647
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The New Silk Road: Silk Fibroin Blends and Composites for Next Generation Functional and Multifunctional Materials Design

, ORCID Icon, , &
Pages 1014-1077 | Received 18 Jul 2022, Accepted 13 Aug 2023, Published online: 28 Aug 2023

References

  • Brunklaus, B.; Riise, E. Bio-based Materials Within the Circular Economy: Opportunities and Challenges. In Designing Sustainable Technologies, Products and Policies: From Science to Innovation; Benetto, E., Gericke, K., Guiton, M., Eds.; Springer International Publishing: Cham, 2018; pp 43–47.
  • Salapare, H. S. III; Amigoni, S.; Guittard, F. Bioinspired and Biobased Materials. Macromol. Chem. Phys. 2019, 220, 1900241.
  • Report of the International Resource Panel. United Nations Environment, P. Assessing Global Resource Use; 2017.
  • European Environment, A. The European Environment – State and Outlook 2020: Knowledge for Transition to a Sustainable Europe. In European Environment; 2019.
  • Nagarajan, S.; Radhakrishnan, S.; Kalkura, S. N.; Balme, S.; Miele, P.; Bechelany, M. Overview of Protein-Based Biopolymers for Biomedical Application. Macromol. Chem. Phys. 2019, 220, 1900126. DOI: 10.1002/macp.201900126.
  • Wool, R. P.; Sun, X. S. Bio-Based Polymers and Composites, 2005.
  • Weber, C. J.; Haugaard, V.; Festersen, R.; Bertelsen, G. Production and Applications of Biobased Packaging Materials for the Food Industry. Food Addit. Contam. 2002, 19 Suppl, 172–177. DOI: 10.1080/02652030110087483.
  • Pawelzik, P.; Carus, M.; Hotchkiss, J.; Narayan, R.; Selke, S.; Wellisch, M.; Weiss, M.; Wicke, B.; Patel, M. K. Critical Aspects in the Life Cycle Assessment (LCA) of Bio-Based Materials – Reviewing Methodologies and Deriving Recommendations. Resour. Conserv. Recycl. 2013, 73, 211–228. DOI: 10.1016/j.resconrec.2013.02.006.
  • Zhao, H. F.; Li, Y.; Sha, L. Z. Preparation of Functional Air Filter Material Based on Biodegradable Fibers and Nano Titanium Dioxide. Digest J. Nanomater. Biostruct. 2018, 13, 391–397.
  • Min, K.; Kim, S.; Kim, S. Silk Protein Nanofibers for Highly Efficient, Eco-friendly, Optically Translucent, and Multifunctional Air Filters. Sci. Rep. 2018, 8, 1–10.
  • Taura, J. R. S. Mechanism of Silk Processing in Insects and Spiders. Nature 2003, 926, 1057–1061.
  • Meinel, L.; Betz, O.; Fajardo, R.; Hofmann, S.; Nazarian, A.; Cory, E.; Hilbe, M.; McCool, J.; Langer, R.; Vunjak-Novakovic, G.; et al. Silk-Based Biomaterials. Bone 2006, 39, 922–931. DOI: 10.1016/j.bone.2006.04.019.
  • Cheung, H.; Ho, M.; Lau, K.; Cardona, F.; Hui, D. Natural Fibre-Reinforced Composites for Bioengineering and Environmental Engineering Applications. Compos. Part B Eng. 2009, 40, 655–663. DOI: 10.1016/j.compositesb.2009.04.014.
  • Perez-Rigueiro, J.; Viney, C.; Llorca, J.; Elices, M. Silkworm Silk as an Engineering Material. J. Appl. Polym. Sci. 1998, 70, 2439–2447. DOI: 10.1002/(SICI)1097-4628(19981219)70:12<2439::AID-APP16>3.0.CO;2-J.
  • Wideman, T. H.; Asmundson, G. G. J.; Smeets, R. J. E. M.; Zautra, A. J.; Simmonds, M. J.; Sullivan, M. J. L.; Haythornthwaite, J. A.; Edwards, R. R. New Opportunities for an Ancient Material. Pain 2013, 154, 2262–2265. DOI: 10.1016/j.pain.2013.06.005.
  • Gosline, J. M.; Guerette, P. A.; Ortlepp, C. S.; Savage, K. N. The Mechanical Design of Spider Silks: From Fibroin Sequence to Mechanical Function. J. Exp. Biol. 1999, 202, 3295–3303. DOI: 10.1242/jeb.202.23.3295.
  • Xu, G.; Gong, L.; Yang, Z.; Liu, X. Y. What Makes Spider Silk Fibers so Strong? From Molecular-Crystallite Network to Hierarchical Network Structures. Soft Matter 2014, 10, 2116–2123. DOI: 10.1039/c3sm52845f.
  • Tulachan, B.; Meena, S. K.; Rai, R. K.; Mallick, C.; Kusurkar, T. S.; Teotia, A. K.; Sethy, N. K.; Bhargava, K.; Bhattacharya, S.; Kumar, A.; et al. Electricity from the Silk Cocoon Membrane. Sci. Rep. 2014, 4, 5434. DOI: 10.1038/srep05434.
  • Markets, R. A. Global Silk Market Size, Trends & Forecast (2020–2025); 2020.
  • Hansen, V. The Silk Road: A New History; 2012.
  • Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F. P. The Biomedical Use of Silk: Past, Present, Future. Adv. Healthc. Mater. 2019, 8, e1800465. DOI: 10.1002/adhm.201800465.
  • International Sericultural, C. Global Silk Production; United Nations, 2019.
  • Lalit Jajpura, A. R. The Biopolymer Sericin: Extraction and Applications. J. Textile Sci. Eng. 2015, 5, 5. DOI: 10.4172/2165-8064.1000188.
  • Zafar, M. S.; Belton, D. J.; Hanby, B.; Kaplan, D. L.; Perry, C. C. Functional Material Features of Bombyx mori Silk Light versus Heavy Chain Proteins. Biomacromolecules 2015, 16, 606–614. DOI: 10.1021/bm501667j.
  • Asakura, T.; Okushita, K.; Williamson, M. P. Analysis of the Structure of Bombyx mori Silk Fibroin by NMR; 2015.
  • Inoue, S.; Tanaka, K.; Arisaka, F.; Kimura, S.; Ohtomo, K.; Mizuno, S. Silk Fibroin of Bombyx mori is Secreted, Assembling a High Molecular Mass Elementary Unit Consisting of H-Chain, L-Chain, and P25, with a 6:6:1 Molar Ratio. J. Biol. Chem. 2000, 275, 40517–40528. DOI: 10.1074/jbc.M006897200.
  • Zhou, C. Z.; Confalonieri, F.; Jacquet, M.; Perasso, R.; Li, Z. G.; Janin, J. Silk Fibroin: Structural Implications of a Remarkable Amino Acid Sequence. Prot. Struct. Funct. Genet. 2001, 44, 119–122. DOI: 10.1002/prot.1078.
  • Naik, R. R.; Drummy, L. F.; Phillips, D. M.; Stone, M. O.; Farmer, B. L. Thermally Induced α-Helix to β-Sheet Transition in Regenerated Silk Fibers and Films. Biomacromolecules 2005, 6, 3328–3333. DOI: 10.1021/bm0503524.
  • He, S. J.; Valluzzi, R.; Gido, S. P. Silk I Structure in Bombyx mori Silk Foams. Int. J. Biol. Macromol. 1999, 24, 187–195. DOI: 10.1016/s0141-8130(99)00004-5.
  • Loh, Q. L.; Choong, C. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Eng. Part B Rev. 2013, 19, 485–502. DOI: 10.1089/ten.TEB.2012.0437.
  • Nazarov, R.; Jin, H. J.; Kaplan, D. L. Porous 3-D Scaffolds from Regenerated Silk Fibroin. Biomacromolecules 2004, 5, 718–726. DOI: 10.1021/bm034327e.
  • Um, I. C.; Kweon, H. Y.; Park, Y. H.; Hudson, S. Structural Characteristics and Properties of the Regenerated Silk Fibroin Prepared from Formic Acid. Int. J. Biol. Macromol. 2001, 29, 91–97. DOI: 10.1016/s0141-8130(01)00159-3.
  • Hu, X.; Kaplan, D.; Cebe, P. Effect of Water on the Thermal Properties of Silk Fibroin. Thermochim. Acta 2007, 461, 137–144. DOI: 10.1016/j.tca.2006.12.011.
  • Wen, D.-L.; Sun, D.-H.; Huang, P.; Huang, W.; Su, M.; Wang, Y.; Han, M.-D.; Kim, B.; Brugger, J.; Zhang, H.-X.; Zhang, X.-S. Recent Progress in Silk Fibroin-Based Flexible Electronics. Microsyst. Nanoeng. 2021, 7, 35. DOI: 10.1038/s41378-021-00261-2.
  • Zhu, B.; Wang, H.; Leow, W. R.; Cai, Y.; Loh, X. J.; Han, M. Y.; Chen, X. Silk Fibroin for Flexible Electronic Devices. Adv. Mater. 2016, 28, 4250–4265. DOI: 10.1002/adma.201504276.
  • Koh, L. D.; Cheng, Y.; Teng, C. P.; Khin, Y. W.; Loh, X. J.; Tee, S. Y.; Low, M.; Ye, E.; Yu, H. D.; Zhang, Y. W.; Han, M. Y. Structures, Mechanical Properties and Applications of Silk Fibroin Materials. Prog. Polym. Sci. 2015, 46, 86–110. DOI: 10.1016/j.progpolymsci.2015.02.001.
  • Kundu, B.; Rajkhowa, R.; Kundu, S. C.; Wang, X. Silk Fibroin Biomaterials for Tissue Regenerations. Adv. Drug Deliv. Rev. 2013, 65, 457–470. DOI: 10.1016/j.addr.2012.09.043.
  • Jastrzebska, K.; Kucharczyk, K.; Florczak, A.; Dondajewska, E.; Mackiewicz, A.; Dams-Kozlowska, H. Silk as an Innovative Biomaterial for Cancer Therapy. Rep. Pract. Oncol. Radiother. 2015, 20, 87–98. DOI: 10.1016/j.rpor.2014.11.010.
  • Elahi, M.; Ali, S.; Tahir, H. M.; Mushtaq, R.; Bhatti, M. F. Sericin and Fibroin Nanoparticles—Natural Product for Cancer Therapy: A Comprehensive Review. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 256–269. DOI: 10.1080/00914037.2019.1706515.
  • Li, Z. H.; Ji, S. C.; Wang, Y. Z.; Shen, X. C.; Liang, H. Silk Fibroin-Based Scaffolds for Tissue Engineering. Front. Mater. Sci. 2013, 7, 237–247. DOI: 10.1007/s11706-013-0214-8.
  • Mottaghitalab, F.; Farokhi, M.; Shokrgozar, M. A.; Atyabi, F.; Hosseinkhani, H. Silk Fibroin Nanoparticle as a Novel Drug Delivery System. J. Control. Release 2015, 206, 161–176. DOI: 10.1016/j.jconrel.2015.03.020.
  • Kharlampieva, E.; Kozlovskaya, V.; Gunawidjaja, R.; Shevchenko, V. V.; Vaia, R.; Naik, R. R.; Kaplan, D. L.; Tsukruk, V. V. Flexible Silk–Inorganic Nanocomposites: From Transparent to Highly Reflective. Adv. Funct. Mater. 2010, 20, 840–846. DOI: 10.1002/adfm.200901774.
  • Zhou, Z.; Shi, Z.; Cai, X.; Zhang, S.; Corder, S. G.; Li, X.; Zhang, Y.; Zhang, G.; Chen, L.; Liu, M.; et al. The Use of Functionalized Silk Fibroin Films as a Platform for Optical Diffraction-Based Sensing Applications. Adv. Mater. 2017, 29, 1605471. DOI: 10.1002/adma.201605471.
  • Li, D.; Fan, Y.; Han, G.; Guo, Z. Superomniphobic Silk Fibroin/Ag Nanowires Membrane for Flexible and Transparent Electronic Sensor. ACS Appl. Mater. Interfaces 2020, 12, 10039–10049. DOI: 10.1021/acsami.9b23378.
  • Chen, Y.; Duan, L.; Ma, Y.; Han, Q.; Li, X.; Li, J.; Wang, A.; Bai, S.; Yin, J. Preparation of Transient Electronic Devices with Silk Fibroin Film as a Flexible Substrate. Colloids Surf. A 2020, 600, 124896. DOI: 10.1016/j.colsurfa.2020.124896.
  • Fan, S.; Zhang, Y.; Huang, X.; Geng, L.; Shao, H.; Hu, X.; Zhang, Y. Silk Materials for Medical, Electronic and Optical Applications. Sci. China Technol. Sci. 2019, 62, 903–918. DOI: 10.1007/s11431-018-9403-8.
  • Vieira, D.; Angel, S.; Honjol, Y.; Gruenheid, S.; Gbureck, U.; Harvey, E.; Merle, G. Electroceutical Silk–Silver Gel to Eradicate Bacterial Infection. Adv. Biosyst. 2020, 4, e1900242. DOI: 10.1002/adbi.201900242.
  • Adidas. Adidas Unveils World’s First Performance Shoe Made From Biosteel® Fiber; Adidas AG, 2017.
  • Goodyear. The Goodyear reCharge Concept; 2020.
  • LogithKumar, R.; KeshavNarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A Review of Chitosan and Its Derivatives in Bone Tissue Engineering. Carbohydr. Polym. 2016, 151, 172–188. DOI: 10.1016/j.carbpol.2016.05.049.
  • Feng, Y.; Li, X.; Li, M.; Ye, D.; Zhang, Q.; You, R.; Xu, W. Facile Preparation of Biocompatible Silk Fibroin/Cellulose Nanocomposite Films with High Mechanical Performance. ACS Sustain. Chem. Eng. 2017, 5, 6227–6236. DOI: 10.1021/acssuschemeng.7b01161.
  • Singh, B. K.; Dutta, P. K. Chitin, Chitosan, and Silk Fibroin Electrospun Nanofibrous Scaffolds: A Prospective Approach for Regenerative Medicine. In Chitin and Chitosan for Regenerative Medicine; Dutta, P. K., Ed.; Springer India: New Delhi, 2016; pp 151–189.
  • Chen, L.; Hu, J.; Ran, J.; Shen, X.; Tong, H. Preparation and Evaluation of Collagen-Silk Fibroin/Hydroxyapatite Nanocomposites for Bone Tissue Engineering. Int. J. Biol. Macromol. 2014, 65, 1–7. DOI: 10.1016/j.ijbiomac.2014.01.003.
  • Guan, Y.; You, H.; Cai, J.; Zhang, Q.; Yan, S.; You, R. Physically Crosslinked Silk Fibroin/Hyaluronic Acid Scaffolds. Carbohydr. Polym. 2020, 239, 116232. DOI: 10.1016/j.carbpol.2020.116232.
  • Wang, Y.; Wang, X.; Shi, J.; Zhu, R.; Zhang, J.; Zhang, Z.; Ma, D.; Hou, Y.; Lin, F.; Yang, J.; Mizuno, M. A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering. Sci. Rep. 2016, 6, 39477. DOI: 10.1038/srep39477.
  • Lu, S.; Wang, X.; Lu, Q.; Zhang, X.; Kluge, J. A.; Uppal, N.; Omenetto, F.; Kaplan, D. L. Insoluble and Flexible Silk Films Containing Glycerol. Biomacromolecules 2010, 11, 143–150. DOI: 10.1021/bm900993n.
  • Siavashani, A. Z.; Mohammadi, J.; Rottmar, M.; Senturk, B.; Nourmohammadi, J.; Sadeghi, B.; Huber, L.; Maniura-Weber, K. Silk Fibroin/Sericin 3D Sponges: The Effect of Sericin on Structural and Biological Properties of Fibroin. Int. J. Biol. Macromol. 2020, 153, 317–326. DOI: 10.1016/j.ijbiomac.2020.02.316.
  • Hadisi, Z.; Nourmohammadi, J.; Mohammadi, J. Composite of Porous Starch-Silk Fibroin Nanofiber-Calcium Phosphate for Bone Regeneration. Ceram. Int. 2015, 41, 10745–10754. DOI: 10.1016/j.ceramint.2015.05.010.
  • Liu, L.; He, C.; Xiao, M.; An, Z.; Lv, S. Immobilized Laccase-Catalyzed Coupling for Construction of Silk Fibroin-Lignin Composite Hydrogels. Appl. Catal. A 2020, 597, 117541. DOI: 10.1016/j.apcata.2020.117541.
  • Vasconcelos, A.; Freddi, G.; Cavaco-Paulo, A. Biodegradable Materials Based on Silk Fibroin and Keratin. Biomacromolecules 2008, 9, 1299–1305. DOI: 10.1021/bm7012789.
  • Cao, L.; Qiu, X.; Jiao, Q.; Zhao, P.; Li, J.; Wei, Y. Polysaccharides and Proteins-Based Nanogenerator for Energy Harvesting and Sensing: A Review. Int. J. Biol. Macromol. 2021, 173, 225–243. DOI: 10.1016/j.ijbiomac.2021.01.109.
  • Noishiki, Y.; Nishiyama, Y.; Wada, M.; Kuga, S.; Magoshi, J. Mechanical Properties of Silk Fibroin–Microcrystalline Cellulose Composite Films. J. Appl. Polym. Sci. 2002, 86, 3425–3429. DOI: 10.1002/app.11370.
  • Marsano, E.; Canetti, M.; Conio, G.; Corsini, P.; Freddi, G. Fibers Based on Cellulose–Silk Fibroin Blend. J. Appl. Polym. Sci. 2007, 104, 2187–2196. DOI: 10.1002/app.24856.
  • Zhou, W.; He, J.; Cui, S.; Gao, W. Preparation of Electrospun Silk Fibroin/Cellulose Acetate Blend Nanofibers and Their Applications to Heavy Metal Ions Adsorption. Fibers Polym. 2011, 12, 431–437. DOI: 10.1007/s12221-011-0431-7.
  • Zhou, L.; Wang, Q.; Wen, J.; Chen, X.; Shao, Z. Preparation and Characterization of Transparent Silk Fibroin/Cellulose Blend Films. Polymer 2013, 54, 5035–5042. DOI: 10.1016/j.polymer.2013.07.002.
  • Burger, D.; Beaumont, M.; Rosenau, T.; Tamada, Y. Porous Silk Fibroin/Cellulose Hydrogels for Bone Tissue Engineering via a Novel Combined Process Based on Sequential Regeneration and Porogen Leaching. Molecules 2020, 25, 5097. DOI: 10.3390/molecules25215097.
  • Yi, S.; Wu, Y.; Zhang, Y.; Zou, Y.; Dai, F.; Si, Y. Antibacterial Activity of Photoactive Silk Fibroin/Cellulose Acetate Blend Nanofibrous Membranes against Escherichia coli. ACS Sustain. Chem. Eng. 2020, 8, 16775–16780. DOI: 10.1021/acssuschemeng.0c04276.
