191
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

“Drug-Free” chitosan nanoparticles as therapeutic for cancer treatment

, &
Pages 818-871 | Received 25 May 2023, Accepted 19 Feb 2024, Published online: 08 Mar 2024

References

  • Huda, S.; Alam, M. A.; Sharma, P. K. Smart Nanocarriers-Based Drug Delivery for Cancer Therapy: An Innovative and Developing Strategy. J. Drug Deliv. Sci. Technol. 2020, 60, 102018. DOI: 10.1016/j.jddst.2020.102018.
  • Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. DOI: 10.3322/caac.21660.
  • Shende, P.; Shah, P. Carbohydrate-Based Magnetic Nanocomposites for Effective Cancer Treatment. Int. J. Biol. Macromol. 2021, 175, 281–293. DOI: 10.1016/j.ijbiomac.2021.02.044.
  • Biller, L. H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: Review. JAMA – J. Am. Med. Assoc. 2021, 325, 669–685. DOI: 10.1001/jama.2021.0106.
  • Shreyash, N.; Sonker, M.; Bajpai, S.; Tiwary, S. K. Review of the Mechanism of Nanocarriers and Technological Developments in the Field of Nanoparticles for Applications in Cancer Theragnostics. ACS Appl. Bio Mater. 2021, 4, 2307–2334. DOI: 10.1021/acsabm.1c00020.
  • Shikhi-Abadi, P. G.; Irani, M. A Review on the Applications of Electrospun Chitosan Nanofibers for the Cancer Treatment. Int. J. Biol. Macromol. 2021, 183, 790–810. DOI: 10.1016/j.ijbiomac.2021.05.009.
  • Chiang, C. L.; Cheng, M. H.; Lin, C. H. From Nanoparticles to Cancer Nanomedicine: Old Problems with New Solutions. Nanomaterials (Basel) 2021, 11, 1727. DOI: 10.3390/nano11071727.
  • Zeng, Y.; Xiang, Y.; Sheng, R.; Tomás, H.; Rodrigues, J.; Gu, Z.; Zhang, H.; Gong, Q.; Luo, K. Polysaccharide-Based Nanomedicines for Cancer Immunotherapy: A Review. Bioact. Mater. 2021, 6, 3358–3382. DOI: 10.1016/j.bioactmat.2021.03.008.
  • Sood, A.; Gupta, A.; Agrawal, G. Recent Advances in Polysaccharides Based Biomaterials for Drug Delivery and Tissue Engineering Applications. Carbohydr. Polym. Technol. Appl. 2021, 2, 100067. DOI: 10.1016/j.carpta.2021.100067.
  • Resmi, R.; Yoonus, J.; Beena, B. Anticancer and Antibacterial Activity of Chitosan Extracted from Shrimp Shell Waste. Mater. Today Proc. 2021, 41, 570–576. DOI: 10.1016/j.matpr.2020.05.251.
  • Azmana, M.; Mahmood, S.; Hilles, A. R.; Rahman, A.; Bin Arifin, M. A.; Ahmed, S. A Review on Chitosan and Chitosan-Based Bionanocomposites: Promising Material for Combatting Global Issues and Its Applications. Int. J. Biol. Macromol. 2021, 185, 832–848. DOI: 10.1016/j.ijbiomac.2021.07.023.
  • Cai, S. S.; Li, T.; Akinade, T.; Zhu, Y.; Leong, K. W. Drug Delivery Carriers with Therapeutic Functions. Adv. Drug Deliv. Rev. 2021, 176, 113884. DOI: 10.1016/j.addr.2021.113884.
  • Jantzen da Silva Lucas, A.; Quadro Oreste, E.; Leão Gouveia Costa, H.; Martín López, H.; Dias Medeiros Saad, C.; Prentice, C. Extraction, Physicochemical Characterization, and Morphological Properties of Chitin and Chitosan from Cuticles of Edible Insects. Food Chem. 2021, 343, 128550. DOI: 10.1016/j.foodchem.2020.128550.
  • Mohammadi, Z.; Eini, M.; Rastegari, A.; Tehrani, M. R. Chitosan as a Machine for Biomolecule Delivery: A Review. Carbohydr. Polym. 2020, 256, 117414. DOI: 10.1016/j.carbpol.2020.117414.
  • Joseph, S. M.; Krishnamoorthy, S.; Paranthaman, R.; Moses, J. A.; Anandharamakrishnan, C. A Review on Source-Specific Chemistry, Functionality, and Applications of Chitin and Chitosan. Carbohydr. Polym. Technol. Appl. 2021, 2, 100036. DOI: 10.1016/j.carpta.2021.100036.
  • Wang, W.; Xue, C.; Mao, X. Chitosan: Structural Modification, Biological Activity and Application. Int. J. Biol. Macromol. 2020, 164, 4532–4546. DOI: 10.1016/j.ijbiomac.2020.09.042.
  • Tabassum, N.; Ahmed, S.; Ali, M. A. Chitooligosaccharides and Their Structural-Functional Effect on Hydrogels: A Review. Carbohydr. Polym. 2021, 261, 117882. DOI: 10.1016/j.carbpol.2021.117882.
  • Sanchez-Salvador, J. L.; Balea, A.; Monte, M. C.; Negro, C.; Blanco, A. Chitosan Grafted/Cross-Linked with Biodegradable Polymers: A Review. Int. J. Biol. Macromol. 2021, 178, 325–343. DOI: 10.1016/j.ijbiomac.2021.02.200.
  • Adnan, S.; Ranjha, N. M.; Hanif, M.; Asghar, S. O-Carboxymethylated Chitosan; a Promising Tool with in-Vivo anti-Inflammatory and Analgesic Properties in Albino Rats. Int. J. Biol. Macromol. 2020, 156, 531–536. DOI: 10.1016/j.ijbiomac.2020.04.038.
  • Zhang, G.; Li, X.; Xu, X.; Tang, K.; Vu, V. H.; Gao, P.; Chen, H.; Xiong, Y. L.; Sun, Q. Antimicrobial Activities of Irradiation-Degraded Chitosan Fragments. Food Biosci. 2019, 29, 94–101. DOI: 10.1016/j.fbio.2019.03.011.
  • Arata Badano, J.; Vanden Braber, N.; Rossi, Y.; Díaz Vergara, L.; Bohl, L.; Porporatto, C.; Falcone, R. D.; Montenegro, M. Physicochemical, in Vitro Antioxidant and Cytotoxic Properties of Water-Soluble Chitosan-Lactose Derivatives. Carbohydr. Polym. 2019, 224, 115158. DOI: 10.1016/j.carbpol.2019.115158.
  • Meng, D.; Garba, B.; Ren, Y.; Yao, M.; Xia, X.; Li, M.; Wang, Y. Antifungal Activity of Chitosan against Aspergillus Ochraceus and Its Possible Mechanisms of Action. Int. J. Biol. Macromol. 2020, 158, 1063–1070. DOI: 10.1016/j.ijbiomac.2020.04.213.
  • Saeed, A.; Haider, A.; Zahid, S.; Khan, S. A.; Faryal, R.; Kaleem, M. In-Vitro Antifungal Efficacy of Tissue Conditioner-Chitosan Composites as Potential Treatment Therapy for Denture Stomatitis. Int. J. Biol. Macromol. 2019, 125, 761–766. DOI: 10.1016/j.ijbiomac.2018.12.091.
  • Rafael, O. H. D.; Luis Fernándo, Z. G.; Abraham, P. T.; Pedro Alberto, V. L.; Guadalupe, G. S.; Pablo, P. J. Production of Chitosan-Oligosaccharides by the Chitin-Hydrolytic System of Trichoderma Harzianum and Their Antimicrobial and Anticancer Effects. Carbohydr. Res. 2019, 486, 107836. DOI: 10.1016/j.carres.2019.107836.
  • Kou, S.; Peters, L. M.; Mucalo, M. R. Chitosan: A Review of Sources and Preparation Methods. Int. J. Biol. Macromol. 2021, 169, 85–94. DOI: 10.1016/j.ijbiomac.2020.12.005.
  • Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs. 2015, 13, 1133–1174. DOI: 10.3390/md13031133.
  • Kim, S. Competitive Biological Activities of Chitosan and Its Derivatives: Antimicrobial, Antioxidant, Anticancer, and anti-Inflammatory Activities. Int. J. Polym. Sci. 2018, 2018, 1–13. DOI: 10.1155/2018/1708172.
  • Kołodziejska, M.; Jankowska, K.; Klak, M.; Wszoła, M. Chitosan as an Underrated Polymer in Modern Tissue Engineering. Nanomaterials 2021, 11, 3019. DOI: 10.3390/nano11113019.
  • Garcia, L. G. S.; de Melo Guedes, G. M.; Fonseca, X. M. Q. C.; Pereira-Neto, W. A.; Castelo-Branco, D. S. C. M.; Sidrim, J. J. C.; de Aguiar Cordeiro, R.; Rocha, M. F. G.; Vieira, R. S.; Brilhante, R. S. N. Antifungal Activity of Different Molecular Weight Chitosans against Planktonic Cells and Biofilm of Sporothrix Brasiliensis. Int. J. Biol. Macromol. 2020, 143, 341–348. DOI: 10.1016/j.ijbiomac.2019.12.031.
