600
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Polymer-incorporated MXene aerogels: synthesis, classification, and properties

, , , , &
Pages 761-817 | Received 11 Oct 2023, Accepted 11 Feb 2024, Published online: 26 Feb 2024

References

  • Lim, K. R. G.; Shekhirev, M.; Wyatt, B. C.; Anasori, B.; Gogotsi, Y.; Seh, Z. W. Fundamentals of MXene Synthesis. Nat. Synth. 2022, 1, 601–614. DOI: 10.1038/s44160-022-00104-6.
  • Pei, Y.; Zhang, X.; Hui, Z.; Zhou, J.; Huang, X.; Sun, G.; Huang, W. Ti3C2TX MXene for Sensing Applications: Recent Progress, Design Principles, and Future Perspectives. ACS Nano. 2021, 15, 3996–4017. DOI: 10.1021/acsnano.1c00248.
  • Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. DOI: 10.1002/adma.201102306.
  • Zhao, S.; Meng, X.; Zhu, K.; Du, F.; Chen, G.; Wei, Y.; Gogotsi, Y.; Gao, Y. Li-Ion Uptake and Increase in Interlayer Spacing of Nb4C3 MXene. Energy Storage Mater. 2017, 8, 42–48. DOI: 10.1016/j.ensm.2017.03.012.
  • Mashtalir, O.; Lukatskaya, M. R.; Zhao, M.-Q.; Barsoum, M. W.; Gogotsi, Y. Amine-Assisted Delamination of Nb2C MXene for Li-Ion Energy Storage Devices. Adv. Mater. 2015, 27, 3501–3506. DOI: 10.1002/adma.201500604.
  • Zhou, J.; Lin, S.; Huang, Y.; Tong, P.; Zhao, B.; Zhu, X.; Sun, Y. Synthesis and Lithium Ion Storage Performance of Two-Dimensional V4C3 MXene. Chemical Engineering Journal 2019, 373, 203–212. DOI: 10.1016/j.cej.2019.05.037.
  • Liu, Y.; Jiang, Y.; Hu, Z.; Peng, J.; Lai, W.; Wu, D.; Zuo, S.; Zhang, J.; Chen, B.; Dai, Z.; et al. In-Situ Electrochemically Activated Surface Vanadium Valence in V2C MXene to Achieve High Capacity and Superior Rate Performance for Zn-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2008033. DOI: 10.1002/adfm.202008033.
  • VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The World of Two-Dimensional Carbides and Nitrides [MXenes]. Science. 2021, 372, eabf1581. DOI: 10.1126/science.abf1581.
  • Cao, Z.; Chen, H.; Du, Z.; Gu, J.; Zhu, Q.; Li, B.; Yang, S. Low-Tortuous MXene [TiNbC] Accordion Arrays Enabled Fast Ion Diffusion and Charge Transfer in Dendrite-Free Lithium Metal Anodes. Adv. Energy Mater. 2022, 12, 2201189. DOI: 10.1002/aenm.202201189.
  • Zhang, Y.; Cao, J.-M.; Yuan, Z.; Xu, H.; Li, D.; Li, Y.; Han, W.; Wang, L. TiVCTx MXene/Chalcogenide Heterostructure-Based High-Performance Magnesium-Ion Battery as Flexible Integrated Units. Small. 2022, 18, e2202313. DOI: 10.1002/smll.202202313.
  • Gao, L.; Chen, H.; Kuklin, A. V.; Wageh, S.; Al-Ghamdi, A. A.; Ågren, H.; Zhang, H. Optical Properties of Few-Layer Ti3CN MXene: From Experimental Observations to Theoretical Calculations. ACS Nano. 2022, 16, 3059–3069. DOI: 10.1021/acsnano.1c10577.
  • Li, K.; Liang, M.; Wang, H.; Wang, X.; Huang, Y.; Coelho, J.; Pinilla, S.; Zhang, Y.; Qi, F.; Nicolosi, V.; et al. 3D MXene Architectures for Efficient Energy Storage and Conversion. Adv. Funct. Mater. 2020, 30, 2000842. DOI: 10.1002/adfm.202000842.
  • Morales-García, Á.; Calle-Vallejo, F.; Illas, F. MXenes: New Horizons in Catalysis. ACS Catal. 2020, 10, 13487–13503. DOI: 10.1021/acscatal.0c03106.
  • Ho, D. H.; Choi, Y. Y.; Jo, S. B.; Myoung, J.-M.; Cho, J. H. Sensing with MXenes: Progress and Prospects. Adv. Mater. 2021, 33, 2005846. DOI: 10.1002/adma.202005846.
  • Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for Electromagnetic Shielding: A Review. Adv. Funct. Mater. 2020, 30, 2000883. DOI: 10.1002/adfm.202000883.
  • Carey, M.; Barsoum, M. W. MXene Polymer Nanocomposites: A Review. Mater. Today Adv. 2021, 9, 100120. DOI: 10.1016/j.mtadv.2020.100120.
  • Chen, X.; Zhao, Y.; Li, L.; Wang, Y.; Wang, J.; Xiong, J.; Du, S.; Zhang, P.; Shi, X.; Yu, J. MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polym. Rev. 2021, 61, 80–115. DOI: 10.1080/15583724.2020.1729179.
  • Ma, C.; Ma, M. G.; Si, C.; Ji, X. X.; Wan, P. Flexible MXene‐Based Composites for Wearable Devices. Adv. Funct. Mater. 2021, 31, 2009524. DOI: 10.1002/adfm.202009524.
  • Jin, L.; Wu, C.; Wei, K.; He, L.; Gao, H.; Zhang, H.; Zhang, K.; Asiri, A. M.; Alamry, K. A.; Yang, L.; et al. Polymeric Ti3C2Tx MXene Composites for Room Temperature Ammonia Sensing. ACS Appl. Nano Mater. 2020, 3, 12071–12079. DOI: 10.1021/acsanm.0c02577.
  • Huang, Y.; Jiang, S.; Liang, R.; Sun, P.; Hai, Y.; Zhang, L. Thermal-Triggered Insulating Fireproof Layers: A Novel Fire-Extinguishing MXene Composites Coating. Chem. Eng. J. 2020, 391, 123621. DOI: 10.1016/j.cej.2019.123621.
  • Maleki, A.; Ghomi, M.; Nikfarjam, N.; Akbari, M.; Sharifi, E.; Shahbazi, M.-A.; Kermanian, M.; Seyedhamzeh, M.; Nazarzadeh Zare, E.; Mehrali, M.; et al. Biomedical Applications of MXene‐Integrated Composites: Regenerative Medicine, Infection Therapy, Cancer Treatment, and Biosensing. Adv. Funct. Mater. 2022, 32, 2203430. DOI: 10.1002/adfm.202203430.
  • Riazi, H.; Nemani, S. K.; Grady, M. C.; Anasori, B.; Soroush, M. Ti3C2 MXene–Polymer Nanocomposites and Their Applications. J. Mater. Chem. A 2021, 9, 8051–8098. DOI: 10.1039/D0TA08023C.
  • Marian, M.; Berman, D.; Nečas, D.; Emami, N.; Ruggiero, A.; Rosenkranz, A. Roadmap for 2D Materials in Biotribological/Biomedical Applications – A Review. Adv. Colloid Interface Sci. 2022, 307, 102747. DOI: 10.1016/j.cis.2022.102747.
  • Liu, L.; Zhu, M.; Ma, Z.; Xu, X.; Dai, J.; Yu, Y.; Mohsen Seraji, S.; Wang, H.; Song, P. Small Multiamine Molecule Enabled Fire-Retardant Polymeric Materials with Enhanced Strength, Toughness, and Self-Healing Properties. Chem. Eng. J. 2022, 440, 135645. DOI: 10.1016/j.cej.2022.135645.
  • Mabesoone, M. F. J.; Palmans, A. R. A.; Meijer, E. W. Solute–Solvent Interactions in Modern Physical Organic Chemistry: Supramolecular Polymers as a Muse. J. Am. Chem. Soc. 2020, 142, 19781–19798. DOI: 10.1021/jacs.0c09293.
  • Zhang, Q.; Lai, H.; Fan, R.; Ji, P.; Fu, X.; Li, H. High Concentration of Ti3C2Tx MXene in Organic Solvent. ACS Nano. 2021, 15, 5249–5262. DOI: 10.1021/acsnano.0c10671.
  • Shen, X.; Zheng, Q.; Kim, J.-K. Rational Design of Two-Dimensional Nanofillers for Polymer Nanocomposites toward Multifunctional Applications. Prog. Mater. Sci. 2021, 115, 100708. DOI: 10.1016/j.pmatsci.2020.100708.
  • Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphene-Polymer Nanocomposites for Structural and Functional Applications. Prog. Polym. Sci. 2014, 39, 1934–1972. DOI: 10.1016/j.progpolymsci.2014.03.001.
  • Li, J.; Liu, X.; Feng, Y.; Yin, J. Recent Progress in Polymer/Two-Dimensional Nanosheets Composites with Novel Performances. Prog. Polym. Sci. 2022, 126, 101505. DOI: 10.1016/j.progpolymsci.2022.101505.
  • Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Recent Advances in Graphene Based Polymer Composites. Prog. Polym. Sci. 2010, 35, 1350–1375. DOI: 10.1016/j.progpolymsci.2010.07.005.
  • Cai, D.; Song, M. Recent Advance in Functionalized Graphene/Polymer Nanocomposites. J. Mater. Chem. 2010, 20, 7906–7915. DOI: 10.1039/c0jm00530d.
  • Govindaraj, P.; Sokolova, A.; Salim, N.; Juodkazis, S.; Fuss, F. K.; Fox, B.; Hameed, N. Distribution States of Graphene in Polymer Nanocomposites: A Review. Composit. Part B Eng. 2021, 226, 109353. DOI: 10.1016/j.compositesb.2021.109353.
  • Zhang, Z.; Du, J.; Li, J.; Huang, X.; Kang, T.; Zhang, C.; Wang, S.; Ajao, O. O.; Wang, W.-J.; Liu, P. Polymer Nanocomposites with Aligned Two-Dimensional Materials. Prog. Polym. Sci. 2021, 114, 101360. DOI: 10.1016/j.progpolymsci.2021.101360.
  • Zeng, Z.; Wang, G.; Wolan, B. F.; Wu, N.; Wang, C.; Zhao, S.; Yue, S.; Li, B.; He, W.; Liu, J.; et al. Printable Aligned Single-Walled Carbon Nanotube Film with Outstanding Thermal Conductivity and Electromagnetic Interference Shielding Performance. Nanomicro. Lett. 2022, 14, 179. DOI: 10.1007/s40820-022-00883-9.
  • Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide [Ti3C2Tx MXene]. Chem. Mater. 2017, 29, 7633–7644. DOI: 10.1021/acs.chemmater.7b02847.
  • Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. DOI: 10.1038/nnano.2007.451.
  • Lawal, A. T. Recent Progress in Graphene Based Polymer Nanocomposites. Cogent Chem. 2020, 6, 1833476. DOI: 10.1080/23312009.2020.1833476.
  • Salzano de Luna, M.; Wang, Y.; Zhai, T.; Verdolotti, L.; Buonocore, G. G.; Lavorgna, M.; Xia, H. Nanocomposite Polymeric Materials with 3D Graphene-Based Architectures: From Design Strategies to Tailored Properties and Potential Applications. Prog. Polym. Sci. 2019, 89, 213–249. DOI: 10.1016/j.progpolymsci.2018.11.002.
  • Samaddar, P.; Son, Y.-S.; Tsang, D. C. W.; Kim, K.-H.; Kumar, S. Progress in Graphene-Based Materials as Superior Media for Sensing, Sorption, and Separation of Gaseous Pollutants. Coord. Chem. Rev. 2018, 368, 93–114. DOI: 10.1016/j.ccr.2018.04.013.
  • Deshmukh, K.; Kovářík, T.; Khadheer Pasha, S. K. State of the Art Recent Progress in Two Dimensional MXenes Based Gas Sensors and Biosensors: A Comprehensive Review. Coord. Chem. Rev. 2020, 424, 213514. DOI: 10.1016/j.ccr.2020.213514.
  • Li, R.; Gao, Q.; Xing, H.; Su, Y.; Zhang, H.; Zeng, D.; Fan, B.; Zhao, B. Lightweight, Multifunctional MXene/Polymer Composites with Enhanced Electromagnetic Wave Absorption and High-Performance Thermal Conductivity. Carbon. 2021, 183, 301–312. DOI: 10.1016/j.carbon.2021.07.029.
  • Han, X.; Qiu, X.; Zong, M.; Hao, J. Assembled MXene Macrostructures for Multifunctional Polymer Nanocomposites. Small Struct. 2023, 4, 2300090. DOI: 10.1002/sstr.202300090.
  • Parale, V. G.; Lee, K.-Y.; Park, H.-H. Flexible and Transparent Silica Aerogels: An Overview. J. Korean Ceram. Soc. 2017, 54, 184–199. DOI: 10.4191/kcers.2017.54.3.12.
  • Parale, V. G.; Choi, H.; Kim, T.; Phadtare, V. D.; Dhavale, R. P.; Lee, K.-Y.; Panda, A.; Park, H.-H. One Pot Synthesis of Hybrid Silica Aerogels with Improved Mechanical Properties and Heavy Metal Adsorption: Synergistic Effect of in Situ Epoxy-Thiol Polymerization and Sol-Gel Process. Sep. Purif. Technol. 2023, 308, 122934. DOI: 10.1016/j.seppur.2022.122934.
  • Lee, K.-Y.; Phadtare, V. D.; Parale, V. G.; Kim, Y.; Park, H.-H. Effect of Mg[OH]2/Silica Composite Aerogel Filler on the Glass Transition Temperature and Flame Retardancy of Detachable Polymer Coatings. Prog. Org. Coat. 2022, 171, 107050. DOI: 10.1016/j.porgcoat.2022.107050.
  • Kim, T.; Roy, S. B.; Moon, S.; Yoo, S.; Choi, H.; Parale, V. G.; Kim, Y.; Lee, J.; Jun, S. C.; Kang, K.; et al. Highly Dispersed Pt Clusters on F-Doped Tin[IV] Oxide Aerogel Matrix: An Ultra-Robust Hybrid Catalyst for Enhanced Hydrogen Evolution. ACS Nano. 2022, 16, 1625–1638. DOI: 10.1021/acsnano.1c10504.
  • Choi, H.; Kim, T.; Kim, T.; Moon, S.; Yoo, S.; Parale, V. G.; Dhavale, R. P.; Kang, K.; Sohn, H.; Park, H.-H. Ultralow Dielectric Cross-Linked Silica Aerogel Nanocomposite Films for Interconnect Technology. Appl. Mater. Today 2022, 28, 101536. DOI: 10.1016/j.apmt.2022.101536.
  • Yang, Z.; Li, J.; Xu, X.; Pang, S.; Hu, C.; Guo, P.; Tang, S.; Cheng, H.-M. Synthesis of Monolithic Carbon Aerogels with High Mechanical Strength via Ambient Pressure Drying without Solvent Exchange. J. Mater. Sci. Technol. 2020, 50, 66–74. DOI: 10.1016/j.jmst.2020.02.013.
  • Cai, C.; Wei, Z.; Huang, Y.; Ding, C.; Wang, P.; Song, J.; Deng, L.; Fu, Y.; Zhong, W. H. Ultralight Programmable Bioinspired Aerogels with an Integrated Multifunctional Surface for Self-Cleaning, Oil Absorption, and Thermal Insulation via Coassembly. ACS Appl. Mater. Interfaces. 2020, 12, 11273–11286. DOI: 10.1021/acsami.0c00308.
  • Chen, Y.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W.; Duan, G.; Jiang, S.; Zhang, K. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Adv. Mater. 2021, 33, 2005569. DOI: 10.1002/adma.202005569.
  • Chan, K.-Y.; Shen, X.; Yang, J.; Lin, K.-T.; Venkatesan, H.; Kim, E.; Zhang, H.; Lee, J.-H.; Yu, J.; Yang, J.; et al. Scalable Anisotropic Cooling Aerogels by Additive Freeze-Casting. Nat. Commun. 2022, 13, 5553. DOI: 10.1038/s41467-022-33234-8.
  • Liao, W.; Zhao, H.-B.; Liu, Z.; Xu, S.; Wang, Y.-Z. On Controlling Aerogel Microstructure by Freeze Casting. Composit. Part B Eng. 2019, 173, 107036. DOI: 10.1016/j.compositesb.2019.107036.
  • Quan, L.; Wang, C.; Xu, Y.; Qiu, J.; Zhang, H.; Cunning, B.; Huang, M.; Wei, H.; Seong, W. K.; Seo, J.; et al. Electromagnetic Properties of Graphene Aerogels Made by Freeze-Casting. Chem. Eng. J. 2022, 428, 131337. DOI: 10.1016/j.cej.2021.131337.
  • Zeng, X.; Ye, L.; Yu, S.; Sun, R.; Xu, J.; Wong, C.-P. Facile Preparation of Superelastic and Ultralow Dielectric Boron Nitride Nanosheet Aerogels via Freeze-Casting Process. Chem. Mater. 2015, 27, 5849–5855. DOI: 10.1021/acs.chemmater.5b00505.
  • Wang, C.; Chen, X.; Wang, B.; Huang, M.; Wang, B.; Jiang, Y.; Ruoff, R. S. Freeze-Casting Produces a Graphene Oxide Aerogel with a Radial and Centrosymmetric Structure. ACS Nano. 2018, 12, 5816–5825. DOI: 10.1021/acsnano.8b01747.
  • Huang, J.; Wang, H.; Liang, B.; Etim, U. J.; Liu, Y.; Li, Y.; Yan, Z. Oriented Freeze-Casting Fabrication of Resilient Copper Nanowire-Based Aerogel as Robust Piezoresistive Sensor. Chem. Eng. J. 2019, 364, 28–36. DOI: 10.1016/j.cej.2019.01.071.
  • Shao, G.; Hanaor, D. A. H.; Shen, X.; Gurlo, A. Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures—a Review of Novel Materials, Methods, and Applications. Adv. Mater. 2020, 32, 1907176. DOI: 10.1002/adma.201907176.