  • Sionkowska, A.; Płanecka, A. Preparation and Characterization of Silk Fibroin/Chitosan Composite Sponges for Tissue Engineering. J. Mol. Liq. 2013, 178, 5–14. DOI: 10.1016/j.molliq.2012.10.042.
  • Guang, S.; An, Y.; Ke, F.; Zhao, D.; Shen, Y.; Xu, H. Chitosan/Silk Fibroin Composite Scaffolds for Wound Dressing. J. Appl. Polym. Sci. 2015, 132, 88–92. DOI: 10.1002/app.42503.
  • Li, D.-W.; Lei, X.; He, F.-L.; He, J.; Liu, Y.-L.; Ye, Y.-J.; Deng, X.; Duan, E.; Yin, D.-C. Silk Fibroin/Chitosan Scaffold with Tunable Properties and Low Inflammatory Response Assists the Differentiation of Bone Marrow Mesenchymal Stem Cells. Int. J. Biol. Macromol. 2017, 105, 584–597. DOI: 10.1016/j.ijbiomac.2017.07.080.
  • Gómez-Guillén, M. C.; Giménez, B.; López-Caballero, M. E.; Montero, M. P. Functional and Bioactive Properties of Collagen and Gelatin from Alternative Sources: A Review. Food Hydrocolloids 2011, 25, 1813–1827. DOI: 10.1016/j.foodhyd.2011.02.007.
  • Sionkowska, A.; Lewandowska, K.; Michalska, M.; Walczak, M. Characterization of Silk Fibroin 3D Composites Modified by Collagen. J. Mol. Liq. 2016, 215, 323–327. DOI: 10.1016/j.molliq.2015.12.047.
  • Lin, X.-L.; Gao, L.-L.; Li, R.; Cheng, W.; Zhang, C.-Q.; Zhang, X. Mechanical Property and Biocompatibility of Silk Fibroin–Collagen Type II Composite Membrane. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 105, 110018. DOI: 10.1016/j.msec.2019.110018.
  • Konar, S.; Edwina, P.; Ramanujam, V.; Arunachalakasi, A.; Bajpai, S. K. Collagen-I/Silk-Fibroin Biocomposite Exhibits Microscalar Confinement of Cells and Induces Anisotropic Morphology and Migration of Embedded Fibroblasts. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 2368–2377. DOI: 10.1002/jbm.b.34570.
  • Feng, X.; Xu, P.; Shen, T.; Zhang, Y.; Ye, J.; Gao, C. Influence of Pore Architectures of Silk Fibroin/Collagen Composite Scaffolds on the Regeneration of Osteochondral Defects In Vivo. J. Mater. Chem. B 2020, 8, 391–405. DOI: 10.1039/c9tb01558b.
  • Mandal, B. B.; Priya, A. S.; Kundu, S. C. Novel Silk Sericin/Gelatin 3-D Scaffolds and 2-D Films: Fabrication and Characterization for Potential Tissue Engineering Applications. Acta Biomater. 2009, 5, 3007–3020. DOI: 10.1016/j.actbio.2009.03.026.
  • Marcolin, C.; Draghi, L.; Tanzi, M.; Faré, S. Electrospun Silk Fibroin–Gelatin Composite Tubular Matrices as Scaffolds for Small Diameter Blood Vessel Regeneration. J. Mater. Sci. Mater. Med. 2017, 28, 80. DOI: 10.1007/s10856-017-5884-9.
  • Mohammadzadehmoghadam, S.; Dong, Y. Fabrication and Characterization of Electrospun Silk Fibroin/Gelatin Scaffolds Crosslinked with Glutaraldehyde Vapor. Front. Mater. 2019, 6, 1–12. DOI: 10.3389/fmats.2019.00091.
  • Luetchford, K. A.; Chaudhuri, J. B.; De Bank, P. A. Silk Fibroin/Gelatin Microcarriers as Scaffolds for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 106, 110116. DOI: 10.1016/j.msec.2019.110116.
  • Garcia-Fuentes, M.; Giger, E.; Meinel, L.; Merkle, H. P. The Effect of Hyaluronic Acid on Silk Fibroin Conformation. Biomaterials 2008, 29, 633–642. DOI: 10.1016/j.biomaterials.2007.10.024.
  • Hu, X.; Lu, Q.; Sun, L.; Cebe, P.; Wang, X.; Zhang, X.; Kaplan, D. L. Biomaterials from Ultrasonication-Induced Silk Fibroin − Hyaluronic Acid Hydrogels. Biomacromolecules 2010, 11, 3178–3188. DOI: 10.1021/bm1010504.
  • Yan, S.; Wang, Q.; Tariq, Z.; You, R.; Li, X.; Li, M.; Zhang, Q. Facile Preparation of Bioactive Silk Fibroin/Hyaluronic Acid Hydrogels. Int. J. Biol. Macromol. 2018, 118, 775–782. DOI: 10.1016/j.ijbiomac.2018.06.138.
  • Yan, S.; Han, G.; Wang, Q.; Zhang, S.; You, R.; Luo, Z.; Xu, A.; Li, X.; Li, M.; Zhang, Q.; Kaplan, D. L. Directed Assembly of Robust and Biocompatible Silk Fibroin/Hyaluronic Acid Composite Hydrogels. Compos. Part B Eng. 2019, 176, 107204. DOI: 10.1016/j.compositesb.2019.107204.
  • de Moraes, M. A.; Beppu, M. M. Biocomposite Membranes of Sodium Alginate and Silk Fibroin Fibers for Biomedical Applications. J. Appl. Polym. Sci. 2013, 130, 3451–3457. DOI: 10.1002/app.39598.
  • Fang, H.; Wang, C.; Zhou, S.; Li, G.; Tian, Y.; Suga, T. Exploration of the Enhanced Performances for Silk Fibroin/Sodium Alginate Composite Coatings on Biodegradable Mg–Zn–Ca Alloy. J. Magn. Alloys 2021, 9, 1578–1594. DOI: 10.1016/j.jma.2020.08.017.
  • Wang, Y.; Fan, S.; Li, Y.; Niu, C.; Li, X.; Guo, Y.; Zhang, J.; Shi, J.; Wang, X. Silk Fibroin/Sodium Alginate Composite Porous Materials with Controllable Degradation. Int. J. Biol. Macromol. 2020, 150, 1314–1322. DOI: 10.1016/j.ijbiomac.2019.10.141.
  • Li, X.; Zhang, H.; He, L.; Chen, Z.; Tan, Z.; You, R.; Wang, D. Flexible Nanofibers-Reinforced Silk Fibroin Films Plasticized by Glycerol. Compos. Part B Eng. 2018, 152, 305–310. DOI: 10.1016/j.compositesb.2018.08.136.
  • Song, J. E.; Sim, B. R.; Jeon, Y. S.; Kim, H. S.; Shin, E. Y.; Carlomagno, C.; Khang, G. Characterization of Surface Modified Glycerol/Silk Fibroin Film for Application to Corneal Endothelial Cell Regeneration. J. Biomater. Sci. Polym. Ed. 2019, 30, 263–275. DOI: 10.1080/09205063.2018.1535819.
  • Production Method of Water Soluble Sericin; 2003.
  • Zhang, X.; Tsukada, M.; Morikawa, H.; Aojima, K.; Zhang, G.; Miura, M. Production of Silk Sericin/Silk Fibroin Blend Nanofibers. Nanoscale Res. Lett. 2011, 6, 510. DOI: 10.1186/1556-276X-6-510.
  • Hang, Y.; Zhang, Y.; Jin, Y.; Shao, H.; Hu, X. Preparation of Regenerated Silk Fibroin/Silk Sericin Fibers by Coaxial Electrospinning. Int. J. Biol. Macromol. 2012, 51, 980–986. DOI: 10.1016/j.ijbiomac.2012.08.010.
  • Srisuwan, Y.; Baimark, Y.; Srihanam, P. Preparation of Regenerated Silk Sericin/Silk Fibroin Blend Microparticles by Emulsification–Diffusion Method for Controlled Release Drug Delivery. Part. Sci. Technol. 2017, 35, 387–392. DOI: 10.1080/02726351.2016.1163301.
  • Bhardwaj, N.; Sow, W. T.; Devi, D.; Ng, K. W.; Mandal, B. B.; Cho, N.-J. Silk Fibroin–Keratin Based 3D Scaffolds as a Dermal Substitute for Skin Tissue Engineering. Integr. Biol. 2015, 7, 53–63. DOI: 10.1039/c4ib00208c.
  • Yang, Y.; Chen, J.; Migliaresi, C.; Motta, A. Natural Fibrous Protein for Advanced Tissue Engineering Applications: Focusing on Silk Fibroin and Keratin. Adv. Exp. Med. Biol. 2020, 1249, 39–49.
  • Dorishetty, P.; Balu, R.; Sreekumar, A.; de Campo, L.; Mata, J. P.; Choudhury, N. R.; Dutta, N. K. Robust and Tunable Hybrid Hydrogels from Photo-Cross-Linked Soy Protein Isolate and Regenerated Silk Fibroin. ACS Sustain. Chem. Eng. 2019, 7, 9257–9271. DOI: 10.1021/acssuschemeng.9b00147.
  • Varshney, N.; Sahi, A. K.; Poddar, S.; Mahto, S. K. Soy Protein Isolate Supplemented Silk Fibroin Nanofibers for Skin Tissue Regeneration: Fabrication and Characterization. Int. J. Biol. Macromol. 2020, 160, 112–127. DOI: 10.1016/j.ijbiomac.2020.05.090.
  • Kumar, S.; Singh, S. K. In Silico-In Vitro-In Vivo Studies of Experimentally Designed Carvedilol Loaded Silk Fibroin-Casein Nanoparticles Using Physiological Based Pharmacokinetic Model. Int. J. Biol. Macromol. 2017, 96, 403–420. DOI: 10.1016/j.ijbiomac.2016.12.052.
  • Jin, H. J.; Park, J.; Karageorgiou, V.; Kim, U. J.; Valluzzi, R.; Cebe, P.; Kaplan, D. L. Water-Stable Silk Films with Reduced β-Sheet Content. Adv. Funct. Mater. 2005, 15, 1241–1247. DOI: 10.1002/adfm.200400405.
  • You, R.; Zhang, J.; Gu, S.; Zhou, Y.; Li, X.; Ye, D.; Xu, W. Regenerated Egg White/Silk Fibroin Composite Films for Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 430–435. DOI: 10.1016/j.msec.2017.05.063.
  • Shin, S.; Kwak, H.; Hyun, J. Melanin Nanoparticle-Incorporated Silk Fibroin Hydrogels for the Enhancement of Printing Resolution in 3D-Projection Stereolithography of Poly(Ethylene Glycol)-Tetraacrylate Bio-Ink. ACS Appl. Mater. Interfaces 2018, 10, 23573–23582. DOI: 10.1021/acsami.8b05963.
  • Youn, Y. H.; Pradhan, S.; da Silva, L. P.; Kwon, I. K.; Kundu, S. C.; Reis, R. L.; Yadavalli, V. K.; Correlo, V. M. Micropatterned Silk-Fibroin/Eumelanin Composite Films for Bioelectronic Applications. ACS Biomater. Sci. Eng. 2021, 7, 2466–2474. DOI: 10.1021/acsbiomaterials.1c00216.
  • Li, W.; Qiao, X.; Sun, K.; Chen, X. Effect of Electron Beam Irradiation on the Silk Fibroin Fiber/Poly(ε-Caprolactone) Composite. J. Appl. Polym. Sci. 2009, 113, 1063–1069. DOI: 10.1002/app.29869.
  • Yin, Y.; Pu, D.; Xiong, J. Analysis of the Comprehensive Tensile Relationship in Electrospun Silk Fibroin/Polycaprolactone Nanofiber Membranes. Membranes 2017, 7, 67. DOI: 10.3390/membranes7040067.
  • Wang, Z.; Song, X.; Cui, Y.; Cheng, K.; Tian, X.; Dong, M.; Liu, L. Silk Fibroin H-Fibroin/Poly(ε-Caprolactone) Core-Shell Nanofibers with Enhanced Mechanical Property and Long-Term Drug Release. J. Colloid Interface Sci. 2021, 593, 142–151. DOI: 10.1016/j.jcis.2021.02.099.
  • Zhu, H.; Feng, X.; Zhang, H.; Guo, Y.; Zhang, J.; Chen, J. Structural Characteristics and Properties of Silk Fibroin/Poly(Lactic Acid) Blend Films. J. Biomater. Sci. Polym. Ed. 2009, 20, 1259–1274. DOI: 10.1163/156856209X452980.
  • Liu, W.; Li, Z.; Zheng, L.; Zhang, X.; Liu, P.; Yang, T.; Han, B. Electrospun Fibrous Silk Fibroin/Poly(L-Lactic Acid) Scaffold for Cartilage Tissue Engineering. Tissue Eng. Regen. Med. 2016, 13, 516–526. DOI: 10.1007/s13770-016-9099-9.
  • Wang, F.; Li, Y.; Gough, C. R.; Liu, Q.; Hu, X. Dual-Crystallizable Silk Fibroin/Poly(L-Lactic Acid) Biocomposite Films: Effect of Polymer Phases on Protein Structures in Protein-Polymer Blends. Int. J. Mol. Sci. 2021, 22, 1871. DOI: 10.3390/ijms22041871.
  • Song, J.; Chen, Z.; Murillo, L. L.; Tang, D.; Meng, C.; Zhong, X.; Wang, T.; Li, J. Hierarchical Porous Silk Fibroin/Poly(L-Lactic Acid) Fibrous Membranes towards Vascular Scaffolds. Int. J. Biol. Macromol. 2021, 166, 1111–1120. DOI: 10.1016/j.ijbiomac.2020.10.266.
  • Reizabal, A.; Costa, C. M.; Pérez-Álvarez, L.; Vilas-Vilela, J. L.; Lanceros-Méndez, S. Silk Fibroin as Sustainable Advanced Material: Material Properties and Characteristics, Processing, and Applications. Adv. Funct. Mater. 2023, 33, 2210764. DOI: 10.1002/adfm.202210764.
  • Ummartyotin, S.; Manuspiya, H. A Critical Review on Cellulose: From Fundamental to an Approach on Sensor Technology. Renew. Sustain. Energy Rev. 2015, 41, 402–412. DOI: 10.1016/j.rser.2014.08.050.
  • Kostag, M.; Jedvert, K.; El Seoud, O. A. Engineering of Sustainable Biomaterial Composites from Cellulose and Silk Fibroin: Fundamentals and Applications. Int. J. Biol. Macromol. 2021, 167, 687–718. DOI: 10.1016/j.ijbiomac.2020.11.151.
  • Dorishetty, P.; Balu, R.; Athukoralalage, S. S.; Greaves, T. L.; Mata, J.; de Campo, L.; Saha, N.; Zannettino, A. C. W.; Dutta, N. K.; Choudhury, N. R. Tunable Biomimetic Hydrogels from Silk Fibroin and Nanocellulose. ACS Sustain. Chem. Eng. 2020, 8, 2375–2389. DOI: 10.1021/acssuschemeng.9b05317.
  • Gao, K.; Guo, Y.; Niu, Q.; Han, L.; Zhang, L.; Zhang, Y.; Wang, L. Cellulose Nanofibers/Silk Fibroin Nanohybrid Sponges with Highly Ordered and Multi-Scale Hierarchical Honeycomb Structure. Cellulose 2018, 25, 429–437. DOI: 10.1007/s10570-017-1545-x.
  • Feng, Y.; Li, X.; Zhang, Q.; Ye, D.; Li, M.; You, R.; Xu, W. Fabrication of Porous Silk Fibroin/Cellulose Nanofibril Sponges with Hierarchical Structure Using a Lithium Bromide Solvent System. Cellulose 2019, 26, 1013–1023. DOI: 10.1007/s10570-018-2149-9.
  • Kim, H. J.; Yang, Y. J.; Oh, H. J.; Kimura, S.; Wada, M.; Kim, U.-J. Cellulose–Silk Fibroin Hydrogels Prepared in a Lithium Bromide Aqueous Solution. Cellulose 2017, 24, 5079–5088. DOI: 10.1007/s10570-017-1491-7.
  • Shang, S.; Zhu, L.; Fan, J. Physical Properties of Silk Fibroin/Cellulose Blend Films Regenerated from the Hydrophilic Ionic Liquid. Carbohydr. Polym. 2011, 86, 462–468. DOI: 10.1016/j.carbpol.2011.04.064.
  • Mohammadi, P.; Aranko, A. S.; Landowski, C. P.; Ikkala, O.; Jaudzems, K.; Wagermaier, W.; Linder, M. B. Biomimetic Composites with Enhanced Toughening Using Silk-Inspired Triblock Proteins and Aligned Nanocellulose Reinforcements. Sci. Adv. 2019, 5, eaaw2541. DOI: 10.1126/sciadv.aaw2541.
  • Wu, C.; Egawa, S.; Kanno, T.; Kurita, H.; Wang, Z.; Iida, E.; Narita, F. Nanocellulose Reinforced Silkworm Silk Fibers for Application to Biodegradable Polymers. Mater. Des. 2021, 202, 109537. DOI: 10.1016/j.matdes.2021.109537.
  • Yan, D.; Qiu, L.; Shea, K. J.; Meng, Z.; Xue, M. Dyeing and Functionalization of Wearable Silk Fibroin/Cellulose Composite by Nanocolloidal Array. ACS Appl. Mater. Interfaces 2019, 11, 39163–39170. DOI: 10.1021/acsami.9b11576.
  • Shefa, A. A.; Taz, M.; Lee, S. Y.; Lee, B.-T. Enhancement of Hemostatic Property of Plant Derived Oxidized Nanocellulose-Silk Fibroin Based Scaffolds by Thrombin Loading. Carbohydr. Polym. 2019, 208, 168–179. DOI: 10.1016/j.carbpol.2018.12.056.
  • Xu, K.; Zhang, Y.; Ye, Q.; Wu, J.; Li, Q.; Su, G.; Harper, D. P.; Du, G.; Ye, X. P.; Wang, S. Natural Cuticle-Inspired Chitin/Silk Fibroin/Cellulose Nanocrystal Biocomposite Films: Fabrication and Characterization. Mater. Res. Express 2021, 8, 036402. DOI: 10.1088/2053-1591/abe974.
  • Yang, Y.; Zhang, S.; Bian, X.; Xia, T.; Lu, A.; Zhang, L.; Wang, Y.; Duan, B. In Situ Exfoliated Silk Fibroin Nanoribbons Enhanced Chitin Hydrogel for Bile Duct Restoration. Chem. Eng. J. 2021, 422, 130088. DOI: 10.1016/j.cej.2021.130088.
  • Mehrabani, M. G.; Karimian, R.; Mehramouz, B.; Rahimi, M.; Kafil, H. S. Preparation of Biocompatible and Biodegradable Silk Fibroin/Chitin/Silver Nanoparticles 3D Scaffolds as a Bandage for Antimicrobial Wound Dressing. Int. J. Biol. Macromol. 2018, 114, 961–971. DOI: 10.1016/j.ijbiomac.2018.03.128.