  • Chaiwong, N.; Leelapornpisid, P.; Jantanasakulwong, K.; Rachtanapun, P.; Seesuriyachan, P.; Sakdatorn, V.; Leksawasdi, N.; Phimolsiripol, Y. Antioxidant and Moisturizing Properties of Carboxymethyl Chitosan with Different Molecular Weight. Polym 2020, 12, 1445. DOI: 10.3390/polym12071445.
  • Chang, A. K. T.; Frias, R. R.; Alvarez, L. V.; Bigol, U. G.; Guzman, J. P. M. D. Comparative Antibacterial Activity of Commercial Chitosan and Chitosan Extracted from Auricularia sp. Biocatal. Agric. Biotechnol. 2019, 17, 189–195. DOI: 10.1016/j.bcab.2018.11.016.
  • Hafsa, J.; Smach, M. A.; Charfeddine, B.; Limem, K.; Majdoub, H.; Rouatbi, S. Antioxidant and Antimicrobial Proprieties of Chitin and Chitosan Extracted from Parapenaeus Longirostris Shrimp Shell Waste. Ann. Pharm. Fr. 2016, 74, 27–33. DOI: 10.1016/j.pharma.2015.07.005.
  • Antonio, E.; dos Reis Antunes Junior, O.; Marcano, R. G. D. J. V.; Diedrich, C.; da Silva Santos, J.; Machado, C. S.; Khalil, N. M.; Mainardes, R. M. Chitosan Modified Poly (Lactic Acid) Nanoparticles Increased the Ursolic Acid Oral Bioavailability. Int. J. Biol. Macromol. 2021, 172, 133–142. DOI: 10.1016/j.ijbiomac.2021.01.041.
  • Sanatkar, R.; Rahimi Kalateh Shah Mohammad, G.; Karimi, E.; Oskoueian, E.; Hendra, R. Evaluation of Daidzein-Loaded Chitosan Microcapsules for the Colon Cancer Drug Delivery: Synthesis, Characterization and Release Behaviour. Polym. Bull. 2021, 79, 7391–7405. DOI: 10.1007/s00289-021-03853-0.
  • Francia, V.; Montizaan, D.; Salvati, A. Interactions at the Cell Membrane and Pathways of Internalization of Nano-Sized Materials for Nanomedicine. Beilstein J. Nanotechnol. 2020, 11, 338–353. DOI: 10.3762/bjnano.11.25.
  • Musalli, A. H.; Talukdar, P. D.; Roy, P.; Kumar, P.; Wong, T. W. Folate-Induced Nanostructural Changes of Oligochitosan Nanoparticles and Their Fate of Cellular Internalization by Melanoma. Carbohydr. Polym. 2020, 244, 116488. DOI: 10.1016/j.carbpol.2020.116488.
  • Aibani, N.; Rai, R.; Patel, P.; Cuddihy, G.; Wasan, E. K. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics 2021, 13, 1686. DOI: 10.3390/pharmaceutics13101686.
  • Tammam, S. N.; Azzazy, H. N.; Breitinger, H. G.; Lamprecht, A. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density. Mol. Pharm. 2015, 12, 4277–4289. DOI: 10.1021/acs.molpharmaceut.5b00478.
  • Tahara, K.; Sakai, T.; Yamamoto, H.; Takeuchi, H.; Hirashima, N.; Kawashima, Y. Improved Cellular Uptake of Chitosan-Modified PLGA Nanospheres by A549 Cells. Int. J. Pharm. 2009, 382, 198–204. DOI: 10.1016/j.ijpharm.2009.07.023.
  • Koppolu, B.; Zaharoff, D. A. The Effect of Antigen Encapsulation in Chitosan Particles on Uptake, Activation and Presentation by Antigen Presenting Cells. Biomater 2013, 34, 2359–2369. DOI: 10.1016/j.biomaterials.2012.11.066.
  • Nam, H. Y.; Kwon, S. M.; Chung, H.; Lee, S.; Kwon, S.; Jeon, H.; Kim, Y.; Park, J. H.; Kim, J.; Her, S.; et al. Cellular Uptake Mechanism and Intracellular Fate of Hydrophobically Modified Glycol Chitosan Nanoparticles. J. Control. Release 2009, 135, 259–267. DOI: 10.1016/j.jconrel.2009.01.018.
  • Zaiki, Y.; Iskandar, A.; Wong, T. W. Functionalized Chitosan for Cancer Nano Drug Delivery. Biotechnol. Adv. 2023, 67, 108200. DOI: 10.1016/j.biotechadv.2023.108200.
  • Yue, Z.; Wei, W.; Lv, P.; Yue, H.; Wang, L.; Su, Z.; Ma, G. Surface Charge Affects Cellular Uptake and Intracellular Trafficking of Chitosan-Based Nanoparticles. Biomacromolecules 2011, 12, 2440–2446. DOI: 10.1021/bm101482r.
  • Augustine, R.; Hasan, A.; Primavera, R.; Wilson, R. J.; Thakor, A. S.; Kevadiya, B. D. Cellular Uptake and Retention of Nanoparticles: Insights on Particle Properties and Interaction with Cellular Components. Mater. Today Commun. 2020, 25, 101692. DOI: 10.1016/j.mtcomm.2020.101692.
  • Zhao, J.; Lu, H.; Wong, S.; Lu, M.; Xiao, P.; Stenzel, M. H. Influence of Nanoparticle Shapes on Cellular Uptake of Paclitaxel Loaded Nanoparticles in 2D and 3D Cancer Models. Polym. Chem. 2017, 8, 3317–3326. DOI: 10.1039/C7PY00385D.
  • Banerjee, A.; Qi, J.; Gogoi, R.; Wong, J.; Mitragotri, S. Role of Nanoparticle Size, Shape and Surface Chemistry in Oral Drug Delivery. J. Control. Release 2016, 238, 176–185. DOI: 10.1016/j.jconrel.2016.07.051.
  • Zhang, P.; Li, B.; Du, J.; Wang, Y. Regulation the Morphology of Cationized Gold Nanoparticles for Effective Gene Delivery. Colloids Surf. B Biointerfaces 2017, 157, 18–25. 2017). DOI: 10.1016/j.colsurfb.2017.04.056.
  • Graf, C.; Nordmeyer, D.; Sengstock, C.; Ahlberg, S.; Diendorf, J.; Raabe, J.; Epple, M.; Köller, M.; Lademann, J.; Vogt, A.; et al. Shape-Dependent Dissolution and Cellular Uptake of Silver Nanoparticles. Langmuir 2018, 34, 1506–1519. DOI: 10.1021/acs.langmuir.7b03126.
  • Salatin, S.; Maleki Dizaj, S.; Yari Khosroushahi, A. Effect of the Surface Modification, Size, and Shape on Cellular Uptake of Nanoparticles. Cell Biol. Int. 2015, 39, 881–890. DOI: 10.1002/cbin.10459.
  • Agarwal, R.; Singh, V.; Jurney, P.; Shi, L.; Sreenivasan, S. V.; Roy, K. Mammalian Cells Preferentially Internalize Hydrogel Nanodiscs over Nanorods and Use Shape-Specific Uptake Mechanisms. Proc. Natl. Acad. Sci. U S A 2013, 110, 17247–17252. DOI: 10.1073/pnas.1305000110.
  • Rasul, R. M.; Tamilarasi Muniandy, M.; Zakaria, Z.; Shah, K.; Chee, C. F.; Dabbagh, A.; Rahman, N. A.; Wong, T. W. A Review on Chitosan and Its Development as Pulmonary Particulate anti-Infective and anti-Cancer Drug Carriers. Carbohydr. Polym. 2020, 250, 116800. DOI: 10.1016/j.carbpol.2020.116800.
  • Adhikari, H. S.; Yadav, P. N. Anticancer Activity of Chitosan, Chitosan Derivatives and Their Mechanism of Action. Int. J. Biomater. 2018, 2018, 2952085–2952029. DOI: 10.1155/2018/2952085.
  • Huang, H.; Wu, H.; Huang, Y.; Zhang, S.; Lam, Y.; Ao, N. Antitumor Activity and Antitumor Mechanism of Triphenylphosphonium Chitosan against Liver Carcinoma. J. Mater. Res. 2018, 33, 2586–2597. DOI: 10.1557/jmr.2018.255.
  • Dragostin, O. M.; Tatia, R.; Samal, S. K.; Oancea, A.; Zamfir, A. S.; Dragostin, I.; Lisă, E. Ľ.; Apetrei, C.; Zamfir, C. L. Designing of Chitosan Derivatives Nanoparticles with Antiangiogenic Effect for Cancer Therapy. Nanomaterials (Basel) 2020, 10, 698. DOI: 10.3390/nano10040698.