  • Cui, J.; Yao, S.; Lu, Z.; Huang, J.-Q.; Chong, W. G.; Ciucci, F.; Kim, J.-K. Revealing Pseudocapacitive Mechanisms of Metal Dichalcogenide SnS2/Graphene-CNT Aerogels for High-Energy Na Hybrid Capacitors. Adv. Energy Mater. 2018, 8, 1702488. DOI: 10.1002/aenm.201702488.
  • Sun, H.; Xu, Z.; Gao, C. Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Adv. Mater. 2013, 25, 2554–2560. DOI: 10.1002/adma.201204576.
  • Nardecchia, S.; Carriazo, D.; Ferrer, M. L.; Gutiérrez, M. C.; del Monte, F. Three Dimensional Macroporous Architectures and Aerogels Built of Carbon Nanotubes and/or Graphene: Synthesis and Applications. Chem. Soc. Rev. 2013, 42, 794–830. DOI: 10.1039/C2CS35353A.
  • Wen, L.; Li, F.; Cheng, H.-M. Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: From Materials to Devices. Adv. Mater. 2016, 28, 4306–4337. DOI: 10.1002/adma.201504225.
  • Lu, M.; Liu, S.; Chen, J.; Zhang, X.; Zhang, J.; Li, Z.; Hou, B. Rational-Designed Hybrid Aerogels for Ultra-Flyweight Electrochemical Energy Storage. J. Phys. Chem. C. 2020, 124, 15688–15697. DOI: 10.1021/acs.jpcc.0c02217.
  • Akuzum, B.; Maleski, K.; Anasori, B.; Lelyukh, P.; Alvarez, N. J.; Kumbur, E. C.; Gogotsi, Y. Rheological Characteristics of 2D Titanium Carbide [MXene] Dispersions: A Guide for Processing MXenes. ACS Nano. 2018, 12, 2685–2694. DOI: 10.1021/acsnano.7b08889.
  • Lipatov, A.; Alhabeb, M.; Lu, H.; Zhao, S.; Loes, M. J.; Vorobeva, N. S.; Dall’Agnese, Y.; Gao, Y.; Gruverman, A.; Gogotsi, Y.; et al. Electrical and Elastic Properties of Individual Single-Layer Nb4C3Tx MXene Flakes. Adv. Elect. Mater. 2020, 6, 1901382. DOI: 10.1002/aelm.201901382.
  • Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Elastic Properties of 2D Ti3C2Tx MXene Monolayers and Bilayers. Sci. Adv. 2018, 4, eaat0491. DOI: 10.1126/sciadv.aat0491.
  • Wei, C.; Zhang, Q.; Wang, Z.; Yang, W.; Lu, H.; Huang, Z.; Yang, W.; Zhu, J. Recent Advances in MXene-Based Aerogels: Fabrication, Performance and Application. Adv. Funct. Mater. 2023, 33, 2211889. DOI: 10.1002/adfm.202211889.
  • Li, Y.; Zhang, X. Electrically Conductive, Optically Responsive, and Highly Orientated Ti3C2Tx MXene Aerogel Fibers. Adv. Funct. Mater. 2022, 32, 2107767. DOI: 10.1002/adfm.202107767.
  • Jiang, D.; Zhang, J.; Qin, S.; Wang, Z.; Usman, K. A. S.; Hegh, D.; Liu, J.; Lei, W.; Razal, J. M. Superelastic Ti3C2Tx MXene-Based Hybrid Aerogels for Compression-Resilient Devices. ACS Nano. 2021, 15, 5000–5010. DOI: 10.1021/acsnano.0c09959.
  • Rawson, S. D.; Bayram, V.; McDonald, S. A.; Yang, P.; Courtois, L.; Guo, Y.; Xu, J.; Burnett, T. L.; Barg, S.; Withers, P. J. Tailoring the Microstructure of Lamellar Ti3C2Tx MXene Aerogel by Compressive Straining. ACS Nano. 2022, 16, 1896–1908. DOI: 10.1021/acsnano.1c04538.
  • Zhou, X.; Wen, J.; Ma, X.; Wu, H. Manipulation of Microstructure of MXene Aerogel via Metal Ions-Initiated Gelation for Electromagnetic Wave Absorption. J. Colloid Interface Sci. 2022, 624, 505–514. DOI: 10.1016/j.jcis.2022.05.166.
  • Zhang, Q.; Yi, G.; Fu, Z.; Yu, H.; Chen, S.; Quan, X. Vertically Aligned Janus MXene-Based Aerogels for Solar Desalination with High Efficiency and Salt Resistance. ACS Nano. 2019, 13, 13196–13207. DOI: 10.1021/acsnano.9b06180.
  • Yang, Y.; Wu, N.; Li, B.; Liu, W.; Pan, F.; Zeng, Z.; Liu, J. Biomimetic Porous MXene Sediment-Based Hydrogel for High-Performance and Multifunctional Electromagnetic Interference Shielding. ACS Nano. 2022, 16, 15042–15052. DOI: 10.1021/acsnano.2c06164.
  • Wu, N.; Yang, Y.; Wang, C.; Wu, Q.; Pan, F.; Zhang, R.; Liu, J.; Zeng, Z. Ultrathin Cellulose Nanofiber Assisted Ambient-Pressure-Dried, Ultralight, Mechanically Robust, Multifunctional MXene Aerogels. Adv. Mater. 2023, 35, 2207969. DOI: 10.1002/adma.202207969.
  • Zeng, Z.; Wang, C.; Siqueira, G.; Han, D.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C.; Nyström, G. Nanocellulose-MXene Biomimetic Aerogels with Orientation-Tunable Electromagnetic Interference Shielding Performance. Adv. Sci. 2020, 7, 2000979. DOI: 10.1002/advs.202000979.
  • Liu, L.; Zhu, M.; Shi, Y.; Xu, X.; Ma, Z.; Yu, B.; Fu, S.; Huang, G.; Wang, H.; Song, P. Functionalizing MXene towards Highly Stretchable, Ultratough, Fatigue- and Fire-Resistant Polymer Nanocomposites. Chem. Eng. J. 2021, 424, 130338. DOI: 10.1016/j.cej.2021.130338.
  • Parajuli, D.; Murali, N.; D, K. C.; Karki, B.; Samatha, K.; Kim, A. A.; Park, M.; Pant, B. Advancements in MXene-Polymer Nanocomposites in Energy Storage and Biomedical Applications. Polymers. 2022, 14, 3433. DOI: 10.3390/polym14163433.
  • Aghamohammadi, H.; Amousa, N.; Eslami-Farsani, R. Recent Advances in Developing the MXene/Polymer Nanocomposites with Multiple Properties: A Review Study. Synth. Met. 2021, 273, 116695. DOI: 10.1016/j.synthmet.2020.116695.
  • George, S. M.; Kandasubramanian, B. Advancements in MXene-Polymer Composites for Various Biomedical Applications. Ceram. Int. 2020, 46, 8522–8535. DOI: 10.1016/j.ceramint.2019.12.257.
  • Zeng, Z.-H.; Wu, N.; Wei, J.-J.; Yang, Y.-F.; Wu, T.-T.; Li, B.; Hauser, S. B.; Yang, W.-D.; Liu, J.-R.; Zhao, S.-Y. Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding. Nanomicro. Lett. 2022, 14, 59. DOI: 10.1007/s40820-022-00800-0.
  • Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-Dimensional Transition Metal Carbides and Nitrides [MXenes] for Biomedical Applications. Chem. Soc. Rev. 2018, 47, 5109–5124. DOI: 10.1039/C7CS00838D.
  • Kang, Z.; Khan, M. A.; Gong, Y.; Javed, R.; Xu, Y.; Ye, D.; Zhao, H.; Zhang, J. Recent Progress of MXenes and MXene-Based Nanomaterials for the Electrocatalytic Hydrogen Evolution Reaction. J. Mater. Chem. A. 2021, 9, 6089–6108. DOI: 10.1039/D0TA11735H.
  • Cao, J.-M.; Zatovsky, I. V.; Gu, Z.-Y.; Yang, J.-L.; Zhao, X.-X.; Guo, J.-Z.; Xu, H.; Wu, X.-L. Two-Dimensional MXene with Multidimensional Carbonaceous Matrix: A Platform for General-Purpose Functional Materials. Prog. Mater. Sci. 2023, 135, 101105. DOI: 10.1016/j.pmatsci.2023.101105.
  • Cao, M.-S.; Cai, Y.-Z.; He, P.; Shu, J.-C.; Cao, W.-Q.; Yuan, J. 2D MXenes: Electromagnetic Property for Microwave Absorption and Electromagnetic Interference Shielding. Chem. Eng. J. 2019, 359, 1265–1302. DOI: 10.1016/j.cej.2018.11.051.
  • Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional Transition Metal Carbides. ACS Nano. 2012, 6, 1322–1331. DOI: 10.1021/nn204153h.
  • Wei, Y.; Zhang, P.; Soomro, R. A.; Zhu, Q.; Xu, B. Advances in the Synthesis of 2D MXenes. Adv. Mater. 2021, 33, e2103148. DOI: 10.1002/adma.202103148.