  • Mehrabani, M. G.; Karimian, R.; Rakhshaei, R.; Pakdel, F.; Eslami, H.; Fakhrzadeh, V.; Rahimi, M.; Salehi, R.; Kafil, H. S. Chitin/Silk Fibroin/TiO2 Bio-Nanocomposite as a Biocompatible Wound Dressing Bandage with Strong Antimicrobial Activity. Int. J. Biol. Macromol. 2018, 116, 966–976. DOI: 10.1016/j.ijbiomac.2018.05.102.
  • Kweon, H.; Ha, H. C.; Um, I. C.; Park, Y. H. Physical Properties of Silk Fibroin/Chitosan Blend Films. J. Appl. Polym. Sci. 2001, 80, 928–934. DOI: 10.1002/app.1172.
  • Zhang, Z.; Zhao, Z.; Zheng, Z.; Liu, S.; Mao, S.; Li, X.; Chen, Y.; Mao, Q.; Wang, L.; Wang, F.; et al. Functionalization of Polyethylene Terephthalate Fabrics Using Nitrogen Plasma and Silk Fibroin/Chitosan Microspheres. Appl. Surf. Sci. 2019, 495, 143481. DOI: 10.1016/j.apsusc.2019.07.223.
  • Li, J.; Zhou, Y.; Chen, W.; Yuan, Z.; You, B.; Liu, Y.; Yang, S.; Li, F.; Qu, C.; Zhang, X. A Novel 3D In Vitro Tumor Model Based on Silk Fibroin/Chitosan Scaffolds To Mimic the Tumor Microenvironment. ACS Appl. Mater. Interfaces 2018, 10, 36641–36651. DOI: 10.1021/acsami.8b10679.
  • Li, D.-W.; He, J.; He, F.-L.; Liu, Y.-L.; Liu, Y.-Y.; Ye, Y.-J.; Deng, X.; Yin, D.-C. Silk Fibroin/Chitosan Thin Film Promotes Osteogenic and Adipogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells. J. Biomater. Appl. 2018, 32, 1164–1173. DOI: 10.1177/0885328218757767.
  • Wu, Y.-Y.; Jiao, Y.-P.; Xiao, L.-L.; Li, M.-M.; Liu, H.-W.; Li, S.-H.; Liao, X.; Chen, Y.-T.; Li, J.-X.; Zhang, Y. Experimental Study on Effects of Adipose-Derived Stem Cell–Seeded Silk Fibroin Chitosan Film on Wound Healing of a Diabetic Rat Model. Ann. Plast. Surg. 2018, 80, 572–580. DOI: 10.1097/SAP.0000000000001355.
  • Sell, S. A.; Wolfe, P. S.; Garg, K.; McCool, J. M.; Rodriguez, I. A.; Bowlin, G. L. The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues. Polymers 2010, 2, 522–553. DOI: 10.3390/polym2040522.
  • Lee, A.; Hudson, A. R.; Shiwarski, D. J.; Tashman, J. W.; Hinton, T. J.; Yerneni, S.; Bliley, J. M.; Campbell, P. G.; Feinberg, A. W. 3D Bioprinting of Collagen to Rebuild Components of the Human Heart. Science 2019, 365, 482–487. DOI: 10.1126/science.aav9051.
  • Choi, F. D.; Sung, C. T.; Juhasz, M.; Mesinkovsk, N. A. Oral Collagen Supplementation: A Systematic Review of Dermatological Applications. J. Drugs Dermatol. 2019, 18, 9–16.
  • Avila Rodríguez, M. I.; Rodríguez Barroso, L. G.; Sánchez, M. L. Collagen: A Review on Its Sources and Potential Cosmetic Applications. J. Cosmet. Dermatol. 2018, 17, 20–26. DOI: 10.1111/jocd.12450.
  • Balparda, K.; Maldonado, M. J. Entrecruzamiento del colágeno corneal. Revisión de sus aplicaciones clínicas. Arch. Soc. Esp. Oftalmol. 2017, 92, 166–174. DOI: 10.1016/j.oftal.2016.10.004.
  • Buitrago, J. O.; Patel, K. D.; El-Fiqi, A.; Lee, J.-H.; Kundu, B.; Lee, H.-H.; Kim, H.-W. Silk Fibroin/Collagen Protein Hybrid Cell-Encapsulating Hydrogels with Tunable Gelation and Improved Physical and Biological Properties. Acta Biomater. 2018, 69, 218–233. DOI: 10.1016/j.actbio.2017.12.026.
  • Wu, J.; Liu, M.; Wang, L.; Guan, G. Influence of Silk Fibroin/Sodium Alginate Coatings on the Mineralization of Silk Fibroin Fiber Artificial Ligament Prototypes. Text. Res. J. 2020, 90, 1590–1601. DOI: 10.1177/0040517519898156.
  • Kwak, H. W.; Ju, J. E.; Shin, M.; Holland, C.; Lee, K. H. Sericin Promotes Fibroin Silk I Stabilization Across a Phase-Separation. Biomacromolecules 2017, 18, 2343–2349. DOI: 10.1021/acs.biomac.7b00549.
  • Song, K.; Qian, X.; Zhu, X.; Li, X.; Hong, X. Fabrication of Mechanical Robust Keratin Film by Mesoscopic Molecular Network Reconstruction and Its Performance for Dye Removal. J. Colloid Interface Sci. 2020, 579, 28–36. DOI: 10.1016/j.jcis.2020.06.026.
  • Wang, F.; Wu, H.; Venkataraman, V.; Hu, X. Silk Fibroin-Poly(Lactic Acid) Biocomposites: Effect of Protein-Synthetic Polymer Interactions and Miscibility on Material Properties and Biological Responses. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109890. DOI: 10.1016/j.msec.2019.109890.
  • Sun, K.; Li, H.; Li, R.; Nian, Z.; Li, D.; Xu, C. Silk Fibroin/Collagen and Silk Fibroin/Chitosan Blended Three-Dimensional Scaffolds for Tissue Engineering. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 243–249. DOI: 10.1007/s00590-014-1515-z.
  • Sharafat-Vaziri, A.; Khorasani, S.; Darzi, M.; Saffarian, Z.; Alizadeh, Z.; Tahmasebi, M. N.; Kazemnejad, S. Safety and Efficacy of Engineered Tissue Composed of Silk Fibroin/Collagen and Autologous Chondrocytes in Two Patients with Cartilage Defects: A Pilot Clinical Trial Study. Knee 2020, 27, 1300–1309. DOI: 10.1016/j.knee.2020.06.015.
  • Chakraborty, J.; Ghosh, S. Cellular Proliferation, Self-Assembly, and Modulation of Signaling Pathways in Silk Fibroin Gelatin-Based 3D Bioprinted Constructs. ACS Appl. Bio Mater. 2020, 3, 8309–8320. DOI: 10.1021/acsabm.0c01252.
  • Shi, W.; Sun, M.; Hu, X.; Ren, B.; Cheng, J.; Li, C.; Duan, X.; Fu, X.; Zhang, J.; Chen, H.; Ao, Y. Structurally and Functionally Optimized Silk-Fibroin–Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo. Adv. Mater. 2017, 29, 1701089. DOI: 10.1002/adma.201701089.
  • Dadras Chomachayi, M.; Solouk, A.; Akbari, S.; Sadeghi, D.; Mirahmadi, F.; Mirzadeh, H. Electrospun Nanofibers Comprising of Silk Fibroin/Gelatin for Drug Delivery Applications: Thyme Essential Oil and Doxycycline Monohydrate Release Study. J. Biomed. Mater. Res. A 2018, 106, 1092–1103. DOI: 10.1002/jbm.a.36303.
  • Tiwari, S.; Bahadur, P. Modified Hyaluronic Acid Based Materials for Biomedical Applications. Int. J. Biol. Macromol. 2019, 121, 556–571. DOI: 10.1016/j.ijbiomac.2018.10.049.
  • Foss, C.; Merzari, E.; Migliaresi, C.; Motta, A. Silk Fibroin/Hyaluronic Acid 3D Matrices for Cartilage Tissue Engineering. Biomacromolecules 2013, 14, 38–47. DOI: 10.1021/bm301174x.
  • Najberg, M.; Haji Mansor, M.; Taillé, T.; Bouré, C.; Molina-Peña, R.; Boury, F.; Cenis, J. L.; Garcion, E.; Alvarez-Lorenzo, C. Aerogel Sponges of Silk Fibroin, Hyaluronic Acid and Heparin for Soft Tissue Engineering: Composition-Properties Relationship. Carbohydr. Polym. 2020, 237, 116107. DOI: 10.1016/j.carbpol.2020.116107.
  • Zhang, Q.; Chen, S.; You, R.; Tariq, Z.; Huang, J.; Li, M.; Yan, S. Silk Fibroin/Hyaluronic Acid Porous Scaffold for Dermal Wound Healing. Fibers Polym. 2017, 18, 1056–1063. DOI: 10.1007/s12221-017-1230-6.
  • Hu, Z.; Das, S. K.; Yan, S.; You, R.; Li, X.; Luo, Z.; Li, M.; Zhang, Q.; Kaplan, D. L. Stability and Biodegradation of Silk Fibroin/Hyaluronic Acid Nerve Conduits. Compos. Part B Eng. 2020, 200, 108222. DOI: 10.1016/j.compositesb.2020.108222.
  • Gisbert Roca, F.; Lozano Picazo, P.; Pérez-Rigueiro, J.; Guinea Tortuero, G. V.; Monleón Pradas, M.; Martínez-Ramos, C. Conduits Based on the Combination of Hyaluronic Acid and Silk Fibroin: Characterization, In Vitro Studies and In Vivo Biocompatibility. Int. J. Biol. Macromol. 2020, 148, 378–390. DOI: 10.1016/j.ijbiomac.2020.01.149.
  • Lopes, L. M.; de Moraes, M. A.; Beppu, M. M. Phase Diagram and Estimation of Flory-Huggins Parameter of Interaction of Silk Fibroin/Sodium Alginate Blends. Front. Bioeng. Biotechnol. 2020, 8, 973. DOI: 10.3389/fbioe.2020.00973.
  • Wang, Z.; Yang, H.; Zhu, Z. Study on the Blends of Silk Fibroin and Sodium Alginate: Hydrogen Bond Formation, Structure and Properties. Polymer 2019, 163, 144–153. DOI: 10.1016/j.polymer.2019.01.004.
  • Yang, W.; Xu, H.; Lan, Y.; Zhu, Q.; Liu, Y.; Huang, S.; Shi, S.; Hancharou, A.; Tang, B.; Guo, R. Preparation and Characterisation of a Novel Silk Fibroin/Hyaluronic Acid/Sodium Alginate Scaffold for Skin Repair. Int. J. Biol. Macromol. 2019, 130, 58–67. DOI: 10.1016/j.ijbiomac.2019.02.120.
  • Ming, J.; Jiang, Z.; Wang, P.; Bie, S.; Zuo, B. Silk Fibroin/Sodium Alginate Fibrous Hydrogels Regulated Hydroxyapatite Crystal Growth. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 51, 287–293. DOI: 10.1016/j.msec.2015.03.014.
  • Chen, G.; Wei, R.; Huang, X.; Wang, F.; Chen, Z. Synthesis and Assessment of Sodium Alginate-Modified Silk Fibroin Microspheres as Potential Hepatic Arterial Embolization Agent. Int. J. Biol. Macromol. 2020, 155, 1450–1459. DOI: 10.1016/j.ijbiomac.2019.11.122.
  • Wang, Y.; Zheng, Z.; Cheng, Q.; Kaplan, D. L.; Li, G.; Wang, X. Ductility and Porosity of Silk Fibroin Films by Blending with Glycerol/Polyethylene Glycol and Adjusting the Drying Temperature. ACS Biomater. Sci. Eng. 2020, 6, 1176–1185. DOI: 10.1021/acsbiomaterials.9b01567.
  • Santos, F. V.; Yoshioka, S. A.; Branciforti, M. C. Large-Area Thin Films of Silk Fibroin Prepared by Two Methods with Formic Acid as Solvent and Glycerol as Plasticizer. J. Appl. Polym. Sci. 2021, 138, 50759. DOI: 10.1002/app.50759.
  • Motta, A.; Migliaresi, C.; Faccioni, F.; Torricelli, P.; Fini, M.; Giardino, R. Fibroin Hydrogels for Biomedical Applications: Preparation, Characterization and In Vitro Cell Culture Studies. J. Biomater. Sci. Polym. Ed. 2004, 15, 851–864. DOI: 10.1163/1568562041271075.
  • Fernandes, T. C. D.; Rodrigues, H. M. R.; Paz, F. A. A.; Sousa, J. F. M.; Valente, A. J. M.; Silva, M. M.; de Zea Bermudez, V.; Pereira, R. F. P. Highly Conducting Bombyx mori Silk Fibroin-Based Electrolytes Incorporating Glycerol, Dimethyl Sulfoxide and [Bmim]PF6. J. Electrochem. Soc. 2020, 167, 070551. DOI: 10.1149/1945-7111/ab8313.
  • Zhang, X.; Jia, C.; Qiao, X.; Liu, T.; Sun, K. Silk Fibroin Microfibers and Chitosan Modified Poly (Glycerol Sebacate) Composite Scaffolds for Skin Tissue Engineering. Polym. Test. 2017, 62, 88–95. DOI: 10.1016/j.polymertesting.2017.06.012.
  • Das, G.; Shin, H.-S.; Campos, E. V. R.; Fraceto, L. F.; del Pilar Rodriguez-Torres, M.; Mariano, K. C. F.; de Araujo, D. R.; Fernández-Luqueño, F.; Grillo, R.; Patra, J. K. Sericin Based Nanoformulations: A Comprehensive Review on Molecular Mechanisms of Interaction with Organisms to Biological Applications. J. Nanobiotechnology. 2021, 19, 30. DOI: 10.1186/s12951-021-00774-y.
  • Suzuki, S.; Rayner, C.; Chirila, T. Silk Fibroin/Sericin Native Blends as Potential Biomaterial Templates. ATROA 2019, 5, 11–19. DOI: 10.15406/atroa.2019.05.00093.
  • Teramoto, H.; Kakazu, A.; Yamauchi, K.; Asakura, T. Role of Hydroxyl Side Chains in Bombyx mori Silk Sericin in Stabilizing Its Solid Structure. Macromolecules 2007, 40, 1562–1569. DOI: 10.1021/ma062604e.
  • Teramoto, H.; Kakazu, A.; Asakura, T. Native Structure and Degradation Pattern of Silk Sericin Studied by 13C NMR Spectroscopy. Macromolecules 2006, 39, 6–8. DOI: 10.1021/ma0521147.
  • Teramoto, H.; Miyazawa, M. Molecular Orientation Behavior of Silk Sericin Film as Revealed by ATR Infrared Spectroscopy. Biomacromolecules 2005, 6, 2049–2057. DOI: 10.1021/bm0500547.
  • Lee, K. H. Silk Sericin Retards the Crystallization of Silk Fibroin. Macromol. Rapid Commun. 2004, 25, 1792–1796. DOI: 10.1002/marc.200400333.
  • Ki, C. S.; Park, Y. H. Effect of Sericin Blending on Molecular Orientation of Regenerated Silk Fiber. Fibers Polym. 2013, 14, 1460–1467. DOI: 10.1007/s12221-013-1460-1.
  • Zhang, Y.; Zhao, Y.; He, X.; Fang, A.; Jiang, R.; Wu, T.; Chen, H.; Cao, X.; Liang, P.; Xia, D.; Zhang, G. A Sterile Self-Assembled Sericin Hydrogel via a Simple Two-Step Process. Polym. Test. 2019, 80, 106016. DOI: 10.1016/j.polymertesting.2019.106016.
  • Wang, Y.; Yao, D.; Li, L.; Qian, Z.; He, W.; Ding, R.; Liu, H.; Fan, Y. Effect of Electrospun Silk Fibroin–Silk Sericin Films on Macrophage Polarization and Vascularization. ACS Biomater. Sci. Eng. 2020, 6, 3502–3512. DOI: 10.1021/acsbiomaterials.0c00175.
  • Rao, J.; Cheng, Y.; Liu, Y.; Ye, Z.; Zhan, B.; Quan, D.; Xu, Y. A Multi-Walled Silk Fibroin/Silk Sericin Nerve Conduit Coated with Poly(Lactic-Co-Glycolic Acid) Sheath for Peripheral Nerve Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 73, 319–332. DOI: 10.1016/j.msec.2016.12.085.
  • Kaczmarek, B.; Nadolna, K.; Owczarek, A. Chapter 6 – The Physical and Chemical Properties of Hydrogels Based on Natural Polymers. In Hydrogels Based on Natural Polymers; Chen, Y., Ed.; Elsevier: Amsterdam, 2020; pp 151–172.
  • Feroz, S.; Muhammad, N.; Ranayake, J.; Dias, G. Keratin-Based Materials for Biomedical Applications. Bioact. Mater. 2020, 5, 496–509. DOI: 10.1016/j.bioactmat.2020.04.007.
  • Varma, K.; Gopi, S. Chapter 7 – Biopolymers and Their Role in Medicinal and Pharmaceutical Applications. In Biopolymers and Their Industrial Applications; Thomas, S., Gopi, S., Amalraj, A., Eds.; Elsevier: Amsterdam, 2021; pp 175–191.
  • Vu, T.; Xue, Y.; Vuong, T.; Erbe, M.; Bennet, C.; Palazzo, B.; Popielski, L.; Rodriguez, N.; Hu, X. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials. Int. J. Mol. Sci. 2016, 17, 1497. DOI: 10.3390/ijms17091497.
  • Tu, H.; Yu, R.; Lin, Z.; Zhang, L.; Lin, N.; Yu, W. D.; Liu, X. Y. Programing Performance of Wool Keratin and Silk Fibroin Composite Materials by Mesoscopic Molecular Network Reconstruction. Adv. Funct. Mater. 2016, 26, 9032–9043. DOI: 10.1002/adfm.201603403.
  • Shavandi, A.; Jafari, H.; Zago, E.; Hobbi, P.; Nie, L.; De Laet, N. A Sustainable Solvent Based on Lactic Acid and l-Cysteine for the Regeneration of Keratin from Waste Wool. Green Chem. 2021, 23, 1171–1174. DOI: 10.1039/D0GC04314A.
  • Cassoni, A. C.; Freixo, R.; Pintado, A. I. E.; Amorim, M.; Pereira, C. D.; Madureira, A. R.; Pintado, M. M. E. Novel Eco-Friendly Method to Extract Keratin from Hair. ACS Sustain. Chem. Eng. 2018, 6, 12268–12274. DOI: 10.1021/acssuschemeng.8b02680.
  • Tian, H.; Guo, G.; Fu, X.; Yao, Y.; Yuan, L.; Xiang, A. Fabrication, Properties and Applications of Soy-Protein-Based Materials: A Review. Int. J. Biol. Macromol. 2018, 120, 475–490. DOI: 10.1016/j.ijbiomac.2018.08.110.