  • Kocabay, S.; Akkaya, B. Preparation of Sulfatide Mimicking Oleic Acid Sulfated Chitosan as a Potential Inhibitor for Metastasis. Int. J. Biol. Macromol. 2020, 147, 792–798. DOI: 10.1016/j.ijbiomac.2019.10.119.
  • Wimardani, Y. S.; Suniarti, D. F.; Freisleben, H.; Wanandi, S. I.; Ikeda, M. Cytotoxic Effects of Chitosan against Oral Cancer Cell Lines is Molecular-Weight-Dependent and Cell-Type-Specific. Int. J. Oral Res. 2012, 3, e1.
  • Chokradjaroen, C.; Theeramunkong, S.; Yui, H.; Saito, N.; Rujiravanit, R. Cytotoxicity against Cancer Cells of Chitosan Oligosaccharides Prepared from Chitosan Powder Degraded by Electrical Discharge Plasma. Carbohydr. Polym. 2018, 201, 20–30. DOI: 10.1016/j.carbpol.2018.08.037.
  • Maeda, Y.; Kimura, Y. Antitumor Effects of Various Low-Molecular-Weight Chitosans Are Due to Increased Natural Killer Activity of Intestinal Intraepithelial Lymphocytes in Sarcoma 180-Bearing Mice. J. Nutr. 2004, 134, 945–950. DOI: 10.1093/jn/134.4.945.
  • Ben-Shmuel, A.; Biber, G.; Barda-Saad, M. Unleashing Natural Killer Cells in the Tumor Microenvironment–the Next Generation of Immunotherapy? Front. Immunol. 2020, 11, 275. DOI: 10.3389/fimmu.2020.00275.
  • Freund-Brown, J.; Chirino, L.; Kambayashi, T. Strategies to Enhance NK Cell Function for the Treatment Tumors and Infections. Crit. Rev. Immunol. 2018, 38, 105–130. DOI: 10.1615/CritRevImmunol.2018025248.
  • Park, J. K.; Chung, M. J.; Choi, H. N.; Il Park, Y. Effects of the Molecular Weight and the Degree of Deacetylation of Chitosan Oligosaccharides on Antitumor Activity. Int. J. Mol. Sci. 2011, 12, 266–277. DOI: 10.3390/ijms12010266.
  • Gonçalves, C.; Ferreira, N.; Lourenço, L. Production of Low Molecular Weight Chitosan and Chitooligosaccharides (COS). Polym 2021, 13, 2466. DOI: 10.3390/polym13152466.
  • Yuan, Y.; Chesnutt, B. M.; Haggard, W. O.; Bumgardner, J. D. Deacetylation of Chitosan: Material Characterization and in Vitro Evaluation via Albumin Adsorption and Pre-Osteoblastic Cell Cultures. Materials (Basel) 2011, 4, 1399–1416. DOI: 10.3390/ma4081399.
  • Alameh, M.; Lavertu, M.; Tran-Khanh, N.; Chang, C. Y.; Lesage, F.; Bail, M.; Darras, V.; Chevrier, A.; Buschmann, M. D. SiRNA Delivery with Chitosan: Influence of Chitosan Molecular Weight, Degree of Deacetylation, and Amine to Phosphate Ratio on in Vitro Silencing Efficiency, Hemocompatibility, Biodistribution, and in Vivo Efficacy. Biomacromol 2018, 19, 112–131. DOI: 10.1021/acs.biomac.7b01297.
  • Huang, R.; Mendis, E.; Rajapakse, N.; Kim, S. K. Strong Electronic Charge as an Important Factor for Anticancer Activity of Chitooligosaccharides (COS). Life Sci. 2006, 78, 2399–2408. DOI: 10.1016/j.lfs.2005.09.039.
  • Zhang, X.; Ma, G.; Wei, W. Simulation of Nanoparticles Interacting with a Cell Membrane: Probing the Structural Basis and Potential Biomedical Application. NPG Asia Mater. 2021, 13, 52. DOI: 10.1038/s41427-021-00320-0.
  • Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Mahmoud, Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Omid, C.; Mahmoudi, M. Cellular Uptake of Nanoparticles: Journey inside the Cell. Chem. Soc. Rev. 2017, 46, 4218–4244. DOI: 10.1039/C6CS00636A.
  • Carneiro, B. A.; El-Deiry, W. S. Targeting Apoptosis in Cancer Therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. DOI: 10.1038/s41571-020-0341-y.
  • Shliapina, V. L.; Yurtaeva, S. V.; Rubtsova, M. P.; Dontsova, O. A. At the Crossroads: Mechanisms of Apoptosis and Autophagy in Cell Life and Death. Acta Naturae. 2021, 13, 106–115. DOI: 10.32607/actanaturae.11208.
  • Wimardhani, Y. S.; Suniarti, D. F.; Freisleben, H. J.; Wanandi, S. I.; Siregar, N. C.; Ikeda, M. A. Chitosan Exerts Anticancer Activity through Induction of Apoptosis and Cell Cycle Arrest in Oral Cancer Cells. J. Oral Sci. 2014, 56, 119–126. DOI: 10.2334/josnusd.56.119.
  • Hasegawa, M.; Yagi, K.; Iwakawa, S.; Hirai, M. Chitosan Induces Apoptosis via Caspase-3 Activation in Bladder Tumor Cells. Jpn. J. Cancer Res. 2001, 92, 459–466. DOI: 10.1111/j.1349-7006.2001.tb01116.x.
  • Dandoti, S. Mechanisms Adopted by Cancer Cells to Escape Apoptosis–A Review. Biocell 2021, 45, 863–884. DOI: 10.32604/biocell.2021.013993.
  • Zhai, X.; Yuan, S.; Yang, X.; Zou, P.; Li, L.; Li, G.; Shao, Y.; Abd El-Aty, A. M.; Haclmüftüoǧlu, A.; Wang, J. Chitosan Oligosaccharides Induce Apoptosis in Human Renal Carcinoma via Reactive-Oxygen-Species-Dependent Endoplasmic Reticulum Stress. J. Agric. Food Chem. 2019, 67, 1691–1701. DOI: 10.1021/acs.jafc.8b06941.
  • Dou, J.; Ma, P.; Xiong, C.; Tan, C.; Du, Y. Induction of Apoptosis in Human Acute Leukemia HL-60 Cell by Oligochitosan through Extrinsic and Intrinsic Pathways. Carbohydr. Polym. 2011, 86, 19–24. DOI: 10.1016/j.carbpol.2011.03.008.
  • Gao, J.; Zhao, Y.; Wang, C.; Ji, H.; Yu, J.; Liu, C.; Liu, A. A Novel Synthetic Chitosan Selenate (CS) Induces Apoptosis in A549 Lung Cancer Cells via the Fas/FasL Pathway. Int. J. Biol. Macromol. 2020, 158, 689–697. DOI: 10.1016/j.ijbiomac.2020.05.016.
  • Mandal, R.; Barrón, J. C.; Kostova, I.; Becker, S.; Strebhardt, K. Caspase-8: The Double-Edged Sword. Biochim. Biophys. Acta. Rev. Cancer. 2020, 1873, 188357. DOI: 10.1016/j.bbcan.2020.188357.
  • Orning, P.; Lien, E. Multiple Roles of Caspase-8 in Cell Death, Inflammation, and Innate Immunity. J. Leukoc. Biol. 2021, 109, 121–141. DOI: 10.1002/jlb.3mr0420-305r.
  • Zou, P.; Yuan, S.; Yang, X.; Zhai, X.; Wang, J. Chitosan Oligosaccharides with Degree of Polymerization 2–6 Induces Apoptosis in Human Colon Carcinoma HCT116 Cells. Chem. Biol. Interact. 2018, 279, 129–135. DOI: 10.1016/j.cbi.2017.11.010.
  • Zou, P.; Yuan, S.; Yang, X.; Guo, Y.; Li, L.; Xu, C.; Zhai, X.; Wang, J. Structural Characterization and Antitumor Effects of Chitosan Oligosaccharides against Orthotopic Liver Tumor via NF-κB Signaling Pathway. J. Funct. Foods 2019, 57, 157–165. DOI: 10.1016/j.jff.2019.04.002.
  • Zhao, M.; Gu, L.; Li, Y.; Chen, S.; You, J.; Fan, L.; Wang, Y.; Zhao, L. Chitooligosaccharides Display anti-Tumor Effects against Human Cervical Cancer Cells via the Apoptotic and Autophagic Pathways. Carbohydr. Polym. 2019, 224, 115171. DOI: 10.1016/j.carbpol.2019.115171.
  • Koff, J. L.; Ramachandiran, S.; Bernal-Mizrachi, L. A Time to Kill: Targeting Apoptosis in Cancer. Int. J. Mol. Sci. 2015, 16, 2942–2955. DOI: 10.3390/ijms16022942.
  • Avrutsky, M. I.; Troy, C. M. Caspase-9: A Multimodal Therapeutic Target with Diverse Cellular Expression in Human Disease. Front. Pharmacol. 2021, 12, 701301. DOI: 10.3389/fphar.2021.701301.