  • Kim, Y.-J.; Kim, S. J.; Seo, D.; Chae, Y.; Anayee, M.; Lee, Y.; Gogotsi, Y.; Ahn, C. W.; Jung, H.-T. Etching Mechanism of Monoatomic Aluminum Layers during MXene Synthesis. Chem. Mater. 2021, 33, 6346–6355. DOI: 10.1021/acs.chemmater.1c01263.
  • Anayee, M.; Shuck, C. E.; Shekhirev, M.; Goad, A.; Wang, R.; Gogotsi, Y. Kinetics of Ti3AlC2 Etching for Ti3C2Tx MXene Synthesis. Chem. Mater. 2022, 34, 9589–9600. DOI: 10.1021/acs.chemmater.2c02194.
  • Bärmann, P.; Haneke, L.; Wrogemann, J. M.; Winter, M.; Guillon, O.; Placke, T.; Gonzalez-Julian, J. Scalable Synthesis of MAX Phase Precursors toward Titanium-Based MXenes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 2021, 13, 26074–26083. DOI: 10.1021/acsami.1c05889.
  • Deng, Y.; Shang, T.; Wu, Z.; Tao, Y.; Luo, C.; Liang, J.; Han, D.; Lyu, R.; Qi, C.; Lv, W.; et al. Fast Gelation of Ti3C2Tx MXene Initiated by Metal Ions. Adv. Mater. 2019, 31, e1902432. DOI: 10.1002/adma.201902432.
  • Li, L.; Zhang, M.; Zhang, X.; Zhang, Z. New Ti3C2 Aerogel as Promising Negative Electrode Materials for Asymmetric Supercapacitors. J. Power Sources 2017, 364, 234–241. DOI: 10.1016/j.jpowsour.2017.08.029.
  • Jiang, T.; Wang, Y.; Chen, G. Z. Electrochemistry of Titanium Carbide MXenes in Supercapacitor. Small Methods. 2023, 7, e2201724. DOI: 10.1002/smtd.202201724.
  • Cheng, Y.; Li, L.; Liu, Z.; Yan, S.; Cheng, F.; Yue, Y.; Jia, S.; Wang, J.; Gao, Y.; Li, L. 3D Porous MXene Aerogel through Gas Foaming for Multifunctional Pressure Sensor. Research. 2022, 2022, 9843268. DOI: 10.34133/2022/9843268.
  • Orangi, J.; Tetik, H.; Parandoush, P.; Kayali, E.; Lin, D.; Beidaghi, M. Conductive and Highly Compressible MXene Aerogels with Ordered Microstructures as High-Capacity Electrodes for Li-Ion Capacitors. Mater. Today Adv. 2021, 9, 100135. DOI: 10.1016/j.mtadv.2021.100135.
  • Oefner, N.; Shuck, C. E.; Schumacher, L.; Heck, F.; Hofmann, K.; Schmidpeter, J.; Li, W.; Bahri, M.; Mehdi, B. L.; Drochner, A.; et al. MXene Aerogel Derived Ultra-Active Vanadia Catalyst for Selective Conversion of Sustainable Alcohols to Base Chemicals. ACS Appl. Mater. Interfaces. 2023, 15, 16714–16722. DOI: 10.1021/acsami.2c22720.
  • Cai, C.; Wei, Z.; Deng, L.; Fu, Y. Temperature-Invariant Superelastic Multifunctional MXene Aerogels for High-Performance Photoresponsive Supercapacitors and Wearable Strain Sensors. ACS Appl. Mater. Interfaces. 2021, 13, 54170–54184. DOI: 10.1021/acsami.1c16318.
  • Song, F.; Hu, J.; Li, G.; Wang, J.; Chen, S.; Xie, X.; Wu, Z.; Zhang, N. Room-Temperature Assembled MXene-Based Aerogels for High Mass-Loading Sodium-Ion Storage. Nanomicro. Lett. 2021, 14, 37. DOI: 10.1007/s40820-021-00781-6.
  • Liu, Y.-T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q.-Z.; Liu, H.; Gogotsi, Y.; Xu, B. Self-Assembly of Transition Metal Oxide Nanostructures on MXene Nanosheets for Fast and Stable Lithium Storage. Adv. Mater. 2018, 30, 1707334. DOI: 10.1002/adma.201707334.
  • Li, B.; Wu, N.; Yang, Y.; Pan, F.; Wang, C.; Wang, G.; Xiao, L.; Liu, W.; Liu, J.; Zeng, Z. Graphene Oxide-Assisted Multiple Cross-Linking of MXene for Large-Area, High-Strength, Oxidation-Resistant, and Multifunctional Films. Adv. Funct. Mater. 2023, 33, 2213357. DOI: 10.1002/adfm.202213357.
  • Hu, Y.; Zhuo, H.; Luo, Q.; Wu, Y.; Wen, R.; Chen, Z.; Liu, L.; Zhong, L.; Peng, X.; Sun, R. Biomass Polymer-Assisted Fabrication of Aerogels from MXenes with Ultrahigh Compression Elasticity and Pressure Sensitivity. J. Mater. Chem. A. 2019, 7, 10273–10281. DOI: 10.1039/C9TA01448A.
  • Zhang, X.; Liu, X.; Yan, R.; Yang, J.; Liu, Y.; Dong, S. Ion-Assisted Self-Assembly of Macroporous MXene Films as Supercapacitor Electrodes. J. Mater. Chem. C. 2020, 8, 2008–2013. DOI: 10.1039/C9TC05595A.
  • Shi, S.; Qian, B.; Wu, X.; Sun, H.; Wang, H.; Zhang, H.-B.; Yu, Z.-Z.; Russell, T. P. Self-Assembly of MXene-Surfactants at Liquid–Liquid Interfaces: From Structured Liquids to 3D Aerogels. Angew. Chem. Int. Ed. Engl. 2019, 58, 18171–18176. DOI: 10.1002/anie.201908402.
  • Ding, M.; Li, S.; Guo, L.; Jing, L.; Gao, S.-P.; Yang, H.; Little, J. M.; Dissanayake, T. U.; Li, K.; Yang, J.; et al. Metal Ion-Induced Assembly of MXene Aerogels via Biomimetic Microtextures for Electromagnetic Interference Shielding, Capacitive Deionization, and Microsupercapacitors. Adv. Energy Mater. 2021, 11, 2101494. DOI: 10.1002/aenm.202101494.
  • Wu, Z.; Shang, T.; Deng, Y.; Tao, Y.; Yang, Q.-H. The Assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077. DOI: 10.1002/advs.201903077.
  • Cheng, J.; Li, C.; Xiong, Y.; Zhang, H.; Raza, H.; Ullah, S.; Wu, J.; Zheng, G.; Cao, Q.; Zhang, D.; et al. Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. Nanomicro. Lett. 2022, 14, 80. DOI: 10.1007/s40820-022-00823-7.
  • Liu, J.; Zhang, H.-B.; Sun, R.; Liu, Y.; Liu, Z.; Zhou, A.; Yu, Z.-Z. Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding. Adv. Mater. 2017, 29, 1702367. DOI: 10.1002/adma.201702367.
  • Zhang, X.; Liu, X.; Dong, S.; Yang, J.; Liu, Y. Template-Free Synthesized 3D Macroporous MXene with Superior Performance for Supercapacitors. Appl. Mater. Today. 2019, 16, 315–321. DOI: 10.1016/j.apmt.2019.06.013.
  • Han, M.; Yin, X.; Hantanasirisakul, K.; Li, X.; Iqbal, A.; Hatter, C. B.; Anasori, B.; Koo, C. M.; Torita, T.; Soda, Y.; et al. Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption. Adv. Opt. Mater. 2019, 7, 1900267. DOI: 10.1002/adom.201900267.
  • Yang, C.; Wu, X.; Xia, H.; Zhou, J.; Wu, Y.; Yang, R.; Zhou, G.; Qiu, L. 3D Printed Template-Assisted Assembly of Additive-Free Ti3C2Tx MXene Microlattices with Customized Structures toward High Areal Capacitance. ACS Nano. 2022, 16, 2699–2710. DOI: 10.1021/acsnano.1c09622.
  • Oliveira, F. M.; Azadmanjiri, J.; Wang, X.; Yu, M.; Sofer, Z. Structure Design and Processing Strategies of MXene-Based Materials for Electromagnetic Interference Shielding. Small Methods. 2023, 7, e2300112. DOI: 10.1002/smtd.202300112.
  • Rostami, S.; Ghaffarkhah, A.; Isari, A. A.; Hashemi, S. A.; Arjmand, M. 2D Nanomaterial Aerogels Integrated with Phase Change Materials: A Comprehensive Review. Mater. Adv. 2023, 4, 2698–2729. DOI: 10.1039/D3MA00049D.
  • Zhang, A.; Liu, R.; Tian, J.; Huang, W.; Liu, J. MXene-Based Nanocomposites for Energy Conversion and Storage Applications. Chemistry. 2020, 26, 6342–6359. DOI: 10.1002/chem.202000191.