  • Liu, F.; Liu, C.; Zheng, B.; He, J.; Liu, J.; Chen, C.; Lee, I.; Wang, X.; Liu, Y. Synergistic Effects on Incorporation of β-Tricalcium Phosphate and Graphene Oxide Nanoparticles to Silk Fibroin/Soy Protein Isolate Scaffolds for Bone Tissue Engineering. Polymers 2020, 12, 69. DOI: 10.3390/polym12010069.
  • Opálková Šišková, A.; Kozma, E.; Opálek, A.; Kroneková, Z.; Kleinová, A.; Nagy, Š.; Kronek, J.; Rydz, J.; Eckstein Andicsová, A. Diclofenac Embedded in Silk Fibroin Fibers as a Drug Delivery System. Materials 2020, 13, 3580. DOI: 10.3390/ma13163580.
  • Choudhury, M.; Talukdar, B.; Dass, N. N.; Baruah, K. C.; Devi, D. Impact of BSA and Casein on Chemical Modification of Muga Silk Fiber. J. Text. Inst. 2016, 107, 346–354. DOI: 10.1080/00405000.2015.1034926.
  • Adali, T.; Kalkan, R.; Karimizarandi, L. The Chondrocyte Cell Proliferation of a Chitosan/Silk Fibroin/Egg Shell Membrane Hydrogels. Int. J. Biol. Macromol. 2019, 124, 541–547. DOI: 10.1016/j.ijbiomac.2018.11.226.
  • Mohammadzadeh, L.; Rahbarghazi, R.; Salehi, R.; Mahkam, M. A Novel Egg-Shell Membrane Based Hybrid Nanofibrous Scaffold for Cutaneous Tissue Engineering. J. Biol. Eng. 2019, 13, 79. DOI: 10.1186/s13036-019-0208-x.
  • Bettinger, C. J.; Bruggeman, J. P.; Misra, A.; Borenstein, J. T.; Langer, R. Biocompatibility of Biodegradable Semiconducting Melanin Films for Nerve Tissue Engineering. Biomaterials 2009, 30, 3050–3057. DOI: 10.1016/j.biomaterials.2009.02.018.
  • Yao, Z.-Y.; Qi, J.-H. Comparison of Antioxidant Activities of Melanin Fractions from Chestnut Shell. Molecules 2016, 21, 487. DOI: 10.3390/molecules21040487.
  • da Silva, L. P.; Oliveira, S.; Pirraco, R. P.; Santos, T. C.; Reis, R. L.; Marques, A. P.; Correlo, V. M. Eumelanin-Releasing Spongy-like Hydrogels for Skin Re-Epithelialization Purposes. Biomed. Mater. 2017, 12, 025010. DOI: 10.1088/1748-605X/aa5f79.
  • Nune, M.; Manchineella, S.; T, G.; K.s, N. Melanin Incorporated Electroactive and Antioxidant Silk Fibroin Nanofibrous Scaffolds for Nerve Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 17–25. DOI: 10.1016/j.msec.2018.09.014.
  • Persenaire, O.; Alexandre, M.; Degée, P.; Dubois, P. Mechanisms and Kinetics of Thermal Degradation of Poly(ε-Caprolactone). Biomacromolecules 2001, 2, 288–294. DOI: 10.1021/bm0056310.
  • Kim, B. S.; Park, K. E.; Kim, M. H.; You, H. K.; Lee, J.; Park, W. H. Effect of Nanofiber Content on Bone Regeneration of Silk Fibroin/Poly (ε-Caprolactone) Nano/Microfibrous Composite Scaffolds. Int. J. Nanomedicine 2015, 10, 485–502. DOI: 10.2147/IJN.S72730.
  • Luo, J.; Zhang, H.; Zhu, J.; Cui, X.; Gao, J.; Wang, X.; Xiong, J. 3-D Mineralized Silk Fibroin/Polycaprolactone Composite Scaffold Modified with Polyglutamate Conjugated with BMP-2 Peptide for Bone Tissue Engineering. Colloids Surf. B Biointerfaces 2018, 163, 369–378. DOI: 10.1016/j.colsurfb.2017.12.043.
  • Heo, S.-J.; Kim, S.-E.; Wei, J.; Hyun, Y.-T.; Yun, H.-S.; Kim, D.-H.; Shin, J. W.; Shin, J.-W. Fabrication and Characterization of Novel Nano- and micro-HA/PCL Composite Scaffolds Using a Modified Rapid Prototyping Process. J. Biomed. Mater. Res. A 2009, 89, 108–116. DOI: 10.1002/jbm.a.31726.
  • Saremi, J.; Khanmohammadi, M.; Azami, M.; Ai, J.; Yousefi-Ahmadipour, A.; Ebrahimi-Barough, S. Tissue-Engineered Nerve Graft Using Silk-Fibroin/Polycaprolactone Fibrous Mats Decorated with Bioactive Cerium Oxide Nanoparticles. J. Biomed. Mater. Res. A 2021, 109, 1588–1599. DOI: 10.1002/jbm.a.37153.
  • Xing, X.; Cheng, G.; Yin, C.; Cheng, X.; Cheng, Y.; Ni, Y.; Zhou, X.; Deng, H.; Li, Z. Magnesium-Containing Silk Fibroin/Polycaprolactone Electrospun Nanofibrous Scaffolds for Accelerating Bone Regeneration. Arab. J. Chem. 2020, 13, 5526–5538. DOI: 10.1016/j.arabjc.2020.03.031.
  • Wang, F.; Liu, H.; Li, Y.; Li, Y.; Ma, Q.; Zhang, J.; Hu, X. Tunable Biodegradable Polylactide–Silk Fibroin Scaffolds Fabricated by a Solvent-Free Pressure-Controllable Foaming Technology. ACS Appl. Bio Mater. 2020, 3, 8795–8807. DOI: 10.1021/acsabm.0c01157.
  • Fukushima, K.; Kimura, Y. Stereocomplexed Polylactides (Neo-PLA) as High-Performance Bio-Based Polymers: Their Formation, Properties, and Application. Polym. Int. 2006, 55, 626–642. DOI: 10.1002/pi.2010.
  • Yan, C.; Ren, Y.; Sun, X.; Jin, L.; Liu, X.; Chen, H.; Wang, K.; Yu, M.; Zhao, Y. Photoluminescent Functionalized Carbon Quantum Dots Loaded Electroactive Silk Fibroin/PLA Nanofibrous Bioactive Scaffolds for Cardiac Tissue Engineering. J. Photochem. Photobiol. B 2020, 202, 111680. DOI: 10.1016/j.jphotobiol.2019.111680.
  • Yeon, Y. K.; Park, H. S.; Lee, J. M.; Lee, J. S.; Lee, Y. J.; Sultan, M. T.; Seo, Y. B.; Lee, O. J.; Kim, S. H.; Park, C. H. New Concept of 3D Printed Bone Clip (Polylactic Acid/Hydroxyapatite/Silk Composite) for Internal Fixation of Bone Fractures. J. Biomater. Sci. Polym. Ed. 2018, 29, 894–906. DOI: 10.1080/09205063.2017.1384199.
  • Du, M.; Gu, J.; Wang, J.; Xue, Y.; Ma, Y.; Mo, X.; Xue, S. Silk Fibroin/Poly (L-Lactic Acid-Co-ε-Caprolactone) Electrospun Nanofibrous Scaffolds Exert a Protective Effect following Myocardial Infarction. Exp. Ther. Med. 2019, 17, 3989–3998. DOI: 10.3892/etm.2019.7405.
  • Pitjamit, S.; Thunsiri, K.; Nakkiew, W.; Wongwichai, T.; Pothacharoen, P.; Wattanutchariya, W. The Possibility of Interlocking Nail Fabrication from FFF 3D Printing PLA/PCL/HA Composites Coated by Local Silk Fibroin for Canine Bone Fracture Treatment. Materials 2020, 13, 1564. DOI: 10.3390/ma13071564.
  • Yao, Q.; Hu, Y.; Yu, F.; Zhang, W.; Fu, Y. A Novel Application of Electrospun Silk Fibroin/Poly(l-Lactic Acid-Co-ε-Caprolactone) Scaffolds for Conjunctiva Reconstruction. RSC Adv. 2018, 8, 18372–18380. DOI: 10.1039/c7ra13551c.
  • Dadras Chomachayi, M.; Jalali-Arani, A.; Beltrán, F. R.; de la Orden, M. U.; Martínez Urreaga, J. Biodegradable Nanocomposites Developed from PLA/PCL Blends and Silk Fibroin Nanoparticles: Study on the Microstructure, Thermal Behavior, Crystallinity and Performance. J. Polym. Environ. 2020, 28, 1252–1264. DOI: 10.1007/s10924-020-01684-0.
  • Dadras Chomachayi, M.; Jalali-Arani, A.; Martínez Urreaga, J. A Comparison of the Effect of Silk Fibroin Nanoparticles and Microfibers on the Reprocessing and Biodegradability of PLA/PCL Blends. J. Polym. Environ. 2021, 29, 2585–2597. DOI: 10.1007/s10924-021-02053-1.
  • Meng, C.; Jiang, W.; Huang, Z.; Liu, T.; Feng, J. Fabrication of a Highly Conductive Silk Knitted Composite Scaffold by Two-Step Electrostatic Self-Assembly for Potential Peripheral Nerve Regeneration. ACS Appl. Mater. Interfaces 2020, 12, 12317–12327. DOI: 10.1021/acsami.9b22088.
  • Yang, J.; Luo, J.; Liu, H.; Shi, L.; Welch, K.; Wang, Z.; Strømme, M. Electrochemically Active, Compressible, and Conducting Silk Fibroin Hydrogels. Ind. Eng. Chem. Res. 2020, 59, 9310–9317. DOI: 10.1021/acs.iecr.0c00407.
  • Romero, I. S.; Bradshaw, N. P.; Larson, J. D.; Severt, S. Y.; Roberts, S. J.; Schiller, M. L.; Leger, J. M.; Murphy, A. R. Biocompatible Electromechanical Actuators Composed of Silk-Conducting Polymer Composites. Adv. Funct. Mater. 2014, 24, 3866–3873. DOI: 10.1002/adfm.201303292.
  • Zhang, M.; Guo, B. Electroactive 3D Scaffolds Based on Silk Fibroin and Water-Borne Polyaniline for Skeletal Muscle Tissue Engineering. Macromol. Biosci. 2017, 17, 1700147. DOI: 10.1002/mabi.201700147.
  • Li, X.; Ming, J.; Ning, X. Wet-Spun Conductive Silk Fibroin–Polyaniline Filaments Prepared from a Formic Acid–Shell Solution. J. Appl. Polym. Sci. 2019, 136, 47127. DOI: 10.1002/app.47127.
  • Ahmad, S.; Sultan, A.; Mohammad, F. Electrically Conductive Polyaniline/Silk Fibroin Composite for Ammonia and Acetaldehyde Sensing. Polym. Polym. Compos. 2018, 26, 177–187. DOI: 10.1177/096739111802600206.
  • Teshima, T.; Nakashima, H.; Kasai, N.; Sasaki, S.; Tanaka, A.; Tsukada, S.; Sumitomo, K. Mobile Silk Fibroin Electrode for Manipulation and Electrical Stimulation of Adherent Cells. Adv. Funct. Mater. 2016, 26, 8185–8193. DOI: 10.1002/adfm.201603302.
  • Romero, I. S.; Schurr, M. L.; Lally, J. V.; Kotlik, M. Z.; Murphy, A. R. Enhancing the Interface in Silk–Polypyrrole Composites through Chemical Modification of Silk Fibroin. ACS Appl. Mater. Interfaces 2013, 5, 553–564. DOI: 10.1021/am301844c.
  • Liu, L.; Han, Y.; Lv, S. Design of Self-Healing and Electrically Conductive Silk Fibroin-Based Hydrogels. ACS Appl. Mater. Interfaces 2019, 11, 20394–20403. DOI: 10.1021/acsami.9b04871.
  • Gibson, I.; Rosen, D. Additive Manufacturing Technologies. Springer; 2015.
  • Mohd Ishak, Z. A.; Mat Taib, R. Multifunctional Polymer Composites Using Natural Fiber Reinforcements. In Multifunctionality of Polymer Composites: Challenges and New Solutions; Elsevier: Amsterdam, 2015; pp 71–101.
  • Li, D.; Tao, L.; Wu, T.; Wang, L.; Sun, B.; Ke, Q.; Mo, X.; Deng, B. Mechanically-Reinforced 3D Scaffold Constructed by Silk Nonwoven Fabric and Silk Fibroin Sponge. Colloids Surf. B Biointerfaces 2020, 196, 111361. DOI: 10.1016/j.colsurfb.2020.111361.
  • Rastogi, S.; Kandasubramanian, B. Progressive Trends in Heavy Metal Ions and Dyes Adsorption Using Silk Fibroin Composites. Environ. Sci. Pollut. Res. Int. 2020, 27, 210–237. DOI: 10.1007/s11356-019-07280-7.
  • Niu, Y.; Chen, X.; Yao, D.; Peng, G.; Liu, H.; Fan, Y. Enhancing Neural Differentiation of Induced Pluripotent Stem Cells by Conductive Graphene/Silk Fibroin Films. J. Biomed. Mater. Res. A 2018, 106, 2973–2983. DOI: 10.1002/jbm.a.36486.
  • Jia, X.; Wang, C.; Ranganathan, V.; Napier, B.; Yu, C.; Chao, Y.; Forsyth, M.; Omenetto, F. G.; Macfarlane, D. R.; Wallace, G. G. A Biodegradable Thin-Film Magnesium Primary Battery Using Silk Fibroin-Ionic Liquid Polymer Electrolyte. ACS Energy Lett. 2017, 2, 831–836. DOI: 10.1021/acsenergylett.7b00012.
  • Karahaliloğlu, Z.; Yalçın, E.; Demirbilek, M.; Denkbaş, E. B. Magnetic Silk Fibroin e-Gel Scaffolds for Bone Tissue Engineering Applications. J. Bioact. Compat. Polym. 2017, 32, 596–614. DOI: 10.1177/0883911517693635.
  • Ribeiro, M.; Ferraz, M. P.; Monteiro, F. J.; Fernandes, M. H.; Beppu, M. M.; Mantione, D.; Sardon, H. Antibacterial Silk Fibroin/Nanohydroxyapatite Hydrogels with Silver and Gold Nanoparticles for Bone Regeneration. Nanomedicine 2017, 13, 231–239. DOI: 10.1016/j.nano.2016.08.026.
  • Song, F.; Wang, H.; Sun, J.; Gao, H.; Wu, S.; Yang, M.; Ma, X.; Hao, Y. ZnO-Based Physically Transient and Bioresorbable Memory on Silk Protein. IEEE Electron. Device Lett. 2018, 39, 31–34. DOI: 10.1109/LED.2017.2774842.
  • Krauklis, A. E.; Karl, C. W.; Gagani, A. I.; Jørgensen, J. K. Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s. J. Compos. Sci. 2021, 5, 28. DOI: 10.3390/jcs5010028.
  • Umuhoza, D.; Yang, F.; Long, D.; Hao, Z.; Dai, J.; Zhao, A. Strategies for Tuning the Biodegradation of Silk Fibroin-Based Materials for Tissue Engineering Applications. ACS Biomater. Sci. Eng. 2020, 6, 1290–1310. DOI: 10.1021/acsbiomaterials.9b01781.
  • Ko, E.; Lee, J. S.; Kim, H.; Yang, S. Y.; Yang, D.; Yang, K.; Lee, J.; Shin, J.; Yang, H. S.; Ryu, W.; Cho, S.-W. Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2018, 10, 7614–7625. DOI: 10.1021/acsami.7b03328.
  • Liu, L.; Liu, J.; Kong, X.; Cai, Y.; Yao, J. Porous Composite Scaffolds of Hydroxyapatite/Silk Fibroin via Two-Step Method. Polym. Adv. Technol. 2011, 22, 909–914. DOI: 10.1002/pat.1595.
  • Zhao, Y.; Chen, J.; Chou, A. H. K.; Li, G.; LeGeros, R. Z. Nonwoven Silk Fibroin Net/Nano-Hydroxyapatite Scaffold: Preparation and Characterization. J. Biomed. Mater. Res. A 2009, 91, 1140–1149. DOI: 10.1002/jbm.a.32272.
  • Reizabal, A.; Gonçalves, S.; Pereira, N.; Costa, C. M.; Pérez, L.; Vilas-Vilela, J. L.; Lanceros-Mendez, S. Optically Transparent Silk Fibroin/Silver Nanowire Composites for Piezoresistive Sensing and Object Recognitions. J. Mater. Chem. C 2020, 8, 13053–13062. DOI: 10.1039/D0TC03428B.
  • Hu, X.; Li, J.; Bai, Y. Fabrication of High Strength Graphene/Regenerated Silk Fibroin Composite Fibers by Wet Spinning. Mater. Lett. 2017, 194, 224–226. DOI: 10.1016/j.matlet.2017.02.057.
  • Li, X.; Yan, S.; Qu, J.; Li, M.; Ye, D.; You, R.; Zhang, Q.; Wang, D. Soft Freezing-Induced Self-Assembly of Silk Fibroin for Tunable Gelation. Int. J. Biol. Macromol. 2018, 117, 691–695. DOI: 10.1016/j.ijbiomac.2018.05.223.
  • Xu, Z.; Shi, L.; Yang, M.; Zhu, L. Preparation and Biomedical Applications of Silk Fibroin-Nanoparticles Composites with Enhanced properties – A Review. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 95, 302–311. DOI: 10.1016/j.msec.2018.11.010.
  • Zakharov, N. A.; Demina, L. I.; Aliev, A. D.; Kiselev, M. R.; Matveev, V. V.; Orlov, M. A.; Zakharova, T. V.; Kuznetsov, N. T. Synthesis and Properties of Calcium Hydroxyapatite/Silk Fibroin Organomineral Composites. Inorg. Mater. 2017, 53, 333–342. DOI: 10.1134/S0020168517030128.
  • Wang, X.; Sui, Y.; Jian, J.; Yuan, Z.; Zeng, J.; Zhang, L.; Wang, T.; Zhou, H. Ag@AgCl Nanoparticles In Situ Deposited Cellulose Acetate/Silk Fibroin Composite Film for Photocatalytic and Antibacterial Applications. Cellulose 2020, 27, 7721–7737. DOI: 10.1007/s10570-020-03321-4.
  • Li, G.; Liu, H.; Li, T.; Wang, J. Surface Modification and Functionalization of Silk Fibroin Fibers/Fabric toward High Performance Applications. Mater. Sci. Eng. C 2012, 32, 627–636. DOI: 10.1016/j.msec.2011.12.013.
  • Eivazzadeh-Keihan, R.; Radinekiyan, F.; Madanchi, H.; Aliabadi, H. A. M.; Maleki, A. Graphene Oxide/Alginate/Silk Fibroin Composite as a Novel Bionanostructure with Improved Blood Compatibility, Less Toxicity and Enhanced Mechanical Properties. Carbohydr. Polym. 2020, 248, 116802. DOI: 10.1016/j.carbpol.2020.116802.