  • Jiang, M.; Ouyang, H.; Ruan, P.; Zhao, H.; Pi, Z.; Huang, S.; Yi, P.; Crepin, M. Chitosan Derivatives Inhibit Cell Proliferation and Induce Apoptosis in Breast Cancer Cells. Anticancer Res. 2011, 31, 1321–1328.
  • Cai, J.; Dang, Q.; Liu, C.; Fan, B.; Yan, J.; Xu, Y.; Li, J. Preparation and Characterization of N-benzoyl-O-Acetyl-Chitosan. Int. J. Biol. Macromol. 2015, 77, 52–58. DOI: 10.1016/j.ijbiomac.2015.03.007.
  • Atay, H. Y. Functional Chitosan: Drug Delivery Biomedical Applications. Springer, Singapore, 2020; pp. 457–489.
  • Tan, G.; Kaya, M.; Tevlek, A.; Sargin, I.; Baran, T. Antitumor Activity of Chitosan from Mayfly with Comparison to Commercially Available Low, Medium and High Molecular Weight Chitosans. In Vitro Cell. Dev. Biol. Anim. 2018, 54, 366–374. DOI: 10.1007/s11626-018-0244-8.
  • Abedian, Z.; Moghadamnia, A. A.; Zabihi, E.; Pourbagher, R.; Ghasemi, M.; Nouri, H. R.; Tashakorian, H.; Jenabian, N. Anticancer Properties of Chitosan against Osteosarcoma, Breast Cancer and Cervical Cancer Cell Lines. Casp. J. Intern. Med. 2019, 10, 439–446. DOI: 10.22088/cjim.10.4.439.
  • Sim, I. J.; Choe, W. G.; Ri, J. J.; Su, H.; Moqbel, S. A. A.; Yan, W. Q. Chitosan Oligosaccharide Suppresses Osteosarcoma Malignancy by Inhibiting CEMIP via the PI3K/AKT/mTOR Pathway. Med. Oncol. 2023, 40, 294. DOI: 10.1007/s12032-023-02165-9.
  • Ren, Z.; Xiao, W.; He, M.; Bai, L. Chitosan Targets PI3K/Akt/FoxO3a Axis to up-Regulate FAM172A and Suppress MAPK/ERK Pathway to Exert anti-Tumor Effect in Osteosarcoma. Chem. Biol. Interact. 2023, 373, 110354. DOI: 10.1016/j.cbi.2023.110354.
  • Amirani, E.; Hallajzadeh, J.; Asemi, Z.; Mansournia, M. A.; Yousefi, B. Effects of Chitosan and Oligochitosans on the Phosphatidylinositol 3-kinase-AKT Pathway in Cancer Therapy. Int. J. Biol. Macromol. 2020, 164, 456–467. DOI: 10.1016/j.ijbiomac.2020.07.137.
  • Ignacak, J.; Wiśniewska-Wrona, M.; Dulińska-Litewka, J.; Pałka, I.; Kucharska, M.; Kazimierski, J. The Role of Chitosan in Akt Kinase Regulation Activity. PCACD. 2016, 21, 73–82. DOI: 10.15259/PCACD.21.07.
  • Kim, M.; Moon, D.; Kang, C.; Choi, Y.; Lee, J.; Kim, G. Water Soluble Chitosan Sensitizes Apoptosis in Human Leukimia Cells via the Downregulation of Bcl-2 and Dephosporykation of AKT. J. Food Biochem 2012, 37, 270–277. DOI: 10.1111/j.1745-4514.2011.00628.x.
  • Noguchi, M.; Hirata, N.; Tanaka, T.; Suizu, F.; Nakajima, H.; Chiorini, J. A. Autophagy as a Modulator of Cell Death Machinery. Cell Death Dis. 2020, 11, 517. DOI: 10.1038/s41419-020-2724-5.
  • Pandey, A.; Yadav, P.; Shukla, S. Unfolding the Role of Autophagy in the Cancer Metabolism. Biochem. Biophys. Rep. 2021, 28, 101158. DOI: 10.1016/j.bbrep.2021.101158.
  • Xie, Q.; Liu, Y.; Li, X. The Interaction Mechanism between Autophagy and Apoptosis in Colon Cancer. Transl. Oncol. 2020, 13, 100871. DOI: 10.1016/j.tranon.2020.100871.
  • Pan, Z.; Dong Cheng, D.; Juan Wei, X.; Jie Li, S.; Guo, H.; Cheng Yang, Q. Chitooligosaccharides Inhibit Tumor Progression and Induce Autophagy through the Activation of the p53/mTOR Pathway in Osteosarcoma. Carbohydr. Polym. 2021, 258, 117596. DOI: 10.1016/j.carbpol.2020.117596.
  • Al-Ostoot, F. H.; Salah, S.; Khamees, H. A.; Khanum, S. A. Tumor Angiogenesis: Current Challenges and Therapeutic Opportunities. Cancer Treat. Res. Commun. 2021, 28, 100422. DOI: 10.1016/j.ctarc.2021.100422.
  • Prashanth, K. V.; H; Tharanathan, R. N. Depolymerized Products of Chitosan as Potent Inhibitors of Tumor-Induced Angiogenesis. Biochim. Biophys. Acta. 2005, 1722, 22–29. DOI: 10.1016/j.bbagen.2004.11.009.
  • Wu, H.; Aam, B. B.; Wang, W.; Norberg, A. L.; Sørlie, M.; Eijsink, V. G. H.; Du, Y. Inhibition of Angiogenesis by Chitooligosaccharides with Specific Degrees of Acetylation and Polymerization. Carbohydr. Polym. 2012, 89, 511–518. DOI: 10.1016/j.carbpol.2012.03.037.
  • Punarvasu, T. P.; Prashanth, K. V. H. Self-Assembled Chitosan Derived Microparticles Inhibit Tumor Angiogenesis and Induce Apoptosis in Ehrlich-Ascites-Tumor Bearing Mice. Carbohydr. Polym. 2022, 278, 118941. DOI: 10.1016/j.carbpol.2021.118941.
  • Li, Y.; Wang, W.; Zhang, Y.; Wang, X.; Gao, X.; Yuan, Z.; Li, Y. Chitosan Sulfate Inhibits Angiogenesis: Via Blocking the VEGF/VEGFR2 Pathway and Suppresses Tumor Growth in Vivo. Biomater. Sci. 2019, 7, 1584–1597. DOI: 10.1039/c8bm01337c.
  • Jing, B.; Cheng, G.; Li, J.; Wang, Z. A.; Du, Y. Inhibition of Liver Tumor Cell Metastasis by Partially Acetylated Chitosan Oligosaccharide on a Tumor-Vessel Microsystem. Mar. Drugs 2019, 17, 415. DOI: 10.3390/md17070415.
  • Nam, K. S.; Shon, Y. H. Suppression of Metastasis of Human Breast Cancer Cells by Chitosan Oligosaccharides. J. Microbiol. Biotechnol. 2009, 19, 629–633. DOI: 10.4014/jmb.0811.603.
  • Shen, K.; Chen, M. H.; Chan, H. Y.; Jeng, J. H.; Wang, Y. J. Inhibitory Effects of Chitooligosaccharides on Tumor Growth and Metastasis. Food Chem. Toxicol. 2009, 47, 1864–1871. DOI: 10.1016/j.fct.2009.04.044.
  • Huang, H. Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. Sensors (Basel) 2018, 18, 3249. DOI: 10.3390/s18103249.
  • Jiang, Z.; Han, B.; Li, H.; Li, X.; Yang, Y.; Liu, W. Preparation and anti-Tumor Metastasis of Carboxymethyl Chitosan. Carbohydr. Polym. 2015, 125, 53–60. DOI: 10.1016/j.carbpol.2015.02.039.
  • Muz, B.; Abdelghafer, A.; Markovic, M.; Yavner, J.; Melam, A.; Salama, N. N.; Azab, A. K. Targeting e‐Selectin to Tackle Cancer Using Uproleselan. Cancers (Basel) 2021, 13, 335. DOI: 10.3390/cancers13020335.
  • Ntellas, P.; Mavroeidis, L.; Gkoura, S.; Gazouli, I.; Amylidi, A.; Papadaki, A.; Zarkavelis, G.; Mauri, D.; Karpathiou, G.; Kolettas, E.; et al. Old Player-New Tricks: Non Angiogenic Effects of the VEGF/VEGFR Pathway in Cancer. Cancers (Basel) 2020, 12, 3145. DOI: 10.3390/cancers12113145.
  • Zheng, M.; Han, B.; Yang, Y.; Liu, W. Synthesis, Characterization and Biological Safety of O-Carboxymethyl Chitosan Used to Treat Sarcoma 180 Tumor. Carbohydr. Polym. 2011, 86, 231–238. DOI: 10.1016/j.carbpol.2011.04.038.
  • Liu, J.; Chen, Z.; Li, Y.; Zhao, W.; Wu, J. B.; Zhang, Z. PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Front. Pharmacol. 2021, 12, 731798. DOI: 10.3389/fphar.2021.731798.