  • Liu, Y.; Yu, J.; Guo, D.; Li, Z.; Su, Y. Ti3C2Tx MXene/Graphene Nanocomposites: Synthesis and Application in Electrochemical Energy Storage. J. Alloys Compd. 2020, 815, 152403. DOI: 10.1016/j.jallcom.2019.152403.
  • Zhao, S.; Zhang, H.-B.; Luo, J.-Q.; Wang, Q.-W.; Xu, B.; Hong, S.; Yu, Z.-Z. Highly Electrically Conductive Three-Dimensional Ti3C2Tx MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. ACS Nano. 2018, 12, 11193–11202. DOI: 10.1021/acsnano.8b05739.
  • Bi, L.; Yang, Z.; Chen, L.; Wu, Z.; Ye, C. Compressible AgNWs/Ti3C2Tx MXene Aerogel-Based Highly Sensitive Piezoresistive Pressure Sensor as Versatile Electronic Skins. J. Mater. Chem. A. 2020, 8, 20030–20036. DOI: 10.1039/D0TA07044K.
  • Ahmed, A.; Sharma, S.; Adak, B.; Hossain, M. M.; LaChance, A. M.; Mukhopadhyay, S.; Sun, L. Two-Dimensional MXenes: New Frontier of Wearable and Flexible Electronics. InfoMat. 2022, 4, e12295. DOI: 10.1002/inf2.12295.
  • Yun, Q.; Ge, Y.; Chen, B.; Li, L.; Wa, Q.; Long, H.; Zhang, H. Hybridization of 2D Nanomaterials with 3D Graphene Architectures for Electrochemical Energy Storage and Conversion. Adv. Funct. Mater. 2022, 32, 2202319. DOI: 10.1002/adfm.202202319.
  • Xu, T.; Wang, Y.; Liu, K.; Zhao, Q.; Liang, Q.; Zhang, M.; Si, C. Ultralight MXene/Carbon Nanotube Composite Aerogel for High-Performance Flexible Supercapacitor. Adv. Compos. Hybrid Mater. 2023, 6, 108. DOI: 10.1007/s42114-023-00675-8.
  • Dong, Y.; Shi, H.; Wu, Z.-S. Recent Advances and Promise of MXene-Based Nanostructures for High-Performance Metal Ion Batteries. Adv. Funct. Mater. 2020, 30, 2000706. DOI: 10.1002/adfm.202000706.
  • Zhang, B.; Luo, C.; Zhou, G.; Pan, Z.-Z.; Ma, J.; Nishihara, H.; He, Y.-B.; Kang, F.; Lv, W.; Yang, Q.-H. Lamellar MXene Composite Aerogels with Sandwiched Carbon Nanotubes Enable Stable Lithium–Sulfur Batteries with a High Sulfur Loading. Adv. Funct. Mater. 2021, 31, 2100793. DOI: 10.1002/adfm.202100793.
  • Bandar Abadi, M.; Weissing, R.; Wilhelm, M.; Demidov, Y.; Auer, J.; Ghazanfari, S.; Anasori, B.; Mathur, S.; Maleki, H. Nacre-Mimetic, Mechanically Flexible, and Electrically Conductive Silk Fibroin-MXene Composite Foams as Piezoresistive Pressure Sensors. ACS Appl. Mater. Interfaces. 2021, 13, 34996–35007. DOI: 10.1021/acsami.1c09675.
  • Wang, P.-L.; Zhang, W.; Yuan, Q.; Mai, T.; Qi, M.-Y.; Ma, M.-G. 3D Janus Structure MXene/Cellulose Nanofibers/Luffa Aerogels with Superb Mechanical Strength and High-Efficiency Desalination for Solar-Driven Interfacial Evaporation. J. Colloid Interface Sci. 2023, 645, 306–318. DOI: 10.1016/j.jcis.2023.04.081.
  • Liu, S.; Quan, B.; Yang, Y.; Wu, H.; Chen, Q.; Li, G.; Tao, Z.; Zhu, C.; Lu, X.; Qu, J. Shape Stable Phase Change Composites Based on MXene/Biomass-Derived Aerogel for Solar–Thermal Energy Conversion and Storage. J. Storage. Mater. 2023, 67, 107592. DOI: 10.1016/j.est.2023.107592.
  • Liu, H.; Chen, X.; Zheng, Y.; Zhang, D.; Zhao, Y.; Wang, C.; Pan, C.; Liu, C.; Shen, C. Lightweight, Superelastic, and Hydrophobic Polyimide Nanofiber/MXene Composite Aerogel for Wearable Piezoresistive Sensor and Oil/Water Separation Applications. Adv. Funct. Mater. 2021, 31, 2008006. DOI: 10.1002/adfm.202008006.
  • Cao, Y.; Weng, M.; Mahmoud, M. H. H.; Elnaggar, A. Y.; Zhang, L.; El Azab, I. H.; Chen, Y.; Huang, M.; Huang, J.; Sheng, X. Flame-Retardant and Leakage-Proof Phase Change Composites Based on MXene/Polyimide Aerogels toward Solar Thermal Energy Harvesting. Adv. Compos. Hybrid Mater. 2022, 5, 1253–1267. DOI: 10.1007/s42114-022-00504-4.
  • Ciou, J.-H.; Li, S.; Lee, P. S. Ti3C2 MXene Paper for the Effective Adsorption and Controllable Release of Aroma Molecules. Small. 2019, 15, e1903281. DOI: 10.1002/smll.201903281.
  • Yan, Q.; Cheng, Y.; Wang, R.; Sun, J. Recent Advances in 3D Porous MXenes: Structures, Properties and Applications. J. Phys. D: Appl. Phys. 2022, 55, 093001. DOI: 10.1088/1361-6463/ac2db2.
  • Liu, J.; Zhang, H.-B.; Xie, X.; Yang, R.; Liu, Z.; Liu, Y.; Yu, Z.-Z. Multifunctional, Superelastic, and Lightweight MXene/Polyimide Aerogels. Small. 2018, 14, e1802479. DOI: 10.1002/smll.201802479.
  • Zhang, H.; Shen, X.; Kim, E.; Wang, M.; Lee, J.-H.; Chen, H.; Zhang, G.; Kim, J.-K. Integrated Water and Thermal Managements in Bioinspired Hierarchical MXene Aerogels for Highly Efficient Solar-Powered Water Evaporation. Adv. Funct. Mater. 2022, 32, 2111794. DOI: 10.1002/adfm.202111794.
  • Han, S.; Wu, Q.; Zhu, J.; Zhang, J.; Chen, A.; Chen, Y.; Yang, X.; Huang, J.; Guan, L. Multifunctional, Superelastic, and Environmentally Stable Sodium Alginate/Mxene/Polydimethylsiloxane Aerogels for Piezoresistive Sensor. Chem. Eng. J. 2023, 471, 144551. DOI: 10.1016/j.cej.2023.144551.
  • Hart, J. L.; Hantanasirisakul, K.; Lang, A. C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J. T.; May, S. J.; Gogotsi, Y.; Taheri, M. L. Control of MXenes’ Electronic Properties through Termination and Intercalation. Nat. Commun. 2019, 10, 522. DOI: 10.1038/s41467-018-08169-8.
  • Zhao, X.; Holta, D. E.; Tan, Z.; Oh, J.-H.; Echols, I. J.; Anas, M.; Cao, H.; Lutkenhaus, J. L.; Radovic, M.; Green, M. J. Annealed Ti3C2Tz MXene Films for Oxidation-Resistant Functional Coatings. ACS Appl. Nano Mater. 2020, 3, 10578–10585. DOI: 10.1021/acsanm.0c02473.
  • Boota, M.; Gogotsi, Y. MXene—Conducting Polymer Asymmetric Pseudocapacitors. Adv. Energy Mater. 2019, 9, 1802917. DOI: 10.1002/aenm.201802917.
  • Li, J.; Levitt, A.; Kurra, N.; Juan, K.; Noriega, N.; Xiao, X.; Wang, X.; Wang, H.; Alshareef, H. N.; Gogotsi, Y. MXene-Conducting Polymer Electrochromic Microsupercapacitors. Energy Storage Mater. 2019, 20, 455–461. DOI: 10.1016/j.ensm.2019.04.028.
  • Li, K.; Wang, X.; Wang, X.; Liang, M.; Nicolosi, V.; Xu, Y.; Gogotsi, Y. All-Pseudocapacitive Asymmetric MXene-Carbon-Conducting Polymer Supercapacitors. Nano Ener. 2020, 75, 104971. DOI: 10.1016/j.nanoen.2020.104971.
  • Sun, R.; Zhang, H.-B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z.-Z. Highly Conductive Transition Metal Carbide/Carbonitride[MXene]@Polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2017, 27, 1702807. DOI: 10.1002/adfm.201702807.
  • Wang, L.; Song, P.; Lin, C.-T.; Kong, J.; Gu, J. 3D Shapeable, Superior Electrically Conductive Cellulose Nanofibers/Ti3C2Tx MXene Aerogels/Epoxy Nanocomposites for Promising EMI Shielding. Research. 2020, 2020, 4093732. DOI: 10.34133/2020/4093732.