  • Izyan Syazana Mohd Yusoff, N.; Uzir Wahit, M.; Jaafar, J.; Wong, T.-W. Characterization of Graphene-Silk Fibroin Composites Film. Mater. Today: Proc. 2018, 5, 21853–21860. DOI: 10.1016/j.matpr.2018.07.042.
  • Chen, C.; Chuanbao, C.; Xilan, M.; Yin, T.; Hesun, Z. Preparation of Non-Woven Mats from All-Aqueous Silk Fibroin Solution with Electrospinning Method. Polymer 2006, 47, 6322–6327. DOI: 10.1016/j.polymer.2006.07.009.
  • Jo, Y.-Y.; Kim, S.-G.; Kwon, K.-J.; Kweon, H.; Chae, W.-S.; Yang, W.-G.; Lee, E.-Y.; Seok, H. Silk Fibroin-Alginate-Hydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo. Int. J. Mol. Sci. 2017, 18, 858. DOI: 10.3390/ijms18040858.
  • Zhan, Q.; Fan, S.; Wang, D.; Yao, X.; Shao, H.; Zhang, Y. Super-Strong and Uniform Fluorescent Composite Silk from Trace AIE Nanoparticle Feeding. Compos. Commun. 2020, 21, 100414. DOI: 10.1016/j.coco.2020.100414.
  • Wu, G.; Song, P.; Zhang, D.; Liu, Z.; Li, L.; Huang, H.; Zhao, H.; Wang, N.; Zhu, Y. Robust Composite Silk Fibers Pulled out of Silkworms Directly Fed with Nanoparticles. Int. J. Biol. Macromol. 2017, 104, 533–538. DOI: 10.1016/j.ijbiomac.2017.06.069.
  • Cai, L.; Shao, H.; Hu, X.; Zhang, Y. Reinforced and Ultraviolet Resistant Silks from Silkworms Fed with Titanium Dioxide Nanoparticles. ACS Sustain. Chem. Eng. 2015, 3, 2551–2557. DOI: 10.1021/acssuschemeng.5b00749.
  • Zheng, X.; Zhao, M.; Zhang, H.; Fan, S.; Shao, H.; Hu, X.; Zhang, Y. Intrinsically Fluorescent Silks from Silkworms Fed with Rare-Earth Upconverting Phosphors. ACS Biomater. Sci. Eng. 2018, 4, 4021–4027. DOI: 10.1021/acsbiomaterials.8b00986.
  • Fan, S.; Zheng, X.; Zhan, Q.; Zhang, H.; Shao, H.; Wang, J.; Cao, C.; Zhu, M.; Wang, D.; Zhang, Y. Super-Strong and Intrinsically Fluorescent Silkworm Silk from Carbon Nanodots Feeding. Nanomicro. Lett. 2019, 11, 75. DOI: 10.1007/s40820-019-0303-z.
  • Wang, Q.; Wang, C.; Zhang, M.; Jian, M.; Zhang, Y. Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers. Nano Lett. 2016, 16, 6695–6700. DOI: 10.1021/acs.nanolett.6b03597.
  • Ramos, N.; Miranda, M. S.; Franco, A. R.; Silva, S. S.; Azevedo, J.; Dias, I. R.; Reis, R. L.; Viegas, C.; Gomes, M. E. Toward Spinning Greener Advanced Silk Fibers by Feeding Silkworms with Nanomaterials. ACS Sustain. Chem. Eng. 2020, 8, 11872–11887. DOI: 10.1021/acssuschemeng.0c03874.
  • Leem, J. W.; Fraser, M. J.; Kim, Y. L. Transgenic and Diet-Enhanced Silk Production for Reinforced Biomaterials: A Metamaterial Perspective. Annu. Rev. Biomed. Eng. 2020, 22, 79–102. DOI: 10.1146/annurev-bioeng-082719-032747.
  • Li, Z.; Jiang, Y.; Cao, G.; Li, J.; Xue, R.; Gong, C. Construction of Transgenic Silkworm Spinning Antibacterial Silk with Fluorescence. Mol. Biol. Rep. 2015, 42, 19–25. DOI: 10.1007/s11033-014-3735-z.
  • Jung, R.; Kim, H.-S.; Kim, Y.; Kwon, S.-M.; Lee, H. S.; Jin, H.-J. Electrically Conductive Transparent Papers Using Multiwalled Carbon Nanotubes. J. Polym. Sci. B Polym. Phys. 2008, 46, 1235–1242. DOI: 10.1002/polb.21457.
  • Tseng, P.; Perotto, G.; Napier, B.; Riahi, P.; Li, W.; Shirman, E.; Kaplan, D. L.; Zenyuk, I. V.; Omenetto, F. G. Silk Fibroin-Carbon Nanotube Composite Electrodes for Flexible Biocatalytic Fuel Cells. Adv. Electron. Mater. 2016, 2, 1600190. DOI: 10.1002/aelm.201600190.
  • Zhou, J.; Zhao, Z.; Hu, R.; Yang, J.; Xiao, H.; Liu, Y.; Lu, M. Multi-Walled Carbon Nanotubes Functionalized Silk Fabrics for Mechanical Sensors and Heating Materials. Mater. Des. 2020, 191, 108636. DOI: 10.1016/j.matdes.2020.108636.
  • Reizabal, A.; Gonçalves, S.; Brito-Pereira, R.; Costa, P.; Costa, C. M.; Pérez-Álvarez, L.; Vilas-Vilela, J. L.; Lanceros-Méndez, S. Optimized Silk Fibroin Piezoresistive Nanocomposites for Pressure Sensing Applications Based on Natural Polymers. Nanoscale Adv. 2019, 1, 2284–2292. DOI: 10.1039/c8na00417j.
  • Ma, L.; Liu, Q.; Wu, R.; Meng, Z.; Patil, A.; Yu, R.; Yang, Y.; Zhu, S.; Fan, X.; Hou, C.; et al. From Molecular Reconstruction of Mesoscopic Functional Conductive Silk Fibrous Materials to Remote Respiration Monitoring. Small 2020, 16, e2000203. DOI: 10.1002/smll.202000203.
  • Su, M.; Kim, B. Silk Fibroin-Carbon Nanotube Composites Based Fiber Substrated Wearable Triboelectric Nanogenerator. ACS Appl. Nano Mater. 2020, 3, 9759–9770. DOI: 10.1021/acsanm.0c01854.
  • Yang, M.; Zeng, X.; Zhang, X.; Yang, Z. 3D Silk Fibroin/Carbon Nanotube Array Composite Matrix for Flexible Solid-State Supercapacitors. New J. Chem. 2020, 44, 6575–6582. DOI: 10.1039/D0NJ00351D.
  • Wang, S.; Ning, H.; Hu, N.; Huang, K.; Weng, S.; Wu, X.; Wu, L.; Liu, J.; Alamusi. Preparation and Characterization of Graphene Oxide/Silk Fibroin Hybrid Aerogel for Dye and Heavy Metal Adsorption. Compos. Part B Eng. 2019, 163, 716–722. DOI: 10.1016/j.compositesb.2018.12.140.
  • Yang, Y.; Ding, X.; Zou, T.; Peng, G.; Liu, H.; Fan, Y. Preparation and Characterization of Electrospun Graphene/Silk Fibroin Conductive Fibrous Scaffolds. RSC Adv. 2017, 7, 7954–7963. DOI: 10.1039/C6RA26807B.
  • Dionigi, C.; Posati, T.; Benfenati, V.; Sagnella, A.; Pistone, A.; Bonetti, S.; Ruani, G.; Dinelli, F.; Padeletti, G.; Zamboni, R.; Muccini, M. A Nanostructured Conductive Bio-Composite of Silk Fibroin–Single Walled Carbon Nanotubes. J. Mater. Chem. B 2014, 2, 1424–1431. DOI: 10.1039/c3tb21172j.
  • Okabayashi, R.; Nakamura, M.; Okabayashi, T.; Tanaka, Y.; Nagai, A.; Yamashita, K. Efficacy of Polarized Hydroxyapatite and Silk Fibroin Composite Dressing Gel on Epidermal Recovery from Full-Thickness Skin Wounds. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 90, 641–646. DOI: 10.1002/jbm.b.31329.
  • Maleki, H.; Montes, S.; Hayati-Roodbari, N.; Putz, F.; Huesing, N. Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure – An Approach towards 3D Printing of Aerogels. ACS Appl. Mater. Interfaces 2018, 10, 22718–22730. DOI: 10.1021/acsami.8b05856.
  • Xinxing, F.; Lan, Z.; Hailin, Z.; Jianyong, C. Study on the Properties of nano-TiO2 Particles Modified Silk Fibroin Porous Films. J. Appl. Polym. Sci. 2010, 116, 468–472. DOI: 10.1002/app.31527.
  • Du, J.; Ma, S.; Yan, Y.; Li, K.; Zhao, F.; Zhou, J. Corn-Silk-Templated Synthesis of TiO2 Nanotube Arrays with Ag3PO4 Nanoparticles for Efficient Oxidation of Organic Pollutants and Pathogenic Bacteria under Solar Light. Colloids Surf. A 2019, 572, 237–249. DOI: 10.1016/j.colsurfa.2019.04.018.
  • Zhao, G.; Zhang, Y.; Zhang, L.; Ye, Z.-G.; Ren, W.; Xu, F.; Wang, S.; Liu, M.; Zhang, X. 3D Conformal Modification of Electrospun Silk Nanofibers with Nanoscaled ZnO Deposition for Enhanced Photocatalytic Activity. ACS Biomater. Sci. Eng. 2017, 3, 2900–2906. DOI: 10.1021/acsbiomaterials.6b00548.
  • Shi, Y.; Li, Z.; Shi, J.; Zhang, F.; Zhou, X.; Li, Y.; Holmes, M.; Zhang, W.; Zou, X. Titanium Dioxide-Polyaniline/Silk Fibroin Microfiber Sensor for Pork Freshness Evaluation. Sens. Actuators B 2018, 260, 465–474. DOI: 10.1016/j.snb.2018.01.078.
  • Saravanan, A.; Huang, B.-R.; Kathiravan, D. Bio-Industrial Waste Silk Fibroin Protein and Carbon Nanotube-Induced Carbonized Growth of One-Dimensional ZnO-Based Bio-Nanosheets and Their Enhanced Optoelectronic Properties. Chemistry 2018, 24, 12574–12583. DOI: 10.1002/chem.201800702.
  • Qi, N.; Zhao, B.; Wang, S.-D.; Al-Deyab, S. S.; Zhang, K.-Q. Highly Flexible and Conductive Composite Films of Silk Fibroin and Silver Nanowires for Optoelectronic Devices. RSC Adv. 2015, 5, 50878–50882. DOI: 10.1039/C5RA03501E.
  • Huang, J.; Xu, Z.; Qiu, W.; Chen, F.; Meng, Z.; Hou, C.; Guo, W.; Liu, X. Y. Stretchable and Heat-Resistant Protein-Based Electronic Skin for Human Thermoregulation. Adv. Funct. Mater. 2020, 30, 1910547. DOI: 10.1002/adfm.201910547.
  • Min, K.; Umar, M.; Seo, H.; Yim, J. H.; Kam, D. G.; Jeon, H.; Lee, S.; Kim, S. Biocompatible, Optically Transparent, Patterned, and Flexible Electrodes and Radio-Frequency Antennas Prepared from Silk Protein and Silver Nanowire Networks. RSC Adv. 2017, 7, 574–580. DOI: 10.1039/C6RA25580A.
  • Luo, Y.; Pei, Y.; Feng, X.; Zhang, H.; Lu, B.; Wang, L. Silk Fibroin Based Transparent and Wearable Humidity Sensor for Ultra-Sensitive Respiration Monitoring. Mater. Lett. 2020, 260, 126945. DOI: 10.1016/j.matlet.2019.126945.
  • Zhou, Z.; Lan, C.; Wei, R.; Ho, J. C. Transparent Metal-Oxide Nanowires and Their Applications in Harsh Electronics. J. Mater. Chem. C 2019, 7, 202–217. DOI: 10.1039/C8TC04501A.
  • Liu, Y.; Qi, N.; Song, T.; Jia, M.; Xia, Z.; Yuan, Z.; Yuan, W.; Zhang, K.-Q.; Sun, B. Highly Flexible and Lightweight Organic Solar Cells on Biocompatible Silk Fibroin. ACS Appl. Mater. Interfaces 2014, 6, 20670–20675. DOI: 10.1021/am504163r.
  • Zhou, H.; Wang, X.; Wang, T.; Zeng, J.; Yuan, Z.; Jian, J.; Zhou, Z.; Zeng, L.; Yang, H. In Situ Decoration of Ag@AgCl Nanoparticles on Polyurethane/Silk Fibroin Composite Porous Films for Photocatalytic and Antibacterial Applications. Eur. Polym. J. 2019, 118, 153–162. DOI: 10.1016/j.eurpolymj.2019.05.058.
  • Yu, K.; Lu, F.; Li, Q.; Chen, H.; Lu, B.; Liu, J.; Li, Z.; Dai, F.; Wu, D.; Lan, G. In Situ Assembly of Ag Nanoparticles (AgNPs) on Porous Silkworm Cocoon-Based Wound Film: Enhanced Antimicrobial and Wound Healing Activity. Sci. Rep. 2017, 7, 2107. DOI: 10.1038/s41598-017-02270-6.
  • Arumugam, M.; Murugesan, B.; Pandiyan, N.; Chinnalagu, D. K.; Rangasamy, G.; Mahalingam, S. Electrospinning Cellulose Acetate/Silk Fibroin/Au-Ag Hybrid Composite Nanofiber for Enhanced Biocidal Activity against MCF-7 Breast Cancer Cell. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 123, 112019. DOI: 10.1016/j.msec.2021.112019.
  • Wang, B.; Wu, Z.; Lan, J.; Li, Y.; Xie, L.; Huang, X.; Zhang, A.; Qiao, H.; Chang, X.; Lin, H.; et al. Surface Modification of Titanium Implants by Silk Fibroin/Ag Co-Functionalized Strontium Titanate Nanotubes for Inhibition of Bacterial-Associated Infection and Enhancement of In Vivo Osseointegration. Surf. Coat. Technol. 2021, 405, 126700. DOI: 10.1016/j.surfcoat.2020.126700.
  • Brito-Pereira, R.; Correia, D. M.; Ribeiro, C.; Francesko, A.; Etxebarria, I.; Pérez-Álvarez, L.; Vilas, J. L.; Martins, P.; Lanceros-Mendez, S. Silk Fibroin-Magnetic Hybrid Composite Electrospun Fibers for Tissue Engineering Applications. Compos. Part B Eng. 2018, 141, 70–75. DOI: 10.1016/j.compositesb.2017.12.046.
  • Liu, Q.; Feng, L.; Chen, Z.; Lan, Y.; Liu, Y.; Li, D.; Yan, C.; Xu, Y. Ultrasmall Superparamagnetic Iron Oxide Labeled Silk Fibroin/Hydroxyapatite Multifunctional Scaffold Loaded With Bone Marrow-Derived Mesenchymal Stem Cells for Bone Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 697. DOI: 10.3389/fbioe.2020.00697.
  • Tian, Y.; Jiang, X.; Chen, X.; Shao, Z.; Yang, W. Doxorubicin-Loaded Magnetic Silk Fibroin Nanoparticles for Targeted Therapy of Multidrug-Resistant Cancer. Adv. Mater. 2014, 26, 7393–7398. DOI: 10.1002/adma.201403562.
  • Song, W.; Muthana, M.; Mukherjee, J.; Falconer, R. J.; Biggs, C. A.; Zhao, X. Magnetic-Silk Core–Shell Nanoparticles as Potential Carriers for Targeted Delivery of Curcumin into Human Breast Cancer Cells. ACS Biomater. Sci. Eng. 2017, 3, 1027–1038. DOI: 10.1021/acsbiomaterials.7b00153.
  • Chen, A.-Z.; Chen, L.-Q.; Wang, S.-B.; Wang, Y.-Q.; Zha, J. Study of Magnetic Silk Fibroin Nanoparticles for Massage-like Transdermal Drug Delivery. Int. J. Nanomedicine 2015, 10, 4639–4651. DOI: 10.2147/IJN.S85999.
  • Kucharczyk, K.; Kaczmarek, K.; Jozefczak, A.; Slachcinski, M.; Mackiewicz, A.; Dams-Kozlowska, H. Hyperthermia Treatment of Cancer Cells by the Application of Targeted Silk/Iron Oxide Composite Spheres. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111654. DOI: 10.1016/j.msec.2020.111654.
  • Qian, K.-Y.; Song, Y.; Yan, X.; Dong, L.; Xue, J.; Xu, Y.; Wang, B.; Cao, B.; Hou, Q.; Peng, W.; et al. Injectable Ferrimagnetic Silk Fibroin Hydrogel for Magnetic Hyperthermia Ablation of Deep Tumor. Biomaterials 2020, 259, 120299. DOI: 10.1016/j.biomaterials.2020.120299.
  • Chen, L.; Xu, X.; Cui, F.; Qiu, Q.; Chen, X.; Xu, J. Au nanoparticles-ZnO Composite Nanotubes Using Natural Silk Fibroin Fiber as Template for Electrochemical Non-Enzymatic Sensing of Hydrogen Peroxide. Anal. Biochem. 2018, 554, 1–8. DOI: 10.1016/j.ab.2018.05.020.
  • Mousavizadegan, M.; Azimzadeh Asiabi, P.; Hosseini, M.; Khoobi, M. Synthesis of Magnetic Silk Nanostructures with Peroxidase-Like Activity as an Approach for the Detection of Glucose. ChemistrySelect 2020, 5, 8093–8098. DOI: 10.1002/slct.202002136.
  • Gupta, M. K.; Khokhar, S. K.; Phillips, D. M.; Sowards, L. A.; Drummy, L. F.; Kadakia, M. P.; Naik, R. R. Patterned Silk Films Cast from Ionic Liquid Solubilized Fibroin as Scaffolds for Cell Growth. Langmuir 2007, 23, 1315–1319. DOI: 10.1021/la062047p.
  • Reizabal, A.; Correia, D. M.; Costa, C. M.; Perez-Alvarez, L.; Vilas-Vilela, J. L.; Lanceros-Méndez, S. Silk Fibroin Bending Actuators as an Approach Toward Natural Polymer Based Active Materials. ACS Appl. Mater. Interfaces 2019, 11, 30197–30206. DOI: 10.1021/acsami.9b07533.
  • Muqeet, M.; Gadhi, T. A.; Mahar, R. B.; Bonelli, B. Chapter 6 – Advanced Nanomaterials for Ultrafiltration Membranes Application. In Nanomaterials for the Detection and Removal of Wastewater Pollutants; Bonelli, B., Freyria, F. S., Rossetti, I., Sethi, R. Eds.; Elsevier: Amsterdam, 2020; pp 145–160.
  • Ge, J.; Fu, Q.; Yu, J.; Ding, B.; Yu, J. Chapter 13 – Electrospun Nanofibers for Oil–Water Separation. In Electrospinning: Nanofabrication and Applications; Ding, B., Wang, X. Eds.; Elsevier: Amsterdam, 2019; pp. 391–417.