  • Makuku, R.; Khalili, N.; Razi, S.; Keshavarz-Fathi, M.; Rezaei, N. Current and Future Perspectives of PD-1/PDL-1 Blockade in Cancer Immunotherapy. J. Immunol. Res. 2021, 2021, 6661406–6661415. DOI: 10.1155/2021/6661406.
  • Chen, J.; Zhou, Z.; Zheng, C.; Liu, Y.; Hao, R.; Ji, X.; Xi, Q.; Shen, J.; Li, Z. Chitosan Oligosaccharide Regulates AMPK and STAT1 Pathways Synergistically to Mediate PD-L1 Expression for Cancer Chemoimmunotherapy. Carbohydr. Polym. 2022, 277, 118869. DOI: 10.1016/j.carbpol.2021.118869.
  • Jiang, Z.; Wang, S.; Hou, J.; Chi, J.; Wang, S.; Shao, K.; Liu, W.; Sun, R.; Han, B. Effects of Carboxymethyl Chitosan Oligosaccharide on Regulating Immunologic Function and Inhibiting Tumor Growth. Carbohydr. Polym. 2020, 250, 116994. DOI: 10.1016/j.carbpol.2020.116994.
  • Majidpoor, J.; Mortezaee, K. Interleukin-2 Therapy of Cancer-Clinical Perspectives. Int. Immunopharmacol. 2021, 98, 107836. DOI: 10.1016/j.intimp.2021.107836.
  • Palmieri, E. M.; McGinity, C.; Wink, D. A.; McVicar, D. W. Nitric Oxide in Macrophage Immunometabolism: Hiding in Plain Sight. Metabolites 2020, 10, 429. DOI: 10.3390/metabo10110429.
  • Mintz, J.; Vedenko, A.; Rosete, O.; Shah, K.; Goldstein, G.; Hare, J. M.; Ramasamy, R.; Arora, H. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines (Basel) 2021, 9, 94. DOI: 10.3390/vaccines9020094.
  • Zhu, S.; Luo, Z.; Li, X.; Han, X.; Shi, S.; Zhang, T. Tumor-Associated Macrophages: Role in Tumorigenesis and Immunotherapy Implications. J. Cancer 2021, 12, 54–64. DOI: 10.7150/jca.49692.
  • Zhou, J.; Tang, Z.; Gao, S.; Li, C.; Feng, Y.; Zhou, X. Tumor-Associated Macrophages: Recent Insights and Therapies. Front. Oncol. 2020, 10, 188. DOI: 10.3389/fonc.2020.00188.
  • Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1462. DOI: 10.3389/fimmu.2019.01462.
  • Ulldemolins, A.; Seras-Franzoso, J.; Andrade, F.; Rafael, D.; Abasolo, I.; Gener, P.; Schwartz, S. Perspectives of Nano-Carrier Drug Delivery Systems to Overcome Cancer Drug Resistance in the Clinics. Cancer Drug Resist. 2021, 4, 44–68. DOI: 10.20517/cdr.2020.59.
  • Narmani, A.; Jafari, S. M. Chitosan-Based Nanodelivery Systems for Cancer Therapy: Recent Advances. Carbohydr. Polym. 2021, 272, 118464. DOI: 10.1016/j.carbpol.2021.118464.
  • Jhaveri, J.; Raichura, Z.; Khan, T.; Momin, M.; Omri, A. Chitosan Nanoparticles-Insight into Properties, Functionalization and Applications in Drug Delivery and Theranostics. Molecules 2021, 26, 272. DOI: 10.3390/molecules26020272.
  • Shrivastava, P.; Vyas, S.; Sharma, R.; Mody, N.; Gautam, L.; Jain, A.; Vishwakarma, N.; Vyas, S. P. Nanoengineered Biomaterials for Advanced Drug Delivery; United Kingdom: Elsevier Ltd. 2020, pp. 473–498.
  • Subhapradha, N.; Shanmugam, A. Fabrication of β-Chitosan Nanoparticles and Its Anticancer Potential against Human Hepatoma Cells. Int. J. Biol. Macromol. 2017, 94, 194–201. DOI: 10.1016/j.ijbiomac.2016.10.016.
  • Qi, L.; Xu, Z.; Jiang, X.; Li, Y.; Wang, M. Cytotoxic Activities of Chitosan Nanoparticles and Copper-Loaded Nanoparticles. Bioorg. Med. Chem. Lett. 2005, 15, 1397–1399. DOI: 10.1016/j.bmcl.2005.01.010.
  • Al-Khedhairy, A. A.; Wahab, R. Size-Dependent Cytotoxic and Molecular Study of the Use of Gold Nanoparticles against Liver Cancer Cells. Appl. Sci. 2022, 12, 901. DOI: 10.3390/app12020901.
  • Kulkarni, N.; Jain, P.; Shindikar, A.; Suryawanshi, P.; Thorat, N. Advances in the Colon-Targeted Chitosan Based Multiunit Drug Delivery Systems for the Treatment of Inflammatory Bowel Disease. Carbohydr. Polym. 2022, 288, 119351. DOI: 10.1016/j.carbpol.2022.119351.
  • Liang, X.; Mu, M.; Fan, R.; Zou, B.; Guo, G. Functionalized Chitosan as a Promising Platform for Cancer Immunotherapy: A Review. Carbohydr. Polym. 2022, 290, 119452. DOI: 10.1016/j.carbpol.2022.119452.
  • Qi, L. F.; Xu, Z. R.; Li, Y.; Jiang, X.; Han, X. Y. In Vitro Effects of Chitosan Nanoparticles on Proliferation of Human Gastric Carcinoma Cell Line MGC803 Cells. World J. Gastroenterol. 2005, 11, 5136–5141. DOI: 10.3748/wjg.v11.i33.5136.
  • Qi, L.; Xu, Z.; Chen, M. In Vitro and in Vivo Suppression of Hepatocellular Carcinoma Growth by Chitosan Nanoparticles. Eur. J. Cancer 2007, 43, 184–193. DOI: 10.1016/j.ejca.2006.08.029.
  • Jampafuang, Y.; Tongta, A.; Waiprib, Y. Impact of Crystalline Structural Differences between α- and β-Chitosan on Their Nanoparticle Formation via Ionic Gelation and Superoxide Radical Scavenging Activities. Polymers. (Basel) 2019, 11, 2010. DOI: 10.3390/polym11122010.
  • Qi, L.; Xu, Z. In Vivo Antitumor Activity of Chitosan Nanoparticles. Bioorg. Med. Chem. Lett. 2006, 16, 4243–4245. DOI: 10.1016/j.bmcl.2006.05.078.
  • Taher, F. A.; Ibrahim, S. A.; El-Aziz, A. A.; Abou El-Nour, M. F.; El-Sheikh, M. A.; El-Husseiny, N.; Mohamed, M. M. Anti-Proliferative Effect of Chitosan Nanoparticles (Extracted from Crayfish Procambarus Clarkii, Crustacea: Cambaridae) against MDA-MB-231 and SK-BR-3 Human Breast Cancer Cell Lines. Int. J. Biol. Macromol. 2019, 126, 478–487. DOI: 10.1016/j.ijbiomac.2018.12.151.
  • Shukla, S. K.; Mishra, A. K.; Arotiba, O. A.; Mamba, B. B. Chitosan-Based Nanomaterials: A State-of-the-Art Review. Int. J. Biol. Macromol. 2013, 59, 46–58. DOI: 10.1016/j.ijbiomac.2013.04.043.
  • Wang, L.; Li, X.; Chen, Z. Sulfated Modification of the Polysaccharides Obtained from Defatted Rice Bran and Their Antitumor Activities. Int. J. Biol. Macromol. 2009, 44, 211–214. DOI: 10.1016/j.ijbiomac.2008.12.006.
  • Laskar, K.; Faisal, S. M.; Rauf, A.; Ahmed, A.; Owais, M. Undec-10-Enoic Acid Functionalized Chitosan Based Novel Nano-Conjugate: An Enhanced anti-Bacterial/Biofilm and anti-Cancer. Carbohydr. Polym. 2017, 166, 14–23. DOI: 10.1016/j.carbpol.2017.02.082.
  • Asiri, S. M.; Khan, F. A.; Bozkurt, A. Synthesis of Chitosan Nanoparticles, Chitosan-Bulk, Chitosan Nanoparticles Conjugated with Glutaraldehyde with Strong anti-Cancer Proliferative Capabilities. Artif. Cells. Nanomed. Biotechnol. 2018, 46, S1152–S1161. DOI: 10.1080/21691401.2018.1533846.
  • Huang, M.; Khor, E.; Lim, L. Y. Uptake and Cytotoxicity of Chitosan Molecules and Nanoparticles: Effects of Molecular Weight and Degree of Deacetylation. Pharm. Res. 2004, 21, 344–353. DOI: 10.1023/b:pham.0000016249.52831.a5.