  • Feng, Y.; Liu, H.; Zhu, W.; Guan, L.; Yang, X.; Zvyagin, A. V.; Zhao, Y.; Shen, C.; Yang, B.; Lin, Q. Muscle-Inspired MXene Conductive Hydrogels with Anisotropy and Low-Temperature Tolerance for Wearable Flexible Sensors and Arrays. Adv. Funct. Mater. 2021, 31, 2105264. DOI: 10.1002/adfm.202105264.
  • Li, B.; Wu, N.; Wu, Q.; Yang, Y.; Pan, F.; Liu, W.; Liu, J.; Zeng, Z. From “100%” Utilization of MAX/MXene to Direct Engineering of Wearable, Multifunctional E-Textiles in Extreme Environments. Adv. Funct. Mater. 2023, 33, 2307301. DOI: 10.1002/adfm.202307301.
  • Fan, X.; Liu, L.; Jin, X.; Wang, W.; Zhang, S.; Tang, B. MXene Ti3C2Tx for Phase Change Composite with Superior Photothermal Storage Capability. J. Mater. Chem. A. 2019, 7, 14319–14327. DOI: 10.1039/C9TA03962G.
  • Solangi, N. H.; Mubarak, N. M.; Karri, R. R.; Mazari, S. A.; Jatoi, A. S.; Koduru, J. R.; Dehghani, M. H. MXene-Based Phase Change Materials for Solar Thermal Energy Storage. Energy Convers. Manage. 2022, 273, 116432. DOI: 10.1016/j.enconman.2022.116432.
  • Jamil, F.; Ali, H. M.; Janjua, M. M. MXene Based Advanced Materials for Thermal Energy Storage: A Recent Review. J. Storage. Mater. 2021, 35, 102322. DOI: 10.1016/j.est.2021.102322.
  • Li, R.; Yang, X.; Li, J.; Shen, Y.; Zhang, L.; Lu, R.; Wang, C.; Zheng, X.; Chen, H.; Zhang, T. Review on Polymer Composites with High Thermal Conductivity and Low Dielectric Properties for Electronic Packaging. Mater. Today Phys. 2022, 22, 100594. DOI: 10.1016/j.mtphys.2021.100594.
  • Guerra, V.; Wan, C.; McNally, T. Thermal Conductivity of 2D Nano-Structured Boron Nitride [BN] and Its Composites with Polymers. Prog. Mater. Sci. 2019, 100, 170–186. DOI: 10.1016/j.pmatsci.2018.10.002.
  • Li, M.; Wang, M.; Hou, X.; Zhan, Z.; Wang, H.; Fu, H.; Lin, C.-T.; Fu, L.; Jiang, N.; Yu, J. Highly Thermal Conductive and Electrical Insulating Polymer Composites with Boron Nitride. Composit. Part B Eng. 2020, 184, 107746. DOI: 10.1016/j.compositesb.2020.107746.
  • Kargar, F.; Barani, Z.; Salgado, R.; Debnath, B.; Lewis, J. S.; Aytan, E.; Lake, R. K.; Balandin, A. A. Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers. ACS Appl. Mater. Interfaces. 2018, 10, 37555–37565. DOI: 10.1021/acsami.8b16616.
  • Vu, M. C.; Choi, W.-K.; Lee, S. G.; Park, P. J.; Kim, D. H.; Islam, M. A.; Kim, S.-R. High Thermal Conductivity Enhancement of Polymer Composites with Vertically Aligned Silicon Carbide Sheet Scaffolds. ACS Appl. Mater. Interfaces. 2020, 12, 23388–23398. DOI: 10.1021/acsami.0c02421.
  • Yu, Z.; Wu, P. Biomimetic MXene-Polyvinyl Alcohol Composite Hydrogel with Vertically Aligned Channels for Highly Efficient Solar Steam Generation. Adv. Mater. Technol. 2020, 5, 2000065. DOI: 10.1002/admt.202000065.
  • Jambhulkar, S.; Liu, S.; Vala, P.; Xu, W.; Ravichandran, D.; Zhu, Y.; Bi, K.; Nian, Q.; Chen, X.; Song, K. Aligned Ti3C2Tx MXene for 3D Micropatterning via Additive Manufacturing. ACS Nano. 2021, 15, 12057–12068. DOI: 10.1021/acsnano.1c03388.
  • Wang, L.; Qiu, H.; Song, P.; Zhang, Y.; Lu, Y.; Liang, C.; Kong, J.; Chen, L.; Gu, J. 3D Ti3C2Tx MXene/C Hybrid Foam/Epoxy Nanocomposites with Superior Electromagnetic Interference Shielding Performances and Robust Mechanical Properties. Composit. Part A Appl. Sci. Manufact. 2019, 123, 293–300. DOI: 10.1016/j.compositesa.2019.05.030.
  • Li, B.; Yang, Y.; Wu, N.; Zhao, S.; Jin, H.; Wang, G.; Li, X.; Liu, W.; Liu, J.; Zeng, Z. Bicontinuous, High-Strength, and Multifunctional Chemical-Cross-Linked MXene/Superaligned Carbon Nanotube Film. ACS Nano. 2022, 16, 19293–19304. DOI: 10.1021/acsnano.2c08678.
  • Chen, Z.; Hu, Y.; Zhuo, H.; Liu, L.; Jing, S.; Zhong, L.; Peng, X.; Sun, R-c Compressible, Elastic, and Pressure-Sensitive Carbon Aerogels Derived from 2D Titanium Carbide Nanosheets and Bacterial Cellulose for Wearable Sensors. Chem. Mater. 2019, 31, 3301–3312. DOI: 10.1021/acs.chemmater.9b00259.
  • Wu, N.; Li, B.; Pan, F.; Zhang, R.; Liu, J.; Zeng, Z. Ultrafine Cellulose Nanocrystal-Reinforced MXene Biomimetic Composites for Multifunctional Electromagnetic Interference Shielding. Sci. China Mater. 2023, 66, 1597–1606. DOI: 10.1007/s40843-022-2279-3.
  • Gong, K.; Zhou, K.; Qian, X.; Shi, C.; Yu, B. MXene as Emerging Nanofillers for High-Performance Polymer Composites: A Review. Composit. Part B Eng. 2021, 217, 108867. DOI: 10.1016/j.compositesb.2021.108867.
  • Chen, Z.; Fu, X.; Liu, R.; Song, Y.; Yin, X. Fabrication, Performance, and Potential Applications of MXene Composite Aerogels. Nanomaterials. 2023, 13, 2048. DOI: 10.3390/nano13142048.
  • Cheng, Y.; Xie, Y.; Ma, Y.; Wang, M.; Zhang, Y.; Liu, Z.; Yan, S.; Ma, N.; Liu, M.; Yue, Y.; et al. Optimization of Ion/Electron Channels Enabled by Multiscale MXene Aerogel for Integrated Self-Healable Flexible Energy Storage and Electronic Skin System. Nano Ener. 2023, 107, 108131. DOI: 10.1016/j.nanoen.2022.108131.
  • Xie, R.; Huang, H.; Qi, X.; Wei, G. Significant Enhancement of the Electrochemical Performance of Hierarchical Co3O4 Electrodes for Supercapacitors via Architecture Design and Training Activation. J. Storage. Mater. 2021, 35, 102258. DOI: 10.1016/j.est.2021.102258.
  • Liu, X.; Liu, Y.; Dong, S.; Zhang, X.; Hou, S. Synthesis of Ultra-High Specific Surface Area Aerogels with Nitrogen-Enriched Ti3C2Tx Nanosheets as High-Performance Supercapacitor Electrodes. J. Mater. Chem. C. 2022, 10, 14929–14938. DOI: 10.1039/D2TC01987F.
  • Zhang, Z.; Guo, H.; Li, W.; Liu, G.; Zhang, Y.; Wang, Y. Sandwich-like Co3O4/MXene Composites as High Capacity Electrodes for Lithium-Ion Batteries. New J. Chem. 2020, 44, 5913–5920. DOI: 10.1039/C9NJ06072C.
  • Lyu, S.; Chang, H.; Zhang, L.; Wang, S.; Li, S.; Lu, Y.; Li, S. High Specific Surface Area MXene/SWCNT/Cellulose Nanofiber Aerogel Film as an Electrode for Flexible Supercapacitors. Composit. Part B Eng. 2023, 264, 110888. DOI: 10.1016/j.compositesb.2023.110888.
  • Yang, G.-Y.; Wang, S.-Z.; Sun, H.-T.; Yao, X.-M.; Li, C.-B.; Li, Y.-J.; Jiang, J.-J. Ultralight, Conductive Ti3C2Tx MXene/PEDOT:PSS Hybrid Aerogels for Electromagnetic Interference Shielding Dominated by the Absorption Mechanism. ACS Appl. Mater. Interfaces. 2021, 13, 57521–57531. DOI: 10.1021/acsami.1c13303.
  • Zhang, S.; Tu, T.; Li, T.; Cai, Y.; Wang, Z.; Zhou, Y.; Wang, D.; Fang, L.; Ye, X.; Liang, B. 3D MXene/PEDOT:PSS Composite Aerogel with a Controllable Patterning Property for Highly Sensitive Wearable Physical Monitoring and Robotic Tactile Sensing. ACS Appl. Mater. Interfaces. 2022, 14, 23877–23887. DOI: 10.1021/acsami.2c03350.