  • Zhang, H.; Zhao, J.; Xing, T.; Lu, S.; Chen, G. Fabrication of Silk Fibroin/Graphene Film with High Electrical Conductivity and Humidity Sensitivity. Polymers 2019, 11, 1774. DOI: 10.3390/polym11111774.
  • Ling, S.; Li, C.; Adamcik, J.; Wang, S.; Shao, Z.; Chen, X.; Mezzenga, R. Directed Growth of Silk Nanofibrils on Graphene and Their Hybrid Nanocomposites. ACS Macro Lett. 2014, 3, 146–152. DOI: 10.1021/mz400639y.
  • López Barreiro, D.; Martín-Moldes, Z.; Yeo, J.; Shen, S.; Hawker, M. J.; Martin-Martinez, F. J.; Kaplan, D. L.; Buehler, M. J. Conductive Silk-Based Composites Using Biobased Carbon Materials. Adv. Mater. 2019, 31, 1904720. DOI: 10.1002/adma.201904720.
  • Wang, Z.; Yang, H.; Li, Y.; Zheng, X. Robust Silk Fibroin/Graphene Oxide Aerogel Fiber for Radiative Heating Textiles. ACS Appl. Mater. Interfaces 2020, 12, 15726–15736. DOI: 10.1021/acsami.0c01330.
  • Zhao, G.; Qing, H.; Huang, G.; Genin, G. M.; Lu, T. J.; Luo, Z.; Xu, F.; Zhang, X. Reduced Graphene Oxide Functionalized Nanofibrous Silk Fibroin Matrices for Engineering Excitable Tissues. NPG Asia Mater. 2018, 10, 982–994. DOI: 10.1038/s41427-018-0092-8.
  • Sanjinés, R.; Abad, M. D.; Vâju, C.; Smajda, R.; Mionić, M.; Magrez, A. Electrical Properties and Applications of Carbon Based Nanocomposite Materials: An Overview. Surf. Coat. Technol. 2011, 206, 727–733. DOI: 10.1016/j.surfcoat.2011.01.025.
  • Jung, I.; Dikin, D. A.; Piner, R. D.; Ruoff, R. S. Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at “Low” Temperatures. Nano Lett. 2008, 8, 4283–4287. DOI: 10.1021/nl8019938.
  • Grant, A. M.; Kim, H. S.; Dupnock, T. L.; Hu, K.; Yingling, Y. G.; Tsukruk, V. V. Silk Fibroin–Substrate Interactions at Heterogeneous Nanocomposite Interfaces. Adv. Funct. Mater. 2016, 26, 6380–6392. DOI: 10.1002/adfm.201601268.
  • Sha, J.; Chen, X.; Ma, L. Concentration-Dependent Conformation Transition of Regenerated Silk Fibroin Induced by Graphene Oxide Nanosheets Incorporation. J. Polym. Sci. Part B Polym. Phys. 2019, 57, 1506–1515. DOI: 10.1002/polb.24895.
  • Naskar, D.; Ghosh, A. K.; Mandal, M.; Das, P.; Nandi, S. K.; Kundu, S. C. Dual Growth Factor Loaded Nonmulberry Silk Fibroin/Carbon Nanofiber Composite 3D Scaffolds for In Vitro and In Vivo Bone Regeneration. Biomaterials 2017, 136, 67–85. DOI: 10.1016/j.biomaterials.2017.05.014.
  • Shen, X.; Zhao, Y.; Li, Q.; Chen, T. Construction and Electrochemical Properties Determination of Carbon Nanotubes/Porous-Network Carbon Micron Tubes/Silk Fibroin Composite Film Neural Electrode. AIP Adv. 2020, 10, 045223. DOI: 10.1063/5.0003595.
  • Sultan, M. T.; Moon, B. M.; Yang, J. W.; Lee, O. J.; Kim, S. H.; Lee, J. S.; Lee, Y. J.; Seo, Y. B.; Kim, D. Y.; Ajiteru, O.; et al. Recirculating Peritoneal Dialysis System Using Urease-Fixed Silk Fibroin Membrane Filter with Spherical Carbonaceous Adsorbent. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 55–66. DOI: 10.1016/j.msec.2018.12.021.
  • Barnett, C. J.; McCormack, J. E.; Deemer, E. M.; Evans, C. R.; Evans, J. E.; White, A. O.; Dunstan, P. R.; Chianelli, R. R.; Cobley, R. J.; Barron, A. R. Enhancement of Multiwalled Carbon Nanotubes’ Electrical Conductivity Using Metal Nanoscale Copper Contacts and Its Implications for Carbon Nanotube-Enhanced Copper Conductivity. J. Phys. Chem. C 2020, 124, 18777–18783. DOI: 10.1021/acs.jpcc.0c05000.
  • Balu, R.; Reeder, S.; Knott, R.; Mata, J.; de Campo, L.; Dutta, N. K.; Choudhury, N. R. Tough Photocrosslinked Silk Fibroin/Graphene Oxide Nanocomposite Hydrogels. Langmuir 2018, 34, 9238–9251. DOI: 10.1021/acs.langmuir.8b01141.
  • Ajiteru, O.; Sultan, M. T.; Lee, Y. J.; Seo, Y. B.; Hong, H.; Lee, J. S.; Lee, H.; Suh, Y. J.; Ju, H. W.; Lee, O. J.; et al. A 3D Printable Electroconductive Biocomposite Bioink Based on Silk Fibroin-Conjugated Graphene Oxide. Nano Lett. 2020, 20, 6873–6883. DOI: 10.1021/acs.nanolett.0c02986.
  • Zuo, L.; Zhang, F.; Gao, B.; Zuo, B. Fabrication of Electrical Conductivity and Reinforced Electrospun Silk Nanofibers with MWNTs. Fibres Text. East. Eur. 2017, 25, 40–44. DOI: 10.5604/01.3001.0010.1687.
  • Ling, S.; Wang, Q.; Zhang, D.; Zhang, Y.; Mu, X.; Kaplan, D. L.; Buehler, M. J. Integration of Stiff Graphene and Tough Silk for the Design and Fabrication of Versatile Electronic Materials. Adv. Funct. Mater. 2018, 28, 1705291. DOI: 10.1002/adfm.201705291.
  • Zhang, S.; Zhou, Z.; Zhong, J.; Shi, Z.; Mao, Y.; Tao, T. H. Body-Integrated, Enzyme-Triggered Degradable, Silk-Based Mechanical Sensors for Customized Health/Fitness Monitoring and In Situ Treatment. Adv. Sci. 2020, 7, 1903802. DOI: 10.1002/advs.201903802.
  • Mora, A.; Verma, P.; Kumar, S. Electrical Conductivity of CNT/Polymer Composites: 3D Printing, Measurements and Modeling. Compos. Part B Eng. 2020, 183, 107600. DOI: 10.1016/j.compositesb.2019.107600.
  • He, H.; Zhang, Y.; Wang, P.; Hu, D. Preparation of Sponge-Cake-like N-Doped Porous Carbon Materials Derived from Silk Fibroin by Chemical Activation. Microporous Mesoporous Mater. 2021, 317, 110998. DOI: 10.1016/j.micromeso.2021.110998.
  • Liu, T.-C.; Li, T.-Y.; Hung, P.-S.; Liang, C.-W.; Wu, S.-C.; Wu, M.-C.; Wu, W.-W.; Wu, P.-W.; Chen, S.-Y. A Strategy to Synthesize Ultrahigh-N-Doped Hierarchical Carbons via Induced β-Sheet from Silk Fibroin by In Situ Electrogelation/Electropolymerization. ACS Appl. Energy Mater. 2020, 3, 3596–3608. DOI: 10.1021/acsaem.0c00095.
  • Zhang, Z.; Yang, S.; Li, H.; Zan, Y.; Li, X.; Zhu, Y.; Dou, M.; Wang, F. Sustainable Carbonaceous Materials Derived from Biomass as Metal-Free Electrocatalysts. Adv. Mater. 2019, 31, 1805718. DOI: 10.1002/adma.201805718.
  • Zou, B.-X.; Wang, Y.; Huang, X.; Lu, Y. Hierarchical N- and O-Doped Porous Carbon Composites for High-Performance Supercapacitors. J. Nanomater. 2018, 2018, 1–12. DOI: 10.1155/2018/8945042.
  • Woo, Y. C.; Kim, S.-H.; Shon, H. K.; Tijing, L. D. Introduction: Membrane Desalination Today, Past, and Future; 2018.
  • Zhou, J.; Zhang, Y.; Yang, Y.; Chen, Z.; Jia, G.; Zhang, L. Silk Fibroin-Graphene Oxide Functionalized Melamine Sponge for Efficient Oil Absorption and Oil/Water Separation. Appl. Surf. Sci. 2019, 497, 143762. DOI: 10.1016/j.apsusc.2019.143762.
  • Chen, J.; Liu, B.; Gao, X.; Xu, D. A Review of the Interfacial Characteristics of Polymer Nanocomposites Containing Carbon Nanotubes. RSC Adv. 2018, 8, 28048–28085. DOI: 10.1039/c8ra04205e.
  • Xie, W.; Tadepalli, S.; Park, S. H.; Kazemi-Moridani, A.; Jiang, Q.; Singamaneni, S.; Lee, J.-H. Extreme Mechanical Behavior of Nacre-Mimetic Graphene-Oxide and Silk Nanocomposites. Nano Lett. 2018, 18, 987–993. DOI: 10.1021/acs.nanolett.7b04421.
  • Hu, K.; Gupta, M. K.; Kulkarni, D. D.; Tsukruk, V. V. Ultra-Robust Graphene Oxide-Silk Fibroin Nanocomposite Membranes. Adv. Mater. 2013, 25, 2301–2307. DOI: 10.1002/adma.201300179.
  • Tadepalli, S.; Hamper, H.; Park, S. H.; Cao, S.; Naik, R. R.; Singamaneni, S. Adsorption Behavior of Silk Fibroin on Amphiphilic Graphene Oxide. ACS Biomater. Sci. Eng. 2016, 2, 1084–1092. DOI: 10.1021/acsbiomaterials.6b00232.
  • Wang, Y.; Ma, R.; Hu, K.; Kim, S.; Fang, G.; Shao, Z.; Tsukruk, V. V. Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young’s Modulus via Annealing of Interfacial Structures. ACS Appl. Mater. Interfaces 2016, 8, 24962–24973. DOI: 10.1021/acsami.6b08610.
  • Zhou, X.; Li, D.; Wan, S.; Cheng, Q.; Ji, B. In Silicon Testing of the Mechanical Properties of Graphene Oxide-Silk Nanocomposites. Acta Mech. 2019, 230, 1413–1425. DOI: 10.1007/s00707-017-2017-y.
  • Yin, Z.; Liang, X.; Zhou, K.; Li, S.; Lu, H.; Zhang, M.; Wang, H.; Xu, Z.; Zhang, Y. Biomimetic Mechanically Enhanced Carbon Nanotube Fibers by Silk Fibroin Infiltration. Small 2021, 17, e2100066. DOI: 10.1002/smll.202100066.
  • Wang, W.; Liu, Y.; Yang, C.; Jia, W.; Qi, X.; Liu, C.; Li, X. Delivery of Salvianolic Acid B for Efficient Osteogenesis and Angiogenesis from Silk Fibroin Combined with Graphene Oxide. ACS Biomater. Sci. Eng. 2020, 6, 3539–3549. DOI: 10.1021/acsbiomaterials.0c00558.
  • Zhao, G.; Zhang, X.; Li, B.; Huang, G.; Xu, F.; Zhang, X. Solvent-Free Fabrication of Carbon Nanotube/Silk Fibroin Electrospun Matrices for Enhancing Cardiomyocyte Functionalities. ACS Biomater. Sci. Eng. 2020, 6, 1630–1640. DOI: 10.1021/acsbiomaterials.9b01682.
  • Pan, H.; Zhang, Y.; Hang, Y.; Shao, H.; Hu, X.; Xu, Y.; Feng, C. Significantly Reinforced Composite Fibers Electrospun from Silk Fibroin/Carbon Nanotube Aqueous Solutions. Biomacromolecules 2012, 13, 2859–2867. DOI: 10.1021/bm300877d.
  • Ayutsede, J.; Gandhi, M.; Sukigara, S.; Ye, H.; Hsu, C.; Gogotsi, Y.; Ko, F. Carbon Nanotube Reinforced Bombyx mori Silk Nanofibers by the Electrospinning Process. Biomacromolecules 2006, 7, 208–214. DOI: 10.1021/bm0505888.
  • Kim, H.-S.; Yoon, S. H.; Kwon, S.-M.; Jin, H.-J. pH-Sensitive Multiwalled Carbon Nanotube Dispersion with Silk Fibroins. Biomacromolecules 2009, 10, 82–86. DOI: 10.1021/bm800896e.
  • Wang, L.; Song, D.; Zhang, X.; Ding, Z.; Kong, X.; Lu, Q.; Kaplan, D. L. Silk–Graphene Hybrid Hydrogels with Multiple Cues to Induce Nerve Cell Behavior. ACS Biomater. Sci. Eng. 2019, 5, 613–622. DOI: 10.1021/acsbiomaterials.8b01481.
  • Wu, J.; Zheng, A.; Liu, Y.; Jiao, D.; Zeng, D.; Wang, X.; Cao, L.; Jiang, X. Enhanced Bone Regeneration of the Silk Fibroin Electrospun Scaffolds through the Modification of the Graphene Oxide Functionalized by BMP-2 Peptide. Int. J. Nanomedicine. 2019, 14, 733–751. volumeDOI: 10.2147/IJN.S187664.
  • Narimani, M.; Teimouri, A.; Shahbazarab, Z. Synthesis, Characterization and Biocompatible Properties of Novel Silk Fibroin/Graphene Oxide Nanocomposite Scaffolds for Bone Tissue Engineering Application. Polym. Bull. 2019, 76, 725–745. DOI: 10.1007/s00289-018-2390-2.
  • Wang, S.-D.; Ma, Q.; Wang, K.; Ma, P.-B. Strong and Biocompatible Three-Dimensional Porous Silk Fibroin/Graphene Oxide Scaffold Prepared by Phase Separation. Int. J. Biol. Macromol. 2018, 111, 237–246. DOI: 10.1016/j.ijbiomac.2018.01.021.
  • Wang, S.-D.; Ma, Q.; Wang, K.; Chen, H.-W. Improving Antibacterial Activity and Biocompatibility of Bioinspired Electrospinning Silk Fibroin Nanofibers Modified by Graphene Oxide. ACS Omega 2018, 3, 406–413. DOI: 10.1021/acsomega.7b01210.
  • Lu, Z.; Mao, C.; Zhang, H. Highly Conductive Graphene-Coated Silk Fabricated via a Repeated Coating-Reduction Approach. J. Mater. Chem. C 2015, 3, 4265–4268. DOI: 10.1039/C5TC00917K.
  • Ye, C.; Combs, Z. A.; Calabrese, R.; Dai, H.; Kaplan, D. L.; Tsukruk, V. V. Robust Microcapsules with Controlled Permeability from Silk Fibroin Reinforced with Graphene Oxide. Small 2014, 10, 5087–5097. DOI: 10.1002/smll.201401119.
  • Naskar, D.; Bhattacharjee, P.; Ghosh, A. K.; Mandal, M.; Kundu, S. C. Carbon Nanofiber Reinforced Nonmulberry Silk Protein Fibroin Nanobiocomposite for Tissue Engineering Applications. ACS Appl. Mater. Interfaces 2017, 9, 19356–19370. DOI: 10.1021/acsami.6b04777.
  • Xu, S.; Yong, L.; Wu, P. One-Pot, Green, Rapid Synthesis of Flowerlike Gold Nanoparticles/Reduced Graphene Oxide Composite with Regenerated Silk Fibroin As Efficient Oxygen Reduction Electrocatalysts. ACS Appl. Mater. Interfaces 2013, 5, 654–662. DOI: 10.1021/am302076x.
  • Gao, H.; Teng, C. P.; Huang, D.; Xu, W.; Zheng, C.; Chen, Y.; Liu, M.; Yang, D.-P.; Lin, M.; Li, Z.; Ye, E. Microwave Assisted Synthesis of Luminescent Carbonaceous Nanoparticles from Silk Fibroin for Bioimaging. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 80, 616–623. DOI: 10.1016/j.msec.2017.07.007.
  • Gnaneshwar, P. V.; Sudakaran, S. V.; Abisegapriyan, S.; Sherine, J.; Ramakrishna, S.; Rahim, M. H. A.; Yusoff, M. M.; Jose, R.; Venugopal, J. R. Ramification of Zinc Oxide Doped Hydroxyapatite Biocomposites for the Mineralization of Osteoblasts. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 96, 337–346. DOI: 10.1016/j.msec.2018.11.033.
  • Choi, Y.; Cho, S. Y.; Park, D. J.; Park, H. H.; Heo, S.; Jin, H.-J. Silk Fibroin Particles as Templates for Mineralization of Calcium-Deficient Hydroxyapatite. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 2029–2034. DOI: 10.1002/jbm.b.32766.
  • Santos, M. V.; Pecoraro, É.; Santagneli, S. H.; Moura, A. L.; Cavicchioli, M.; Jerez, V.; Rocha, L. A.; de Oliveira, L. F. C.; Gomes, A. S. L.; de Araújo, C. B.; Ribeiro, S. J. L. Silk Fibroin as a Biotemplate for Hierarchical Porous Silica Monoliths for Random Laser Applications. J. Mater. Chem. C 2018, 6, 2712–2723. DOI: 10.1039/C7TC03560H.
  • Belton, D. J.; Mieszawska, A. J.; Currie, H. A.; Kaplan, D. L.; Perry, C. C. Silk–Silica Composites from Genetically Engineered Chimeric Proteins: Materials Properties Correlate with Silica Condensation Rate and Colloidal Stability of the Proteins in Aqueous Solution. Langmuir 2012, 28, 4373–4381. DOI: 10.1021/la205084z.
  • Kharlampieva, E.; Kozlovskaya, V.; Wallet, B.; Shevchenko, V. V.; Naik, R. R.; Vaia, R.; Kaplan, D. L.; Tsukruk, V. V. Co-Cross-Linking Silk Matrices with Silica Nanostructures for Robust Ultrathin Nanocomposites. ACS Nano 2010, 4, 7053–7063. DOI: 10.1021/nn102456w.
  • Patil, P. P.; Bohara, R. A.; Meshram, J. V.; Nanaware, S. G.; Pawar, S. H. Hybrid chitosan-ZnO Nanoparticles Coated with a Sonochemical Technique on Silk fibroin-PVA Composite Film: A Synergistic Antibacterial Activity. Int. J. Biol. Macromol. 2019, 122, 1305–1312. DOI: 10.1016/j.ijbiomac.2018.09.090.
  • Posati, T.; Benfenati, V.; Sagnella, A.; Pistone, A.; Nocchetti, M.; Donnadio, A.; Ruani, G.; Zamboni, R.; Muccini, M. Innovative Multifunctional Silk Fibroin and Hydrotalcite Nanocomposites: A Synergic Effect of the Components. Biomacromolecules 2014, 15, 158–168. DOI: 10.1021/bm401433b.