  • Zhai, X.; Li, C.; Ren, D.; Wang, J.; Ma, C.; Abd El-Aty, A. M. The Impact of Chitooligosaccharides and Their Derivatives on the in Vitro and in Vivo Antitumor Activity: A Comprehensive Review. Carbohydr. Polym. 2021, 266, 118132. DOI: 10.1016/j.carbpol.2021.118132.
  • Elkeiy, M. M.; Khamis, A. A.; El-Gamal, M. M.; Abo Gazia, M. M.; Zalat, Z. A.; El-Magd, M. A. Chitosan Nanoparticles from Artemia Salina Inhibit Progression of Hepatocellular Carcinoma in Vitro and in Vivo. Environ. Sci. Pollut. Res. Int. 2020, 27, 19016–19028. DOI: 10.1007/s11356-018-3339-6.
  • D’Arcy, M. S. Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy. Cell Biol. Int. 2019, 43, 582–592. DOI: 10.1002/cbin.11137.
  • Xu, Y.; Wen, Z.; Xu, Z. Chitosan Nanoparticles Inhibit the Growth of Human Hepatocellular Carcinoma Xenografts through an Antiangiogenic Mechanism. Anticancer Res 2009, 29, 5103–5109.
  • Loutfy, S. A.; Alam El-Din, H. M.; Elberry, M. H.; Allam, N. G.; Hasanin, M. T. M.; Abdellah, A. M. Synthesis, Characterization and Cytotoxic Evaluation of Chitosan Nanoparticles: In Vitro Liver Cancer Model. Adv. Nat. Sci: Nanosci. Nanotechnol. 2016, 7, 035008. DOI: 10.1088/2043-6262/7/3/035008.
  • Jiang, Y.; Yu, X.; Su, C.; Zhao, L.; Shi, Y. Chitosan Nanoparticles Induced the Antitumor Effect in Hepatocellular Carcinoma Cells by Regulating ROS-Mediated Mitochondrial Damage and Endoplasmic Reticulum Stress. Artif. Cells. Nanomed. Biotechnol. 2019, 47, 747–756. DOI: 10.1080/21691401.2019.1577876.
  • Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-Dependent Cytotoxicity of Gold Nanoparticles. Small 2007, 3, 1941–1949. DOI: 10.1002/smll.200700378.
  • Bashir, S.; Teo, Y. Y.; Ramesh, S.; Ramesh, K.; Khan, A. A. N-Succinyl Chitosan Preparation, Characterization, Properties and Biomedical Applications: A State of the Art Review. Rev. Chem. Eng. 2015, 31, 563–597. DOI: 10.1515/revce-2015-0016.
  • Luo, H.; Li, J.; Chen, X. Antitumor Effect of N-Succinyl-Chitosan Nanoparticles on K562 Cells. Biomed. Pharmacother. 2010, 64, 521–526. DOI: 10.1016/j.biopha.2009.09.002.
  • Luo, H.; Su, H.; Wang, X.; Wang, L.; Li, J. N-Succinyl-Chitosan Nanoparticles Induced Mitochondria-Dependent Apoptosis in K562. Mol. Cell. Probes. 2012, 26, 164–169. DOI: 10.1016/j.mcp.2012.03.006.
  • Kadry, M. O.; Abdel-Megeed, R. M.; El-Meliegy, E.; Abdel-Hamid, A. Z. Crosstalk between GSK-3, c-Fos, NFκB and TNF-α Signaling Pathways Play an Ambitious Role in Chitosan Nanoparticles Cancer Therapy. Toxicol. Rep. 2018, 5, 723–727. DOI: 10.1016/j.toxrep.2018.06.002.
  • Tu, J.; Xu, Y.; Xu, J.; Ling, Y.; Cai, Y. Chitosan Nanoparticles Reduce LPS-Induced Inflammatory Reaction via Inhibition of NF-κB Pathway in Caco-2 Cells. Int. J. Biol. Macromol. 2016, 86, 848–856. DOI: 10.1016/j.ijbiomac.2016.02.015.
  • Wang, H.; Yu, X.; Su, C.; Shi, Y.; Zhao, L. Chitosan Nanoparticles Triggered the Induction of ROS-Mediated Cytoprotective Autophagy in Cancer Cells. Artif. Cells. Nanomed. Biotechnol. 2018, 46, 293–301. DOI: 10.1080/21691401.2017.1423494.
  • Singh, A.; Handa, M.; Ruwali, M.; Flora, S. J. S.; Shukla, R.; Kesharwani, P. Nanocarrier Mediated Autophagy: An Emerging Trend for Cancer Therapy. Process Biochem. 2021, 109, 198–206. DOI: 10.1016/j.procbio.2021.07.011.
  • Ahmed, N. H.; Said, U. Z.; Meky, N. H.; Mohamed, M. A. Role of Chitosan Nanoparticles as anti-Angiogenic in Mice Bearing Ehrlich Carcinoma. Oncol. Res. Rev. 2018, 1, 1–6. DOI: 10.15761/ORR.1000117.
  • Hayes, J. D.; Dinkova-Kostova, A. T.; Tew, K. D. Oxidative Stress in Cancer. Cancer Cell. 2020, 38, 167–197. DOI: 10.1016/j.ccell.2020.06.001.
  • Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in Cancer Therapy: The Bright Side of the Moon. Exp. Mol. Med. 2020, 52, 192–203. DOI: 10.1038/s12276-020-0384-2.
  • Cecerska-Heryć, E.; Surowska, O.; Heryć, R.; Serwin, N.; Napiontek-Balińska, S.; Dołęgowska, B. Are Antioxidant Enzymes Essential Markers in the Diagnosis and Monitoring of Cancer Patients – a Review. Clin. Biochem. 2021, 93, 1–8. DOI: 10.1016/j.clinbiochem.2021.03.008.
  • Kim, S. J.; Kim, H. S.; Seo, Y. R. Understanding of ROS-Inducing Strategy in Anticancer Therapy. Oxid. Med. Cell. Longev. 2019, 2019, 5381692–5381612. DOI: 10.1155/2019/5381692.
  • Erejuwa, O. O.; Sulaiman, S. A.; Ab Wahab, M. S. Evidence in Support of Potential Applications of Lipid Peroxidation Products in Cancer Treatment. Oxid. Med. Cell. Longev. 2013, 2013, 931251–931258. DOI: 10.1155/2013/931251.
  • Lepara, Z.; Lepara, O.; Fajkić, A.; Rebić, D.; Alić, J.; Spahović, H. Serum Malondialdehyde (MDA) Level as a Potential Biomarker of Cancer Progression for Patients with Bladder Cancer. Rom. J. Intern. Med. 2020, 58, 146–152. DOI: 10.2478/rjim-2020-0008.
  • Ivanova, D. G.; Yaneva, Z. L. Antioxidant Properties and Redox-Modulating Activity of Chitosan and Its Derivatives: Biomaterials with Application in Cancer Therapy. Biores. Open Access. 2020, 9, 64–72. DOI: 10.1089/biores.2019.0028.
  • Srinivasan, H.; Kanayairam, V.; Ravichandran, R. Chitin and Chitosan Preparation from Shrimp Shells Penaeus monodon and Its Human Ovarian Cancer Cell Line, PA-1. Int. J. Biol. Macromol. 2018, 107, 662–667. DOI: 10.1016/j.ijbiomac.2017.09.035.
  • Sazali, N.; Chan, L. W.; Wong, T. W. Nano-Enabled Agglomerates and Compacts: Design Aspects of Challenges. Asian J. Pharm. Sci. 2023, 18, 100794. DOI: 10.1016/j.ajps.2023.100794.
  • Oberemko, A.; Salaberria, A. M.; Saule, R.; Saulis, G.; Kaya, M.; Labidi, J.; Baublys, V. Physicochemical and in Vitro Cytotoxic Properties of Chitosan from Mushroom Species (Boletus Bovinus and Laccaria Laccata). Carbohydr. Polym. 2019, 221, 1–9. DOI: 10.1016/j.carbpol.2019.05.073.
  • Chaudhry, G. S.; Thirukanthan, C. S.; NurIslamiah, K. M.; Sung, Y. Y.; Sifzizul, T. S. M.; Effendy, A. W. M. Characterization and Cytotoxicity of Low-Molecular-Weight Chitosan and Chito-Oligosaccharides Derived from Tilapia Fish Scales. J. Adv. Pharm. Technol. Res. 2021, 12, 373–377. DOI: 10.4103/japtr.japtr_117_21.
  • Silva, D. S.; Facchinatto, W. M.; dos Santos, D. M.; Boni, F. I.; Valdes, T. A.; Leitão, A.; Gremião, M. P. D.; Colnago, L. A.; Campana-Filho, S. P.; Ribeiro, S. J. L. N-(2-Hydroxy)-Propyl-3-Trimethylammonium, O-Palmitoyl Chitosan: Synthesis, Physicochemical and Biological Properties. Int. J. Biol. Macromol. 2021, 178, 558–568. DOI: 10.1016/j.ijbiomac.2021.02.031.
