour-Growth Suppression In Vivo via Systemic Nanoparticle-Mediated Delivery of PTEN mRNA. Nat. Biomed. Eng. 2018, 2, 850–864. DOI: 10.1038/s41551-018-0284-0.
  • Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid Nanoparticles for mRNA Delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. DOI: 10.1038/s41578-021-00400-1.
  • Blakney, A. K.; McKay, P. F.; Bouton, C. R.; Hu, K.; Samnuan, K.; Shattock, R. J. Innate Inhibiting Proteins Enhance Expression and Immunogenicity of Self-Amplifying RNA. Mol. Ther. 2021, 29, 1174–1185. DOI: 10.1016/j.ymthe.2020.11.011.
  • Blakney, A. K.; Zhu, Y. Q.; McKay, P. F.; Bouton, C. R.; Yeow, J.; Tang, J. Q.; Hu, K.; Samnuan, K.; Grigsby, C. L.; Shattock, R. J.; Stevens, M. M. Big is Beautiful: Enhanced saRNA Delivery and Immunogenicity by a Higher Molecular Weight, Bioreducible, Cationic Polymer. ACS Nano 2020, 14, 5711–5727. DOI: 10.1021/acsnano.0c00326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.