  • Wu, J.; Zheng, K.; Huang, X.; Liu, J.; Liu, H.; Boccaccini, A. R.; Wan, Y.; Guo, X.; Shao, Z. Thermally Triggered Injectable Chitosan/Silk Fibroin/Bioactive Glass Nanoparticle Hydrogels for In Situ Bone Formation in Rat Calvarial Bone Defects. Acta Biomater. 2019, 91, 60–71. DOI: 10.1016/j.actbio.2019.04.023.
  • Zhu, H.; Wu, B.; Feng, X.; Chen, J. Preparation and Characterization of Bioactive Mesoporous Calcium Silicate–Silk Fibroin Composite Films. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 98, 330–341. DOI: 10.1002/jbm.b.31856.
  • Zhang, F.; Zhu, H.; Wang, G.; Xie, J.; Tao, Y.; Xia, W.; Yang, H. Preparation and Characterization of a Silk Fibroin/Calcium Sulfate Bone Cement. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 512–519. DOI: 10.1002/jbm.b.33855.
  • Xu, R.; Lian, X.; Shen, Y.; Zhang, Y.; Niu, B.; Zhang, S.; Guo, Q.; Zhang, Q.; Du, J.; Li, F.; et al. Calcium Sulfate Bone Cements with Nanoscaled Silk Fibroin as Inducer. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 2611–2619. DOI: 10.1002/jbm.b.34350.
  • Yang, Y.; Wang, H.; Zhu, J.-C.; Shao, Y.-F.; Bai, F.-J.; Chen, X.-M.; Li, X.; Guo, M.; Shao, Z.; Zhang, K.-Q. Silk-Fibroin-Assisted Cathodic Electrolytic Deposition of Calcium Phosphate for Biomedical Applications. ACS Biomater. Sci. Eng. 2019, 5, 4302–4310. DOI: 10.1021/acsbiomaterials.9b00207.
  • Le, T. D. H.; Liaudanskaya, V.; Bonani, W.; Migliaresi, C.; Motta, A. Enhancing Bioactive Properties of Silk Fibroin with Diatom Particles for Bone Tissue Engineering Applications. J. Tissue Eng. Regen. Med. 2018, 12, 89–97. DOI: 10.1002/term.2373.
  • Su, D.; Jiang, L.; Chen, X.; Dong, J.; Shao, Z. Enhancing the Gelation and Bioactivity of Injectable Silk Fibroin Hydrogel with Laponite Nanoplatelets. ACS Appl. Mater. Interfaces 2016, 8, 9619–9628. DOI: 10.1021/acsami.6b00891.
  • Wei, K.; Kim, B.-S.; Abe, K.; Chen, G.-Q.; Kim, I.-S. Fabrication and Fibroblast Attachment Property of Regenerated Silk Fibroin/Tetramethoxysilane Nanofibrous Biocomposites. Adv. Eng. Mater. 2012, 14, B258–B265. DOI: 10.1002/adem.201180079.
  • Gore, P. M.; Naebe, M.; Wang, X.; Kandasubramanian, B. Progress in Silk Materials for Integrated Water Treatments: Fabrication, Modification and Applications. Chem. Eng. J. 2019, 374, 437–470. DOI: 10.1016/j.cej.2019.05.163.
  • Li, G.; Qin, S.; Zhang, D.; Liu, X. Preparation of Antibacterial Degummed Silk Fiber/Nano-Hydroxyapatite/Polylactic Acid Composite Scaffold by Degummed Silk Fiber Loaded Silver Nanoparticles. Nanotechnology 2019, 30, 295101. DOI: 10.1088/1361-6528/ab13df.
  • Melke, J.; Midha, S.; Ghosh, S.; Ito, K.; Hofmann, S. Silk Fibroin as Biomaterial for Bone Tissue Engineering. Acta Biomater. 2016, 31, 1–16. DOI: 10.1016/j.actbio.2015.09.005.
  • Kim, J.-H.; Kim, D.-K.; Lee, O. J.; Ju, H. W.; Lee, J. M.; Moon, B. M.; Park, H. J.; Kim, D. W.; Lee, J. H.; Park, C. H. Osteoinductive Silk Fibroin/Titanium Dioxide/Hydroxyapatite Hybrid Scaffold for Bone Tissue Engineering. Int. J. Biol. Macromol. 2016, 82, 160–167. DOI: 10.1016/j.ijbiomac.2015.08.001.
  • Yan, S.; Feng, L.; Zhu, Q.; Yang, W.; Lan, Y.; Li, D.; Liu, Y.; Xue, W.; Guo, R.; Wu, G. Controlled Release of BMP-2 from a Heparin-Conjugated Strontium-Substituted Nanohydroxyapatite/Silk Fibroin Scaffold for Bone Regeneration. ACS Biomater. Sci. Eng. 2018, 4, 3291–3303. DOI: 10.1021/acsbiomaterials.8b00459.
  • Farokhi, M.; Mottaghitalab, F.; Samani, S.; Shokrgozar, M. A.; Kundu, S. C.; Reis, R. L.; Fatahi, Y.; Kaplan, D. L. Silk Fibroin/Hydroxyapatite Composites for Bone Tissue Engineering. Biotechnol. Adv. 2018, 36, 68–91. DOI: 10.1016/j.biotechadv.2017.10.001.
  • Moisenovich, M. M.; Arkhipova, A. Y.; Orlova, A. A.; Drutskaya, M. S.; Volkova, S. V.; Zacharov, S. E.; Agapov, I. I.; Kirpichnikov, M. P. Composite Scaffolds Containing Silk Fibroin, Gelatin, and Hydroxyapatite for Bone Tissue Regeneration and 3D Cell Culturing. Acta Naturae 2014, 6, 96–101.
  • Maleki, H.; Shahbazi, M.-A.; Montes, S.; Hosseini, S. H.; Eskandari, M. R.; Zaunschirm, S.; Verwanger, T.; Mathur, S.; Milow, B.; Krammer, B.; Hüsing, N. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration. ACS Appl. Mater. Interfaces 2019, 11, 17256–17269. DOI: 10.1021/acsami.9b04283.
  • Wang, H.; Liang, L.; Cheng, X.; Luo, Y.; Sun, S. Facile Fabrication of Porous ZnS and ZnO Films by Coaxial Electrospinning for Highly Efficient Photodegradation of Organic Dyes. Photochem. Photobiol. 2018, 94, 17–26. DOI: 10.1111/php.12836.
  • Huang, T.; Fan, C.; Zhu, M.; Zhu, Y.; Zhang, W.; Li, L. 3D-Printed Scaffolds of Biomineralized Hydroxyapatite Nanocomposite on Silk Fibroin for Improving Bone Regeneration. Appl. Surf. Sci. 2019, 467-468, 345–353. DOI: 10.1016/j.apsusc.2018.10.166.
  • Wu, X.; Chen, K.; Zhang, D.; Xu, L.; Yang, X. Study on the Technology and Properties of 3D Bioprinting SF/GT/n-HA Composite Scaffolds. Mater. Lett. 2019, 238, 89–92. DOI: 10.1016/j.matlet.2018.11.151.
  • Yang, M.; He, W.; Shuai, Y.; Min, S.; Zhu, L. Nucleation of Hydroxyapatite Crystals by Self-Assembled Bombyx mori Silk Fibroin. J. Polym. Sci. B Polym. Phys. 2013, 51, 742–748. DOI: 10.1002/polb.23249.
  • Wei, K.; Li, Y.; Kim, K.-O.; Nakagawa, Y.; Kim, B.-S.; Abe, K.; Chen, G.-Q.; Kim, I.-S. Fabrication of Nano-Hydroxyapatite on Electrospun Silk Fibroin Nanofiber and Their Effects in Osteoblastic Behavior. J. Biomed. Mater. Res. A 2011, 97, 272–280. DOI: 10.1002/jbm.a.33054.
  • Song, J. E.; Tripathy, N.; Lee, D. H.; Park, J. H.; Khang, G. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis. ACS Appl. Mater. Interfaces 2018, 10, 32955–32964. DOI: 10.1021/acsami.8b08119.
  • Shalumon, K. T.; Lai, G.-J.; Chen, C.-H.; Chen, J.-P. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core–Shell Nanofibrous Membranes. ACS Appl. Mater. Interfaces 2015, 7, 21170–21181. DOI: 10.1021/acsami.5b04962.
  • Hu, J.-X.; Ran, J.-B.; Chen, S.; Jiang, P.; Shen, X.-Y.; Tong, H. Carboxylated Agarose (CA)-Silk Fibroin (SF) Dual Confluent Matrices Containing Oriented Hydroxyapatite (HA) Crystals: Biomimetic Organic/Inorganic Composites for Tibia Repair. Biomacromolecules 2016, 17, 2437–2447. DOI: 10.1021/acs.biomac.6b00587.
  • Zhao, X.; Chen, Z.; Liu, Y.; Huang, Q.; Zhang, H.; Ji, W.; Ren, J.; Li, J.; Zhao, Y. Silk Fibroin Microparticles with Hollow Mesoporous Silica Nanocarriers Encapsulation for Abdominal Wall Repair. Adv. Healthc. Mater. 2018, 7, e1801005. DOI: 10.1002/adhm.201801005.
  • Pandey, B.; Chatterjee, S.; Parekh, N.; Yadav, P.; Nisal, A.; Sen Gupta, S. Silk-Mesoporous Silica-Based Hybrid Macroporous Scaffolds Using Ice-Templating Method: Mechanical, Release, and Biological Studies. ACS Appl. Bio Mater. 2018, 1, 2082–2093. DOI: 10.1021/acsabm.8b00553.
  • Zhu, H.; Zhang, F.; Feng, X.; Zhang, J.; Chen, J. Study on Secondary Structural Transition of nano-TiO2 Modified Silk Fibroin Composite Films by Two-Dimensional Raman Correlation Spectroscopy and Solid-State 13C-NMR Spectroscopy. Polym. Compos. 2015, 36, 121–127. DOI: 10.1002/pc.22920.
  • Zhang, H.; Ma, X.; Cao, C.; Wang, M.; Zhu, Y. Multifunctional Iron Oxide/Silk-Fibroin (Fe3O4–SF) Composite Microspheres for the Delivery of Cancer Therapeutics. RSC Adv. 2014, 4, 41572–41577. DOI: 10.1039/C4RA05919K.
  • Qi, P.; Zeng, J.; Tong, X.; Shi, J.; Wang, Y.; Sui, K. Bioinspired Synthesis of Fiber-Shaped Silk Fibroin-Ferric Oxide Nanohybrid for Superior Elimination of Antimonite. J. Hazard. Mater. 2021, 403, 123909. DOI: 10.1016/j.jhazmat.2020.123909.
  • Kucharczyk, K.; Rybka, J. D.; Hilgendorff, M.; Krupinski, M.; Slachcinski, M.; Mackiewicz, A.; Giersig, M.; Dams-Kozlowska, H. Composite Spheres Made of Bioengineered Spider Silk and Iron Oxide Nanoparticles for Theranostics Applications. PLOS One 2019, 14, e0219790. DOI: 10.1371/journal.pone.0219790.
  • Xin-Xing, F.; Li-Li, Z.; Jian-Yong, C.; Hua-Peng, Z. Preparation, Characterization, and Properties of nano-TiO2/Silk Fibroin Hybrid Films by Sol–Gel Processing. J. Biomed. Mater. Res. A 2008, 84, 761–768. DOI: 10.1002/jbm.a.31258.
  • Chiu, W.-T.; Chen, C.-Y.; Chang, T.-F. M.; Hashimoto, T.; Kurosu, H.; Sone, M. Ni–P and TiO2 Codeposition on Silk Textile via Supercritical CO2 Promoted Electroless Plating for Flexible and Wearable Photocatalytic Devices. Electrochim. Acta 2019, 294, 68–75. DOI: 10.1016/j.electacta.2018.10.076.
  • Nitayaphat, W.; Jirawongcharoen, P.; Trijaturon, T. Self-Cleaning Properties of Silk Fabrics Functionalized with TiO2/SiO2 Composites. J. Nat. Fibers 2018, 15, 262–272. DOI: 10.1080/15440478.2017.1325428.
  • Reizabal, A.; Costa, C. M.; Saiz, P. G.; Gonzalez, B.; Pérez-Álvarez, L.; Fernández de Luis, R.; Garcia, A.; Vilas-Vilela, J. L.; Lanceros-Méndez, S. Processing Strategies to Obtain Highly Porous Silk Fibroin Structures with Tailored Microstructure and Molecular Characteristics and Their Applicability in Water Remediation. J. Hazard. Mater. 2021, 403, 123675. DOI: 10.1016/j.jhazmat.2020.123675.
  • Johari, N.; Madaah Hosseini, H. R.; Samadikuchaksaraei, A. Optimized Composition of Nanocomposite Scaffolds Formed from Silk Fibroin and nano-TiO2 for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 783–792. DOI: 10.1016/j.msec.2017.05.105.
  • Wang, Y.; Xiao, X.; Xue, H.; Pang, H. Zinc Oxide Based Composite Materials for Advanced Supercapacitors. ChemistrySelect 2018, 3, 550–565. DOI: 10.1002/slct.201702780.
  • Salama, A. Chitosan/Silk Fibroin/Zinc Oxide Nanocomposite AS A Sustainable AND Antimicrobial Biomaterial. Cellul. Chem. Technol. 2018, 52, 903–907.
  • Yadav, R.; Purwar, R. Influence of Metal Oxide Nanoparticles on Morphological, Structural, Rheological and Conductive Properties of Mulberry Silk Fibroin Nanocomposite Solutions. Polym. Test. 2021, 93, 106916. DOI: 10.1016/j.polymertesting.2020.106916.
  • Yadav, R.; Purwar, R. Tailoring of Electrical and Optical Properties of Regenerated Silk Fibroin Films with Metal Oxides. J. Mater. Sci: Mater. Electron. 2020, 31, 17784–17797. DOI: 10.1007/s10854-020-04332-4.
  • Patil, P. P.; Meshram, J. V.; Bohara, R. A.; Nanaware, S. G.; Pawar, S. H. ZnO Nanoparticle-Embedded Silk Fibroin–Polyvinyl Alcohol Composite Film: A Potential Dressing Material for Infected Wounds. New J. Chem. 2018, 42, 14620–14629. DOI: 10.1039/C8NJ01675E.
  • Majumder, S.; Ranjan Dahiya, U.; Yadav, S.; Sharma, P.; Ghosh, D.; Rao, G. K.; Rawat, V.; Kumar, G.; Kumar, A.; Srivastava, C. M. Zinc Oxide Nanoparticles Functionalized on Hydrogel Grafted Silk Fibroin Fabrics as Efficient Composite Dressing. Biomolecules 2020, 10, 710. DOI: 10.3390/biom10050710.
  • Hadisi, Z.; Farokhi, M.; Bakhsheshi-Rad, H. R.; Jahanshahi, M.; Hasanpour, S.; Pagan, E.; Dolatshahi-Pirouz, A.; Zhang, Y. S.; Kundu, S. C.; Akbari, M. Hyaluronic Acid (HA)-Based Silk Fibroin/Zinc Oxide Core–Shell Electrospun Dressing for Burn Wound Management. Macromol. Biosci. 2020, 20, e1900328. DOI: 10.1002/mabi.201900328.
  • M, J. C.; Reardon, P. J. T.; Konwarh, R.; Knowles, J. C.; Mandal, B. B. Mimicking Hierarchical Complexity of the Osteochondral Interface Using Electrospun Silk–Bioactive Glass Composites. ACS Appl. Mater. Interfaces 2017, 9, 8000–8013. DOI: 10.1021/acsami.6b16590.
  • Yan, L.-P.; Oliveira, J. M.; Oliveira, A. L.; Reis, R. L. In Vitro Evaluation of the Biological Performance of Macro/Micro-Porous Silk Fibroin and Silk-Nano Calcium Phosphate Scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 888–898. DOI: 10.1002/jbm.b.33267.
  • Yang, Y.; Wang, H.; Yan, F.-Y.; Qi, Y.; Lai, Y.-K.; Zeng, D.-M.; Chen, G.; Zhang, K.-Q. Bioinspired Porous Octacalcium Phosphate/Silk Fibroin Composite Coating Materials Prepared by Electrochemical Deposition. ACS Appl. Mater. Interfaces 2015, 7, 5634–5642. DOI: 10.1021/am5088488.
  • Dang, Q.; Lu, S.; Yu, S.; Sun, P.; Yuan, Z. Silk Fibroin/Montmorillonite Nanocomposites: Effect of pH on the Conformational Transition and Clay Dispersion. Biomacromolecules 2010, 11, 1796–1801. DOI: 10.1021/bm1002398.
  • Song, W. J.; Sontz, P. A.; Ambroggio, X. I.; Tezcan, F. A. Metals in Protein–Protein Interfaces. Annu. Rev. Biophys. 2014, 43, 409–431. DOI: 10.1146/annurev-biophys-051013-023038.
  • Afjeh-Dana, E.; Naserzadeh, P.; Nazari, H.; Mottaghitalab, F.; Shabani, R.; Aminii, N.; Mehravi, B.; Rostami, F. T.; Joghataei, M. T.; Mousavizadeh, K.; Ashtari, K. Gold Nanorods Reinforced Silk Fibroin Nanocomposite for Peripheral Nerve Tissue Engineering Applications. Int. J. Biol. Macromol. 2019, 129, 1034–1039. DOI: 10.1016/j.ijbiomac.2019.02.050.
  • Xia, Y.; Wan, J.; Gu, Q. Silk Fibroin Fibers Supported with High Density of Gold Nanoparticles: Fabrication and Application as Catalyst. Gold Bull. 2011, 44, 171–176. DOI: 10.1007/s13404-011-0024-7.
  • Cohen-Karni, T.; Jeong, K. J.; Tsui, J. H.; Reznor, G.; Mustata, M.; Wanunu, M.; Graham, A.; Marks, C.; Bell, D. C.; Langer, R.; Kohane, D. S. Nanocomposite Gold-Silk Nanofibers. Nano Lett. 2012, 12, 5403–5406. DOI: 10.1021/nl302810c.
  • Zhu, G.; Sun, Z.; Hui, P.; Chen, W.; Jiang, X. Composite Film with Antibacterial Gold Nanoparticles and Silk Fibroin for Treating Multidrug-Resistant E. coli-Infected Wounds. ACS Biomater. Sci. Eng. 2021, 7, 1827–1835. DOI: 10.1021/acsbiomaterials.0c01271.
  • Salem, S. S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2021, 199, 344–370. DOI: 10.1007/s12011-020-02138-3.
  • Singh, A.; Gautam, P. K.; Verma, A.; Singh, V.; Shivapriya, P. M.; Shivalkar, S.; Sahoo, A. K.; Samanta, S. K. Green Synthesis of Metallic Nanoparticles as Effective Alternatives to Treat Antibiotics Resistant Bacterial Infections: A Review. Biotechnol. Rep. 2020, 25, e00427. DOI: 10.1016/j.btre.2020.e00427.