  • Arulmozhi, V.; Pandian, K.; Mirunalini, S. Ellagic Acid Encapsulated Chitosan Nanoparticles for Drug Delivery System in Human Oral Cancer Cell Line (KB). Colloids Surf. B Biointerfaces 2013, 110, 313–320. DOI: 10.1016/j.colsurfb.2013.03.039.
  • Othman, A. I.; El-Sherbiny, I. M.; ElMissiry, M. A.; Ali, D. A.; AbdElhakim, E. Polyphenon-E Encapsulated into Chitosan Nanoparticles Inhibited Proliferation and Growth of Ehrlich Solid Tumor in Mice. Egypt J. Basic Appl. Sci. 2018, 5, 110–120. DOI: 10.1016/j.ejbas.2017.10.008.
  • Muralidharan, S.; Shanmugam, K. Synthesis and Characterization of Naringenin-Loaded Chitosan-Dextran Sulfate Nanocarrier. J. Pharm. Innov. 2020, 16, 269–278. DOI: 10.1007/s12247-020-09444-2.
  • Kumar, N.; Salar, R. K.; Prasad, M.; Ranjan, K. Synthesis, Characterization and Anticancer Activity of Vincristine Loaded Folic Acid-Chitosan Conjugated Nanoparticles on NCI-H460 Non-Small Cell Lung Cancer Cell Line. Egypt. J. Basic Appl. Sci. 2018, 5, 87–99. DOI: 10.1016/j.ejbas.2017.11.002.
  • Valencia, M. S.; Franco da Silva Júnior, M.; Xavier Júnior, F. H.; de Oliveira Veras, B.; Fernanda de Oliveira Borba, E.; Gonçalves da Silva, T.; Xavier, V. L.; Pessoa de Souza, M.; das, M.; Carneiro-da-Cunha, G. Bioactivity and Cytotoxicity of Quercetin-Loaded, Lecithin-Chitosan Nanoparticles. Biocatal. Agric. Biotechnol. 2021, 31, 101879. DOI: 10.1016/j.bcab.2020.101879.
  • Wang, R. M.; He, N. P.; Song, P. F.; He, Y. F.; Ding, L.; Lei, Z. Q. Preparation of Nano-Chitosan Schiff-Base Copper Complexes and Their Anticancer Activity. Polym. Adv. Techs. 2009, 20, 959–964. DOI: 10.1002/pat.1348.
  • Elsayed, A. M.; Sherif, N. M.; Hassan, N. S.; Althobaiti, F.; Hanafy, N. A. N.; Sahyon, H. A. Novel Quercetin Encapsulated Chitosan Functionalized Copper Oxide Nanoparticles as anti-Breast Cancer Agent via Regulating p53 in Rat Model. Int. J. Biol. Macromol. 2021, 185, 134–152. DOI: 10.1016/j.ijbiomac.2021.06.085.
  • Anirudhan, T. S.; Mohan, M.; Rajeev, M. R. Modified Chitosan-Hyaluronic Acid Based Hydrogel for the pH-Responsive co-Delivery of Cisplatin and Doxorubicin. Int. J. Biol. Macromol. 2022, 201, 378–388. DOI: 10.1016/j.ijbiomac.2022.01.022.
  • Yang, X.; Shang, P.; Ji, J.; Malichewe, C.; Yao, Z.; Liao, J.; Du, D.; Sun, C.; Wang, L.; Tang, Y. J.; Guo, X. Hyaluronic Acid-Modified Nanoparticles Self-Assembled from Linoleic Acid-Conjugated Chitosan for the Codelivery of miR34a and Doxorubicin in Resistant Breast Cancer. Mol. Pharm. 2022, 19, 2–17. DOI: 10.1021/acs.molpharmaceut.1c00459.
  • Mi, Y.; Zhang, J.; Zhang, L.; Li, Q.; Cheng, Y.; Guo, Z. Synthesis, Characterization, and Evaluation of Nanoparticles Loading Adriamycin Based on 2-Hydroxypropyltrimethyl Ammonium Chloride Chitosan Grafting Folic Acid. Polymers (Basel) 2021, 13, 2229. DOI: 10.3390/polym13142229.
  • Hassan, Y. A.; Alfaifi, M. Y.; Shati, A. A.; Elbehairi, S. E. I.; Elshaarawy, R. F. M.; Kamal, I. Co-Delivery of Anticancer Drugs via Poly(Ionic Crosslinked Chitosan-Palladium) Nanocapsules: Targeting More Effective and Sustainable Cancer Therapy. J. Drug Deliv. Sci. Technol. 2022, 69, 103151. DOI: 10.1016/j.jddst.2022.103151.
  • Kefayat, A.; Hosseini, M.; Ghahremani, F.; Jolfaie, N. A.; Rafienia, M. Biodegradable and Biocompatible Subcutaneous Implants Consisted of pH-Sensitive Mebendazole-Loaded/Folic Acid-Targeted Chitosan Nanoparticles for Murine Triple-Negative Breast Cancer Treatment. J. Nanobiotechnol. 2022, 20, 169. DOI: 10.1186/s12951-022-01380-2.
  • Ruman, U.; Buskaran, K.; Pastorin, G.; Masarudin, M. J.; Fakurazi, S.; Hussein, M. Z. Synthesis and Characterization of Chitosan-Based Nanodelivery Systems to Enhance the Anticancer Effect of Sorafenib Drug in Hepatocellular Carcinoma and Colorectal Adenocarcinoma Cells. Nanomaterials (Basel) 2021, 11, 497. DOI: 10.3390/nano11020497.
  • Alshetaili, A. S. Gefitinib Loaded PLGA and Chitosan Coated PLGA Nanoparticles with Magnified Cytotoxicity against A549 Lung Cancer Cell Lines. Saudi J. Biol. Sci. 2021, 28, 5065–5073. DOI: 10.1016/j.sjbs.2021.05.025.
  • Zaki, R. M.; Alfadhel, M. M.; Alshahrani, S. M.; Alsaqr, A.; Al-Kharashi, L. A.; Anwer, M. K. Formulation of Chitosan-Coated Brigatinib Nanospanlastics: Optimization, Characterization, Stability Assessment and in-Vitro Cytotoxicity Activity against H-1975 Cell Lines. Pharmaceuticals (Basel) 2022, 15, 348. DOI: 10.3390/ph15030348.
  • Ramnandan, D.; Mokhosi, S.; Daniels, A.; Singh, M. Chitosan, Polyethylene Glycol and Polyvinyl Alcohol Modified MgFe2 O4 Ferrite Magnetic Nanoparticles in Doxorubicin Delivery: A Comparative Study in Vitro. Molecules 2021, 26, 3893. DOI: 10.3390/molecules26133893.
  • Salem, D. S.; Hegazy, S. F.; Obayya, S. S. A. Nanogold-Loaded Chitosan Nanocomposites for pH/Light-Responsive Drug Release and Synergistic Chemo-Photothermal Cancer Therapy. Coll. Interf. Sci. Commun 2021, 41, 100361. DOI: 10.1016/j.colcom.2021.100361.
  • Gooneh-Farahani, S.; Naghib, S. M.; Naimi-Jamal, M. R.; Seyfoori, A. A pH-Sensitive Nanocarrier Based on BSA-Stabilized Graphene-Chitosan Nanocomposite for Sustained and Prolonged Release of Anticancer Agents. Sci. Rep. 2021, 11, 17404. DOI: 10.1038/s41598-021-97081-1.
  • Liu, Y.; Liu, C.; Tang, C.; Yin, C. Dual Stimulus-Responsive Chitosan-Based Nanoparticles co-Delivering Doxorubicin and Quercetin for Cancer Therapy. Mater. Lett. 2021, 305, 130826. DOI: 10.1016/j.matlet.2021.130826.
  • Akinyelu, J.; Oladimeji, O.; Daniels, A.; Singh, M. Folate-Targeted Doxorubicin Delivery to Breast and Cervical Cancer Cells Using a Chitosan-Gold Nano-Delivery System. J. Drug Deliv. Sci. Technol. 2022, 67, 102978. DOI: 10.1016/j.jddst.2021.102978.
  • Shetty, A.; Mishra, S. K.; De, A.; Chandra, S. Smart Releasing CuS/ZnS Nanocomposite Dual Drug Carrier and Photothermal Agent for Use as a Theranostic Tool for Cancer Therapy. J. Drug Deliv. Sci. Technol. 2022, 70, 103252. DOI: 10.1016/j.jddst.2022.103252.
  • Amgoth, C.; He, Y.; Wang, S.; Yu, K.; Wang, J.; Hu, X.; Zhou, J.; Tang, G.; Bai, H. Metal (Au)-Decorated Chitosan-l-Arginine Polymeric Vector for Codelivery of Gefitinib and miR125b for Lung Cancer Therapy. ACS Appl. Polym. Mater. 2022, 4, 1675–1687. DOI: 10.1021/acsapm.1c01515.