  • Xu, H.; Yin, X.; Li, X.; Li, M.; Liang, S.; Zhang, L.; Cheng, L. Lightweight Ti2CTx MXene/Poly[Vinyl Alcohol] Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature. ACS Appl. Mater. Interfaces. 2019, 11, 10198–10207. DOI: 10.1021/acsami.8b21671.
  • Zhou, X.; Li, S.; Zhang, M.; Yuan, X.; Wen, J.; Xi, H.; Wu, H.; Ma, X. MXene/PEO Aerogels with Two-Hierarchically Porous Architecture for Electromagnetic Wave Absorption. Carbon. 2023, 204, 538–546. DOI: 10.1016/j.carbon.2023.01.008.
  • Lin, L.-W.; Qi, M.; Bai, Z.-T.; Yan, S.-X.; Sui, Z.-Y.; Han, B.-H.; Liu, Y.-W. Crumpled Nitrogen-Doped Aerogels Derived from MXene and Pyrrole-Formaldehyde as Modified Separators for Stable Lithium-Sulfur Batteries. Appl. Surf. Sci. 2021, 555, 149717. DOI: 10.1016/j.apsusc.2021.149717.
  • Wu, S.; Chen, D.; Han, W.; Xie, Y.; Zhao, G.; Dong, S.; Tan, M.; Huang, H.; Xu, S.; Chen, G.; et al. Ultralight and Hydrophobic MXene/Chitosan-Derived Hybrid Carbon Aerogel with Hierarchical Pore Structure for Durable Electromagnetic Interference Shielding and Thermal Insulation. Chem. Eng. J. 2022, 446, 137093. DOI: 10.1016/j.cej.2022.137093.
  • Paolieri, M.; Chen, Z.; Babu Kadumudi, F.; Alehosseini, M.; Zorrón, M.; Dolatshahi-Pirouz, A.; Maleki, H. Biomimetic Flexible Electronic Materials from Silk Fibroin-MXene Composites Developed via Mussel-Inspired Chemistry as Wearable Pressure Sensors. ACS Appl. Nano Mater. 2023, 6, 5211–5223. DOI: 10.1021/acsanm.2c05140.
  • Xin, W.; Ma, M.-G.; Chen, F. Silicone-Coated MXene/Cellulose Nanofiber Aerogel Films with Photothermal and Joule Heating Performances for Electromagnetic Interference Shielding. ACS Appl. Nano Mater. 2021, 4, 7234–7243. DOI: 10.1021/acsanm.1c01185.
  • Zeng, Z.; Mavrona, E.; Sacré, D.; Kummer, N.; Cao, J.; Müller, L. A. E.; Hack, E.; Zolliker, P.; Nyström, G. Terahertz Birefringent Biomimetic Aerogels Based on Cellulose Nanofibers and Conductive Nanomaterials. ACS Nano. 2021, 15, 7451–7462. DOI: 10.1021/acsnano.1c00856.
  • Akhlamadi, G.; Goharshadi, E. K.; Liimatainen, H. Ultrahigh Fluid Sorption Capacity of Superhydrophobic and Tough Cryogels of Cross-Linked Cellulose Nanofibers, Cellulose Nanocrystals, and Ti3C2Tx MXene Nanosheets. J. Mater. Chem. A. 2022, 10, 24746–24760. DOI: 10.1039/D2TA06437E.
  • Maleki, H.; Fischer, T.; Bohr, C.; Auer, J.; Mathur, S.; Milow, B. Hierarchically Organized Biomimetic Architectured Silk Fibroin-Ceramic-Based Anisotropic Hybrid Aerogels for Thermal Energy Management. Biomacromolecules. 2021, 22, 1739–1751. DOI: 10.1021/acs.biomac.1c00175.
  • Pu, L.; Liu, Y.; Li, L.; Zhang, C.; Ma, P.; Dong, W.; Huang, Y.; Liu, T. Polyimide Nanofiber-Reinforced Ti3C2Tx Aerogel with “Lamella-Pillar” Microporosity for High-Performance Piezoresistive Strain Sensing and Electromagnetic Wave Absorption. ACS Appl. Mater. Interfaces. 2021, 13, 47134–47146. DOI: 10.1021/acsami.1c13863.
  • Lu, Z. Q.; Jia, F. F.; Zhuo, L. H.; Ning, D. D.; Gao, K.; Xie, F. Micro-Porous MXene/Aramid Nanofibers Hybrid Aerogel with Reversible Compression and Efficient EMI Shielding Performance. Composit. Part B Eng. 2021, 217, 108853.DOI: 10.1016/j.compositesb.2021.108853.
  • Xu, W.; Wu, Q.; Gwon, J.; Choi, J.-W. Ice-Crystal-Templated “Accordion-Like” Cellulose Nanofiber/MXene Composite Aerogels for Sensitive Wearable Pressure Sensors. ACS Sustain. Chem. Eng. 2023, 11, 3208–3218. DOI: 10.1021/acssuschemeng.2c05597.
  • Liu, Y.; Wang, D.; Zhang, C.; Zhao, Y.; Ma, P.; Dong, W.; Huang, Y.; Liu, T. Compressible and Lightweight MXene/Carbon Nanofiber Aerogel with “Layer-Strut” Bracing Microscopic Architecture for Efficient Energy Storage. Adv. Fiber Mater. 2022, 4, 820–831. DOI: 10.1007/s42765-022-00140-z.
  • Wu, X.; Han, B.; Zhang, H.-B.; Xie, X.; Tu, T.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z.-Z. Compressible, Durable and Conductive Polydimethylsiloxane-Coated MXene Foams for High-Performance Electromagnetic Interference Shielding. Chem. Eng. J. 2020, 381, 122622. DOI: 10.1016/j.cej.2019.122622.
  • Jiang, C.; Chen, J.; Lai, X.; Li, H.; Zeng, X.; Zhao, Y.; Zeng, Q.; Gao, J.; Wu, Z.; Qiu, Y. Mechanically Robust and Multifunctional Polyimide/MXene Composite Aerogel for Smart Fire Protection. Chem. Eng. J. 2022, 434, 134630. DOI: 10.1016/j.cej.2022.134630.
  • Li, B.-X.; Qin, L.; Yang, D.; Luo, Z.; Zhao, T.; Yu, Z.-Z. Superelastic and Responsive Anisotropic Silica Nanofiber/Polyvinylpyrrolidone/MXene Hybrid Aerogels for Efficient Thermal Insulation and Overheating Alarm Applications. Compos. Sci. Technol. 2022, 225, 109484. DOI: 10.1016/j.compscitech.2022.109484.
  • Zheng, Z.; Liu, H.; Wu, D.; Wang, X. Polyimide/MXene Hybrid Aerogel-Based Phase-Change Composites for Solar-Driven Seawater Desalination. Chem. Eng. J. 2022, 440, 135862. DOI: 10.1016/j.cej.2022.135862.
  • Zhang, X.; Cheng, C.; Zhao, J.; Ma, L.; Sun, S.; Zhao, C. Polyethersulfone Enwrapped Graphene Oxide Porous Particles for Water Treatment. Chem. Eng. J. 2013, 215-216, 72–81. DOI: 10.1016/j.cej.2012.11.009.
  • Peng, M.; Zhu, Y.; Li, H.; He, K.; Zeng, G.; Chen, A.; Huang, Z.; Huang, T.; Yuan, L.; Chen, G. Synthesis and Application of Modified Commercial Sponges for Oil-Water Separation. Chem. Eng. J. 2019, 373, 213–226. DOI: 10.1016/j.cej.2019.05.013.
  • Ganesamoorthy, R.; Vadivel, V. K.; Kumar, R.; Kushwaha, O. S.; Mamane, H. Aerogels for Water Treatment: A Review. J. Clean. Prod. 2021, 329, 129713. DOI: 10.1016/j.jclepro.2021.129713.
  • Zhang, Y.; Yu, J.; Lu, J.; Zhu, C.; Qi, D. Facile Construction of 2D MXene [Ti3C2Tx] Based Aerogels with Effective Fire-Resistance and Electromagnetic Interference Shielding Performance. J. Alloys Compd. 2021, 870, 159442. DOI: 10.1016/j.jallcom.2021.159442.
  • Jiang, Y.; Xie, X.; Chen, Y.; Liu, Y.; Yang, R.; Sui, G. Hierarchically Structured Cellulose Aerogels with Interconnected MXene Networks and Their Enhanced Microwave Absorption Properties. J. Mater. Chem. C. 2018, 6, 8679–8687. DOI: 10.1039/C8TC02900H.
  • Yang, M.; Yuan, Y.; Li, Y.; Sun, X.; Wang, S.; Liang, L.; Ning, Y.; Li, J.; Yin, W.; Li, Y. Anisotropic Electromagnetic Absorption of Aligned Ti3C2Tx MXene/Gelatin Nanocomposite Aerogels. ACS Appl. Mater. Interfaces. 2020, 12, 33128–33138. DOI: 10.1021/acsami.0c09726.