  • Shivananda, C. S.; Lakshmeesha Rao, B.; Sangappa. Structural, Thermal and Electrical Properties of Silk Fibroin–Silver Nanoparticles Composite Films. J. Mater. Sci. Mater. Electron. 2020, 31, 41–51. DOI: 10.1007/s10854-019-00786-3.
  • Raho, R.; Nguyen, N.-Y.; Zhang, N.; Jiang, W.; Sannino, A.; Liu, H.; Pollini, M.; Paladini, F. Photo-Assisted Green Synthesis of Silver Doped Silk Fibroin/Carboxymethyl Cellulose Nanocomposite Hydrogels for Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110219. DOI: 10.1016/j.msec.2019.110219.
  • Jagajjanani Rao, K.; Korumilli, T. Instant Synthesis of Silver Particles on Silk Fibres: Characterization and Antimicrobial Study. Compos. Commun. 2020, 18, 32–36. DOI: 10.1016/j.coco.2020.01.004.
  • Tang, B.; Sun, L.; Kaur, J.; Yu, Y.; Wang, X. In Situ Synthesis of Gold Nanoparticles for Multifunctionalization of Silk Fabrics. Dyes Pigm. 2014, 103, 183–190. DOI: 10.1016/j.dyepig.2013.12.008.
  • Magrì, D.; Caputo, G.; Perotto, G.; Scarpellini, A.; Colusso, E.; Drago, F.; Martucci, A.; Athanassiou, A.; Fragouli, D. Titanate Fibroin Nanocomposites: A Novel Approach for the Removal of Heavy-Metal Ions from Water. ACS Appl. Mater. Interfaces 2018, 10, 651–659. DOI: 10.1021/acsami.7b15440.
  • Johari, N.; Madaah Hosseini, H. R.; Taromi, N.; Arasteh, S.; Kazemnejad, S.; Samadikuchaksaraei, A. Evaluation of Bioactivity and Biocompatibility of Silk Fibroin/TiO2 Nanocomposite. J. Med. Biol. Eng. 2018, 38, 99–105. DOI: 10.1007/s40846-017-0295-4.
  • Zhang, G.; Wang, R.; Shi, L.; Zhang, C.; Zhang, Y.; Zhou, Y.; Dong, C.; Li, G.; Shuang, S. Aggregation/Assembly Induced Emission Based on Silk Fibroin-Templated Fluorescent Copper Nanoclusters for “Turn-on” Detection of S2−. Sens. Actuators B 2019, 279, 361–368. DOI: 10.1016/j.snb.2018.09.100.
  • Qian, Z.; Bai, Y.; Zhou, J.; Li, L.; Na, J.; Fan, Y.; Guo, X.; Liu, H. A Moisturizing Chitosan-Silk Fibroin Dressing with Silver Nanoparticles-Adsorbed Exosomes for Repairing Infected Wounds. J. Mater. Chem. B 2020, 8, 7197–7212. DOI: 10.1039/d0tb01100b.
  • Guo, Y.; Guan, J.; Peng, H.; Shu, X.; Chen, L.; Guo, H. Tightly Adhered Silk Fibroin Coatings on Ti6Al4V Biometals for Improved Wettability and Compatible Mechanical Properties. Mater. Des. 2019, 175, 107825. DOI: 10.1016/j.matdes.2019.107825.
  • Popescu, S.; Zarif, M.-E.; Dumitriu, C.; Ungureanu, C.; Pirvu, C. Silk Fibroin-Based Hybrid Nanostructured Coatings for Titanium Implantable Surfaces Modification. Coatings 2020, 10, 518. DOI: 10.3390/coatings10060518.
  • Berthet, M.; Gauthier, Y.; Lacroix, C.; Verrier, B.; Monge, C. Nanoparticle-Based Dressing: The Future of Wound Treatment? Trends Biotechnol. 2018, 36, 119–784. DOI: 10.1016/j.tibtech.2017.08.007.
  • Lu, Y.; Jiang, J.; Park, S.; Wang, D.; Piao, L.; Kim, J. Wet-Spinning Fabrication of Flexible Conductive Composite Fibers from Silver Nanowires and Fibroin. Bull. Korean Chem. Soc. 2020, 41, 162–169. DOI: 10.1002/bkcs.11945.
  • Xue, J.; Gao, H.-L.; Wang, X.-Y.; Qian, K.-Y.; Yang, Y.; He, T.; He, C.; Lu, Y.; Yu, S.-H. Bioinspired Unidirectional Silk Fibroin–Silver Compound Nanowire Composite Scaffold via Interface-Mediated In Situ Synthesis. Angew. Chem. Int. Ed. Engl. 2019, 58, 14152–14156. DOI: 10.1002/anie.201907708.
  • Qin, X.; Peng, Y.; Li, P.; Cheng, K.; Wei, Z.; Liu, P.; Cao, N.; Huang, J.; Rao, J.; Chen, J.; et al. Silk Fibroin and Ultra-Long Silver Nanowire Based Transparent, Flexible and Conductive Composite Film and Its Temperature-Dependent Resistance. Int. J. Optomechatronics 2019, 13, 41–50. DOI: 10.1080/15599612.2019.1639002.
  • Liu, Y.; Xie, Y.; Liu, Y.; Song, T.; Zhang, K.-Q.; Liao, L.; Sun, B. Flexible Organic Light Emitting Diodes Fabricated on Biocompatible Silk Fibroin Substrate. Semicond. Sci. Technol. 2015, 30, 104004. DOI: 10.1088/0268-1242/30/10/104004.
  • Ma, L.; Patil, A.; Wu, R.; Zhang, Y.; Meng, Z.; Zhang, W.; Kong, L.; Liu, X. Y.; Wang, J. A Capacitive Humidity Sensor Based on All-Protein Embedded with Gold Nanoparticles @ Carbon Composite for Human Respiration Detection. Nanotechnology 2021, 32, 19LT01. DOI: 10.1088/1361-6528/abe32d.
  • Gogurla, N.; Mondal, S. P.; Sinha, A. K.; Katiyar, A. K.; Banerjee, W.; Kundu, S. C.; Ray, S. K. Transparent and Flexible Resistive Switching Memory Devices with a Very High ON/OFF Ratio Using Gold Nanoparticles Embedded in a Silk Protein Matrix. Nanotechnology 2013, 24, 345202. DOI: 10.1088/0957-4484/24/34/345202.
  • Liu, J.; He, T.; Fang, G.; Wang, R.; Kamoun, E. A.; Yao, J.; Shao, Z.; Chen, X. Environmentally Responsive Composite Films Fabricated Using Silk Nanofibrils and Silver Nanowires. J. Mater. Chem. C 2018, 6, 12940–12947. DOI: 10.1039/C8TC04549F.
  • Liu, M.; Cheng, K.; Qin, X.; Wei, Z.; Peng, Y.; Li, P.; Liu, P.; Cao, N.; Huang, J.; Feng, Y.; et al. A Silk Fibroin and Ultra-Long Silver Nanowires Based Transparent Conductive Composite Film for Nanosensor Devices. IEEE Trans. Nanotechnol. 2021, 20, 229–233. DOI: 10.1109/TNANO.2021.3064380.
  • Guo, L.; Chen, S. Facile Synthesis of Gold Nanorod-Decorated Silk Fibroin Spheres with Enhanced NIR-Sensitive Photo-Thermal Activity. Optik 2019, 188, 193–199. DOI: 10.1016/j.ijleo.2019.05.058.
  • Li, X.; Xiong, Y.-Z.; Zhang, H.; Gao, R.-N. Development of Functionally Graded Porous Titanium/Silk Fibroin Composite Scaffold for Bone Repair. Mater. Lett. 2021, 282, 128670. DOI: 10.1016/j.matlet.2020.128670.
  • Abbasizadeh, N.; Rezayan, A. H.; Nourmohammadi, J.; Kazemzadeh-Narbat, M. HHC-36 Antimicrobial Peptide Loading on Silk Fibroin (SF)/Hydroxyapatite (HA) Nanofibrous-Coated Titanium for the Enhancement of Osteoblast and Bactericidal Functions. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 629–639. DOI: 10.1080/00914037.2019.1596913.
  • Zong, X.-H.; Zhou, P.; Shao, Z.-Z.; Chen, S.-M.; Chen, X.; Hu, B.-W.; Deng, F.; Yao, W.-H. Effect of pH and Copper(II) on the Conformation Transitions of Silk Fibroin Based on EPR, NMR, and Raman Spectroscopy. Biochemistry 2004, 43, 11932–11941. DOI: 10.1021/bi049455h.
  • Zhang, G.; Xu, T.; Du, H.; Qiao, Y.; Guo, X.; Shi, L.; Zhang, Y.; Shuang, S.; Dong, C.; Ma, H. A Reversible Fluorescent pH-Sensing System Based on the One-Pot Synthesis of Natural Silk Fibroin-Capped Copper Nanoclusters. J. Mater. Chem. C 2016, 4, 3540–3545. DOI: 10.1039/C6TC00314A.
  • Chen, W. X.; Lu, S. F.; Yao, Y. Y.; Pan, Y.; Shen, Z. Q. Copper(II)-Silk Fibroin Complex Fibers as Air-Purifying Materials for Removing Ammonia. Text. Res. J. 2005, 75, 326–330. DOI: 10.1177/004051750505732.
  • Chen, J.; Zhao, W. Silk fibroin-Ti3C2TX Hybrid Nanofiller Enhance Corrosion Protection for Waterborne Epoxy Coatings under Deep Sea Environment. Chem. Eng. J. 2021, 423, 130195. DOI: 10.1016/j.cej.2021.130195.
  • Goswami, N.; Yao, Q.; Luo, Z.; Li, J.; Chen, T.; Xie, J. Luminescent Metal Nanoclusters with Aggregation-Induced Emission. J. Phys. Chem. Lett. 2016, 7, 962–975. DOI: 10.1021/acs.jpclett.5b02765.
  • Woo, K.; Hong, J.; Choi, S.; Lee, H.-W.; Ahn, J.-P.; Kim, C. S.; Lee, S. W. Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles. Chem. Mater. 2004, 16, 2814–2818. DOI: 10.1021/cm049552x.
  • Abboud, M.; Youssef, S.; Podlecki, J.; Habchi, R.; Germanos, G.; Foucaran, A. Superparamagnetic Fe3O4 Nanoparticles, Synthesis and Surface Modification. Mater. Sci. Semicond. Process. 2015, 39, 641–648. DOI: 10.1016/j.mssp.2015.05.035.
  • Lalegül-Ülker, Ö.; Vurat, M. T.; Elçin, A. E.; Elçin, Y. M. Magnetic Silk Fibroin Composite Nanofibers for Biomedical Applications: Fabrication and Evaluation of the Chemical, Thermal, Mechanical, and In Vitro Biological Properties. J. Appl. Polym. Sci. 2019, 136, 48040. DOI: 10.1002/app.48040.
  • Akbarzadeh, P.; Koukabi, N. Fibroin-Functionalized Magnetic Carbon Nanotube as a Green Support for Anchoring Silver Nanoparticles as a Biocatalyst for A3 Coupling Reaction. Appl. Organometal. Chem. 2020, 34, e5395. DOI: 10.1002/aoc.5395.
  • Tanasa, E.; Zaharia, C.; Hudita, A.; Radu, I.-C.; Costache, M.; Galateanu, B. Impact of the Magnetic Field on 3T3-E1 Preosteoblasts inside SMART Silk Fibroin-Based Scaffolds Decorated with Magnetic Nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110714. DOI: 10.1016/j.msec.2020.110714.
  • Reizabal, A.; Costa, C. M.; Pereira, N.; Pérez-Álvarez, L.; Vilas-Vilela, J.-L.; Lanceros-Méndez, S. Silk Fibroin Based Magnetic Nanocomposites for Actuator Applications. Adv. Eng. Mater. 2020, 22, 2000111. DOI: 10.1002/adem.202000111.
  • Gianak, O.; Pavlidou, E.; Sarafidis, C.; Karageorgiou, V.; Deliyanni, E. Silk Fibroin Nanoparticles for Drug Delivery: Effect of Bovine Serum Albumin and Magnetic Nanoparticles Addition on Drug Encapsulation and Release. Separations 2018, 5, 25. DOI: 10.3390/separations5020025.
  • Wang, Y.; Boero, G.; Zhang, X.; Brugger, J. Thermal and pH Sensitive Composite Membrane for On-Demand Drug Delivery by Applying an Alternating Magnetic Field. Adv. Mater. Interfaces 2020, 7, 2000733. DOI: 10.1002/admi.202000733.
  • Luo, K.; Shao, Z. A Novel Regenerated Silk Fibroin-Based Hydrogels with Magnetic and Catalytic Activities. Chin. J. Polym. Sci. 2017, 35, 515–523. DOI: 10.1007/s10118-017-1910-0.
  • Benvidi, A.; Yekrangi, M.; Jahanbani, S.; Zare, H. R. The Extraction and Measurement of Nickel Metal Ion in Crab, Shellfish and Rice Samples Using Magnetic Silk Fibroin – EDTA Ligand and Furnace Atomic Absorption Spectrometry. Food Chem. 2020, 319, 126432. DOI: 10.1016/j.foodchem.2020.126432.
  • Nouri Parouch, A.; Koukabi, N.; Abdous, E.; Shobeiri, S. A. Palladium and Silk Fibroin-Containing Magnetic Nano-Biocomposite: A Highly Efficient Heterogeneous Nanocatalyst in Heck Coupling Reactions. Res. Chem. Intermed. 2021, 47, 3165–3177. DOI: 10.1007/s11164-021-04462-2.
  • Xue, Y.; Lofland, S.; Hu, X. Comparative Study of Silk-Based Magnetic Materials: Effect of Magnetic Particle Types on the Protein Structure and Biomaterial Properties. Int. J. Mol. Sci. 2020, 21, 7583. DOI: 10.3390/ijms21207583.
  • Reizabal, A.; Brito-Pereira, R.; Fernandes, M. M.; Castro, N.; Correia, V.; Ribeiro, C.; Costa, C. M.; Perez, L.; Vilas, J. L.; Lanceros-Méndez, S. Silk Fibroin Magnetoactive Nanocomposite Films and Membranes for Dynamic Bone Tissue Engineering Strategies. Materialia 2020, 12, 100709. DOI: 10.1016/j.mtla.2020.100709.
  • Phillips, D. M.; Drummy, L. F.; Conrady, D. G.; Fox, D. M.; Naik, R. R.; Stone, M. O.; Trulove, P. C.; De Long, H. C.; Mantz, R. A. Dissolution and Regeneration of Bombyx mori Silk Fibroin Using Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 14350–14351. DOI: 10.1021/ja046079f.
  • Hallett, J. P.; Welton, T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chem. Rev. 2011, 111, 3508–3576. DOI: 10.1021/cr1003248.
  • Abelló, S.; Medina, F.; Rodríguez, X.; Cesteros, Y.; Salagre, P.; Sueiras, J. E.; Tichit, D.; Coq, B. Supported Choline Hydroxide (Ionic Liquid) as Heterogeneous Catalyst for Aldol Condensation Reactions. Chem. Commun. 2004, 1096–1097. DOI: 10.1039/b401448k.
  • Samie, M.; Muhammad, N.; Yameen, M. A.; Chaudhry, A. A.; Khalid, H.; Khan, A. F. Aqueous Solution of a Basic Ionic Liquid: A Perspective Solvent for Extraction and Regeneration of Silk Powder from Bombyx mori Silk Cocoons. J. Polym. Environ. 2020, 28, 657–667. DOI: 10.1007/s10924-019-01634-5.
  • Goujon, N.; Wang, X.; Rajkowa, R.; Byrne, N. Regenerated Silk Fibroin Using Protic Ionic Liquids Solvents: Towards an All-Ionic-Liquid Process for Producing Silk with Tunable Properties. Chem. Commun. 2012, 48, 1278–1280. DOI: 10.1039/c2cc17143k.
  • Wang, H.-Y.; Wei, Z.-G.; Zhang, Y.-Q. Dissolution and Regeneration of Silk from Silkworm Bombyx mori in Ionic Liquids and Its Application to Medical Biomaterials. Int. J. Biol. Macromol. 2020, 143, 594–601. DOI: 10.1016/j.ijbiomac.2019.12.066.
  • Lozano-Pérez, A. A.; Montalbán, M. G.; Aznar-Cervantes, S. D.; Cragnolini, F.; Cenis, J. L.; Víllora, G. Production of Silk Fibroin Nanoparticles Using Ionic Liquids and High-Power Ultrasounds. J. Appl. Polym. Sci. 2014, 132, 41702. DOI: 10.1002/app.41702.
  • Carissimi, G.; Baronio, C. M.; Montalbán, M. G.; Víllora, G.; Barth, A. On the Secondary Structure of Silk Fibroin Nanoparticles Obtained Using Ionic Liquids: An Infrared Spectroscopy Study. Polymers 2020, 12, 1294. DOI: 10.3390/polym12061294.
  • Susanin, A. I.; Sashina, E. S.; Novoselov, N. P.; Zakharov, V. V. Change of Silk Fibroin Molecular Mass During Dissolution in Ionic Liquids. Fibre Chem. 2020, 52, 208–213. DOI: 10.1007/s10692-020-10182-x.
  • Susanin, A. I.; Sashina, E. S.; Maniukiewicz, W.; Zakharov, V. V.; Gumalevskaya, E. V.; Zaborski, M. Effect of Precipitant on Conformational State of Silk Fibroin in Ionic-Liquid Solutions. Fibre Chem. 2020, 52, 253–258. DOI: 10.1007/s10692-021-10191-4.
  • Silva, S. S.; Gomes, J. M.; Vale, A. C.; Lu, S.; Reis, R. L.; Kundu, S. C. Green Pathway for Processing Non-Mulberry Antheraea Pernyi Silk Fibroin/Chitin-Based Sponges: Biophysical and Biochemical Characterization. Front. Mater. 2020, 7, DOI: 10.3389/fmats.2020.00135.
  • Phillips, D. M.; Drummy, L. F.; Naik, R. R.; Long, D. H. C.; Fox, D. M.; Trulove, P. C.; Mantz, R. A. Regenerated Silk Fiber Wet Spinning from an Ionic Liquid Solution. J. Mater. Chem. 2005, 15, 4206–4208. DOI: 10.1039/b510069k.
  • Pereira, R. F. P.; Zehbe, K.; Günter, C.; dos Santos, T.; Nunes, S. C.; Paz, F. A. A.; Silva, M. M.; Granja, P. L.; Taubert, A.; de Zea Bermudez, V. Ionic Liquid-Assisted Synthesis of Mesoporous Silk Fibroin/Silica Hybrids for Biomedical Applications. ACS Omega 2018, 3, 10811–10822. DOI: 10.1021/acsomega.8b02051.
  • Wang, W.; Liu, Y.; Wang, S.; Fu, X.; Zhao, T.; Chen, X.; Shao, Z. Physically Cross-Linked Silk Fibroin-Based Tough Hydrogel Electrolyte with Exceptional Water Retention and Freezing Tolerance. ACS Appl. Mater. Interfaces 2020, 12, 25353–25362. DOI: 10.1021/acsami.0c07558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.