  • Nyankson, E.; Aboagye, S. O.; Efavi, J. K.; Agyei-Tuffour, B.; Paemka, L.; Asimeng, B. O.; Balapangu, S.; Arthur, P. K.; Tiburu, E. K. Chitosan-Coated Halloysite Nanotubes as Vehicle for Controlled Drug Delivery to MCF-7 Cancer Cells in Vitro. Materials (Basel) 2021, 14, 2837. DOI: 10.3390/ma14112837.
  • Xu, Y.; Liang, N.; Liu, J.; Gong, X.; Yan, P.; Sun, S. Design and Fabrication of Chitosan-Based AIE Active Micelles for Bioimaging and Intelligent Delivery of Paclitaxel. Carbohydr. Polym. 2022, 290, 119509. DOI: 10.1016/j.carbpol.2022.119509.
  • Al-Nemrawi, N. K.; Altawabeyeh, R. M.; Darweesh, R. S. Preparation and Characterization of docetaxel-PLGA Nanoparticles Coated with Folic Acid-Chitosan Conjugate for Cancer Treatment. J. Pharm. Sci. 2022, 111, 485–494. DOI: 10.1016/j.xphs.2021.10.034.
  • Hassani, S.; Gharehaghaji, N.; Divband, B. Chitosan-Coated Iron Oxide/Graphene Quantum Dots as a Potential Multifunctional Nanohybrid for Bimodal Magnetic Resonance/Fluorescence Imaging and 5-Fluorouracil Delivery. Mater. Today Commun. 2022, 31, 103589. DOI: 10.1016/j.mtcomm.2022.103589.
  • Yusefi, M.; Chan, H. Y.; Teow, S. Y.; Kia, P.; Lee-Kiun Soon, M.; Sidik, N. A. B. C.; Shameli, K. 5-fluorouracil Encapsulated Chitosan-Cellulose Fiber Bionanocomposites: Synthesis, Characterization and in Vitro Analysis towards Colorectal Cancer Cells. Nanomaterials (Basel) 2021, 11, 1691. DOI: 10.3390/nano11071691.
  • Abdellatif, A. A. H.; Mohammed, A. M.; Saleem, I.; Alsharidah, M.; Al Rugaie, O.; Ahmed, F.; Osman, S. K. Smart Injectable Chitosan Hydrogels Loaded with 5-Fluorouracil for the Treatment of Breast Cancer. Pharm 2022, 14, 661. DOI: 10.3390/pharmaceutics14030661.
  • Dawoud, M. Chitosan Coated Solid Lipid Nanoparticles as Promising Carriers for Docetaxel. J. Drug Deliv. Sci. Technol. 2021, 62, 102409. DOI: 10.1016/j.jddst.2021.102409.
  • Huang, S. J.; Wang, T. H.; Chou, Y. H.; Wang, H. M. D.; Hsu, T. C.; Le Yow, J.; Tzang, B. S.; Chiang, W. H. Hybrid PEGylated Chitosan/PLGA Nanoparticles Designed as pH-Responsive Vehicles to Promote Intracellular Drug Delivery and Cancer Chemotherapy. Int. J. Biol. Macromol. 2022, 210, 565–578. DOI: 10.1016/j.ijbiomac.2022.04.209.
  • Abasalta, M.; Azadeh, A.; Khorasani, M. T.; Saadatabadi, A. R. Fabrication of Carboxymethyl Chitosan Poly(ε-Caprolactone) Doxorubicin Nickel Ferrite Core-Shell Fibers for Controlled Release of Doxorubicin against Breast Cancer. Carbohydr. Polym. 2021, 257, 117631. DOI: 10.1016/j.carbpol.2021.117631.
  • Wu, D.; Li, Y.; Zhu, L.; Zhang, W.; Xu, S.; Yang, Y.; Yan, Q.; Yang, G. A Biocompatible Superparamagnetic Chitosan-Based Nanoplatform Enabling Targeted SN-38 Delivery for Colorectal Cancer Therapy. Carbohydr. Polym. 2021, 274, 118641. DOI: 10.1016/j.carbpol.2021.118641.
  • Chen, W.; Feng, Z.; Sun, Q. A Novel Ursodeoxycholic Acid–Chitosan-Folate Conjugates for the Delivery of Calcitriol for Cancer Therapy. J. Drug Deliv. Sci. Technol. 2022, 73, 103410. DOI: 10.1016/j.jddst.2022.103410.
  • Cannavà, C.; De Gaetano, F.; Stancanelli, R.; Venuti, V.; Paladini, G.; Caridi, F.; Ghica, C.; Crupi, V.; Majolino, D.; Ferlazzo, G.; et al. Chitosan‐Hyaluronan Nanoparticles for Vinblastine Sulfate Delivery: Characterization and Internalization Studies on K‐562 Cells. Pharm 2022, 14, 942. DOI: 10.3390/pharmaceutics14050942.
  • Nokhodi, F.; Nekoei, M.; Goodarzi, M. T. Hyaluronic Acid-Coated Chitosan Nanoparticles as Targeted-Carrier of Tamoxifen against MCF7 and TMX-Resistant MCF7 Cells. J. Mater. Sci: Mater. Med. 2022, 33, 24. DOI: 10.1007/s10856-022-06647-6.
  • Pourmanouchehri, Z.; Ebrahimi, S.; Limoee, M.; Jalilian, F.; Janfaza, S.; Vosoughi, A.; Behbood, L. Controlled Release of 5-Fluorouracil to Melanoma Cells Using a Hydrogel/Micelle Composites Based on Deoxycholic Acid and Carboxymethyl Chitosan. Int. J. Biol. Macromol. 2022, 206, 159–166. DOI: 10.1016/j.ijbiomac.2022.02.096.
  • Moradi, S.; Najjar, R.; Hamishehkar, H.; Lotfi, A. Triple-Responsive Drug Nanocarrier: Magnetic Core-Shell Nanoparticles of Fe3O4@Poly(N-Isopropylacrylamide)-Grafted-Chitosan, Synthesis and in Vitro Cytotoxicity Evaluation against Human Lung and Breast Cancer Cells. J. Drug Deliv. Sci. Technol. 2022, 72, 103426. DOI: 10.1016/j.jddst.2022.103426.
  • Nagpal, K.; Singh, S. K.; Mishra, D. N. Chitosan Nanoparticles: A Promising System in Novel Drug Delivery. Chem. Pharm. Bull. (Tokyo) 2010, 58, 1423–1430. DOI: 10.1248/cpb.58.1423.
  • Ding, J.; Guo, Y. Recent Advances in Chitosan and Its Derivatives in Cancer Treatment. Front. Pharmacol. 2022, 13, 888740. DOI: 10.3389/fphar.2022.888740.
  • Sachdeva, B.; Sachdeva, P.; Negi, A.; Ghosh, S.; Han, S.; Dewanjee, S.; Jha, S. K.; Bhaskar, R.; Sinha, J. K.; Paiva-Santos, A. C.; et al. Chitosan-Nanoparticles-Based Cancer Drug Delivery: Application and Challenges. Mar. Drugs 2023, 21, 211. DOI: 10.3390/md21040211.
  • Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Joni, I. M.; Muchtaridi, M. Chitosan-Based Nanoparticles of Targeted Drug Delivery System in Breast Cancer Treatment. Polymers. (Basel) 2021, 13, 1717. DOI: 10.3390/polym13111717.
  • Sharifi-Rad, J.; Quispe, C.; Butnariu, M.; Rotariu, L. S.; Sytar, O.; Sestito, S.; Rapposelli, S.; Akram, M.; Iqbal, M.; Krishna, A.; et al. Chitosan Nanoparticles as a Promising Tool in Nanomedicine with Particular Emphasis on Oncological Treatment. Cancer Cell Int. 2021, 21, 318. DOI: 10.1186/s12935-021-02025-4.
  • Arya, G.; Gupta, N.; Nimesh, S. Chitosan Nanoparticles for Therapeutic Delivery of Anticancer Drugs. In Polysaccharide Nanoparticles: Preparation and Biomedical Applications – Micro and Nano Technologies. US: Elsevier, 2022, Chapter 5, pp. 201–229s. DOI: 10.1016/B978-0-12-822351-2.00018-8.
  • Mitra, S.; Prova, S. R.; Sultana, S. A.; Das, R.; Nainu, F.; Bin Emran, T.; Tareq, A. M.; Uddin, M. S.; Alqahtani, A. M.; Dhama, K.; Simal-Gandara, J. Therapeutic Potential of Indole Alkaloids in Respiratory Diseases: A Comprehensive Review. Phytomedicine 2021, 90, 153649. DOI: 10.1016/j.phymed.2021.153649.
  • Abruzzo, A.; Zuccheri, G.; Belluti, F.; Provenzano, S.; Verardi, L.; Bigucci, F.; Cerchiara, T.; Luppi, B.; Calonghi, N. Chitosan Nanoparticles for Lipophilic Anticancer Drug Delivery: Development, Characterization and in Vitro Studies on HT29 Cancer Cells. Colloids Surf. B Biointerfaces 2016, 145, 362–372. DOI: 10.1016/j.colsurfb.2016.05.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.