  • Zhou, Z.; Liu, J.; Zhang, X.; Tian, D.; Zhan, Z.; Lu, C. Ultrathin MXene/Calcium Alginate Aerogel Film for High-Performance Electromagnetic Interference Shielding. Adv. Materials Inter. 2019, 6, 1802040. DOI: 10.1002/admi.201802040.
  • Quan, B.; Wang, J.; Li, Y.; Sui, M.; Xie, H.; Liu, Z.; Wu, H.; Lu, X.; Tong, Y. Cellulose Nanofibrous/MXene Aerogel Encapsulated Phase Change Composites with Excellent Thermal Energy Conversion and Storage Capacity. Energy. 2023, 262, 125505. DOI: 10.1016/j.energy.2022.125505.
  • Yang, F.; Yao, J.; Jin, L.; Huyan, W.; Zhou, J.; Yao, Z.; Liu, P.; Tao, X. Multifunctional Ti3C2Tx MXene/Aramid Nanofiber/Polyimide Aerogels with Efficient Thermal Insulation and Tunable Electromagnetic Wave Absorption Performance under Thermal Environment. Composit. Part B Eng. 2022, 243, 110161. DOI: 10.1016/j.compositesb.2022.110161.
  • Li, Y.; Chen, Y.; He, X.; Xiang, Z.; Heinze, T.; Qi, H. Lignocellulose Nanofibril/Gelatin/MXene Composite Aerogel with Fire-Warning Properties for Enhanced Electromagnetic Interference Shielding Performance. Chem. Eng. J. 2022, 431, 133907. DOI: 10.1016/j.cej.2021.133907.
  • Niu, F.; Qin, Z.; Min, L.; Zhao, B.; Lv, Y.; Fang, X.; Pan, K. Ultralight and Hyperelastic Nanofiber-Reinforced MXene–Graphene Aerogel for High-Performance Piezoresistive Sensor. Adv. Mater. Technol. 2021, 6, 2100394. DOI: 10.1002/admt.202100394.
  • Zhao, Y.; Chen, J.; Lai, X.; Li, H.; Zeng, X.; Jiang, C.; Zeng, Q.; Li, K.; Wu, Z.; Qiu, Y. Efficient Flame-Retardant and Multifunctional Polyimide/MXene Composite Aerogel for Intelligent Fire Protection. Composit. Part A Appl. Sci. Manufact. 2022, 163, 107210. DOI: 10.1016/j.compositesa.2022.107210.
  • Dai, Y.; Wu, X.; Liu, Z.; Zhang, H.-B.; Yu, Z.-Z. Highly Sensitive, Robust and Anisotropic MXene Aerogels for Efficient Broadband Microwave Absorption. Composit. Part B Eng. 2020, 200, 108263. DOI: 10.1016/j.compositesb.2020.108263.
  • Cui, Y.; Yang, K.; Zhang, F.; Lyu, Y.; Zhang, Q.; Zhang, B. Ultra-Light MXene/CNTs/PI Aerogel with Neat Arrangement for Electromagnetic Wave Absorption and Photothermal Conversion. Composit. Part A Appl. Sci. Manufact. 2022, 158, 106986. DOI: 10.1016/j.compositesa.2022.106986.
  • Wang, Y.; Qi, Q.; Yin, G.; Wang, W.; Yu, D. Flexible, Ultralight, and Mechanically Robust Waterborne Polyurethane/Ti3C2Tx MXene/Nickel Ferrite Hybrid Aerogels for High-Performance Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2021, 13, 21831–21843. DOI: 10.1021/acsami.1c04962.
  • Zhou, Z.; Sun, W. Self-Interlocked MXene/Polyvinyl Alcohol Aerogel to Enhance Flame Retardancy, Dynamic Mechanical Properties and Electrical Conductivity of Carbon Fibre/Epoxy Composites. Compos. Commun. 2022, 36, 101370. DOI: 10.1016/j.coco.2022.101370.
  • Wu, Z.; Wei, L.; Tang, S.; Xiong, Y.; Qin, X.; Luo, J.; Fang, J.; Wang, X. Recent Progress in Ti3C2Tx MXene-Based Flexible Pressure Sensors. ACS Nano. 2021, 15, 18880–18894. DOI: 10.1021/acsnano.1c08239.
  • Qin, Z.; Chen, X.; Lv, Y.; Zhao, B.; Fang, X.; Pan, K. Wearable and High-Performance Piezoresistive Sensor Based on Nanofiber/Sodium Alginate Synergistically Enhanced MXene Composite Aerogel. Chem. Eng. J. 2023, 451, 138586. DOI: 10.1016/j.cej.2022.138586.
  • Cheng, Y.; Zhu, W. D.; Lu, X. F.; Wang, C. Lightweight and Flexible MXene/Carboxymethyl Cellulose Aerogel for Electromagnetic Shielding, Energy Harvest and Self-Powered Sensing. Nano Ener. 2022, 98, 107229. DOI: 10.1016/j.nanoen.2022.107229.
  • Panda, S.; Deshmukh, K.; Khadheer Pasha, S. K.; Theerthagiri, J.; Manickam, S.; Choi, M. Y. MXene Based Emerging Materials for Supercapacitor Applications: Recent Advances, Challenges, and Future Perspectives. Coord. Chem. Rev. 2022, 462, 214518. DOI: 10.1016/j.ccr.2022.214518.
  • Hu, M.; Zhang, H.; Hu, T.; Fan, B.; Wang, X.; Li, Z. Emerging 2D MXenes for Supercapacitors: Status, Challenges and Prospects. Chem. Soc. Rev. 2020, 49, 6666–6693. DOI: 10.1039/D0CS00175A.
  • Zheng, W.; Yang, Y.; Fan, L.; Ye, D.; Xu, W.; Xu, J. Ultralight PPy@PVA/BC/MXene Composite Aerogels for High-Performance Supercapacitor Eltrodes and Pressure Sensors. Appl. Surf. Sci. 2023, 624, 157138. DOI: 10.1016/j.apsusc.2023.157138.
  • Yuan, K.; Shi, J.; Aftab, W.; Qin, M.; Usman, A.; Zhou, F.; Lv, Y.; Gao, S.; Zou, R. Engineering the Thermal Conductivity of Functional Phase-Change Materials for Heat Energy Conversion, Storage, and Utilization. Adv. Funct. Mater. 2020, 30, 1904228. DOI: 10.1002/adfm.201904228.
  • Jiang, D.; Zhang, J.; Qin, S.; Hegh, D.; Usman, K. A. S.; Wang, J.; Lei, W.; Liu, J.; Razal, J. M. Scalable Fabrication of Ti3C2Tx MXene/RGO/Carbon Hybrid Aerogel for Organics Absorption and Energy Conversion. ACS Appl. Mater. Interfaces. 2021, 13, 51333–51342. DOI: 10.1021/acsami.1c13808.
  • Hu, W-w.; Shi, X-y.; Gao, M-h.; Huang, C-h.; Huang, T.; Zhang, N.; Yang, J-h.; Qi, X-d.; Wang, Y. Light-Actuated Shape Memory and Self-Healing Phase Change Composites Supported by MXene/Waterborne Polyurethane Aerogel for Superior Solar-Thermal Energy Storage. Compos. Commun. 2021, 28, 100980. DOI: 10.1016/j.coco.2021.100980.
  • Wu, Z.-H.; Feng, X.-L.; Qu, Y.-X.; Gong, L.-X.; Cao, K.; Zhang, G.-D.; Shi, Y.; Gao, J.-F.; Song, P.; Tang, L.-C. Silane Modified MXene/Polybenzazole Nanocomposite Aerogels with Exceptional Surface Hydrophobicity, Flame Retardance and Thermal Insulation. Compos. Commun. 2023, 37, 101402. DOI: 10.1016/j.coco.2022.101402.
  • Liu, H.; Chen, X. Y.; Zheng, Y. J.; Zhang, D. B.; Zhao, Y.; Wang, C. F.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Lightweight, Superelastic, and Hydrophobic Polyimide Nanofiber/MXene Composite Aerogel for Wearable Piezoresistive Sensor and Oil/Water Separation Applications. Adv Funct Mater. 2021, 31, 2008006. DOI: 10.1002/adfm.202008006.
  • Wang, N.-N.; Wang, H.; Wang, Y.-Y.; Wei, Y.-H.; Si, J.-Y.; Yuen, A. C. Y.; Xie, J.-S.; Yu, B.; Zhu, S.-E.; Lu, H.-D.; et al. Robust, Lightweight, Hydrophobic, and Fire-Retarded Polyimide/MXene Aerogels for Effective Oil/Water Separation. ACS Appl. Mater. Interfaces. 2019, 11, 40512–40523. DOI: 10.1021/acsami.9b14265.
  • Feng, Y.; Wang, H.; Xu, J.; Du, X.; Cheng, X.; Du, Z.; Wang, H. Fabrication of MXene/PEI Functionalized Sodium Alginate Aerogel and Its Excellent Adsorption Behavior for Cr[VI] and Congo Red from Aqueous Solution. J. Hazard. Mater. 2021, 416, 125777. DOI: 10.1016/j.jhazmat.2021.125777.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.