163
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Main Chain Modified Polylactides. Methods of Synthesis and Applications

ORCID Icon, ORCID Icon & ORCID Icon
Received 15 May 2023, Accepted 09 Feb 2024, Published online: 22 Apr 2024

References

  • Carothers, W. H. Studies on Polymerization and Ring-Formation. I. An Introduction to the General Theory of Condensation Polymers. J. Am. Chem. Soc. 1929, 51, 2548–2559. DOI: 10.1021/ja01383a041.
  • Lowe, C. E. Preparation of High Molecular Weight Polyhydroxyester, US Patent,2,668,162, 1954.
  • Gupta, B.; Revagade, N.; Hilborn, J. Poly(Lactic Acid) Fiber: An Overview. Prog. Polym. Sci. 2007, 32, 455–482. DOI: 10.1016/j.progpolymsci.2007.01.005.
  • Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(Lactic Acid) Modifications. Progress in Polymer Science (Oxford) 2010, 35, 338–356. DOI: 10.1016/j.progpolymsci.2009.12.003.
  • Li, G.; Zhao, M.; Xu, F.; Yang, B.; Li, X.; Meng, X.; Teng, L.; Sun, F.; Li, Y. Synthesis and Biological Application of Polylactic Acid. Molecules 2020, 25, 5023. DOI: 10.3390/molecules25215023.
  • Yu, Y.; Zou, J.; Cheng, C. Synthesis and Biomedical Applications of Functional Poly(α-Hydroxyl Acid)S. Polym. Chem. 2014, 5, 5854–5872. DOI: 10.1039/C4PY00667D.
  • Bourissou, D.; Moebs-Sanchez, S.; Martín-Vaca, B. Recent Advances in the Controlled Preparation of Poly(α-Hydroxy Acids): Metal-Free Catalysts and New Monomers. Comptes Rendus Chim. 2007, 10, 775–794. DOI: 10.1016/j.crci.2007.05.004.
  • Becker, J. M.; Pounder, R. J.; Dove, A. P. Synthesis of Poly(Lactide)s with Modified Thermal and Mechanical Properties. Macromol. Rapid Commun. 2010, 31, 1923–1937. DOI: 10.1002/marc.201000088.
  • Michalski, A.; Brzezinski, M.; Lapienis, G.; Biela, T. Star-Shaped and Branched Polylactides: Synthesis, Characterization, and Properties. Prog. Polym. Sci. 2019, 89, 159–212. DOI: 10.1016/j.progpolymsci.2018.10.004.
  • Michalski, A.; Brzeziński, M.; Kubisa, P.; Biela, T. Supramolecular Aggregates of Linear and Star-Shaped Polylactides with Different Number of Hydroxyl or Carboxyl End-Groups. React. Funct. Polym. 2018, 128, 67–73. DOI: 10.1016/j.reactfunctpolym.2018.05.001.
  • Radke, W.; Rode, K.; Gorshkov, A. V.; Biela, T. Chromatographic Behavior of Functionalized Star-Shaped Poly(Lactide)s under Critical Conditions of Adsorption. Comparison of Theory and Experiment. Polymer (Guildf). 2005, 46, 5456–5465. DOI: 10.1016/j.polymer.2005.05.028.
  • Biela, T.; Duda, A.; Rode, K.; Pasch, H. Characterization of Star-Shaped Poly(L-Lactide)s by Liquid Chromatography at Critical Conditions. Polymer (Guildf). 2003, 44, 1851–1860. DOI: 10.1016/S0032-3861(03)00030-2.
  • Biela, T.; Duda, A.; Penczek, S.; Rode, K.; Pasch, H. Well-Defined Star Polylactides and Their Behavior in Two-Dimensional Chromatography. J. Polym. Sci. A Polym. Chem. 2002, 40, 2884–2887. DOI: 10.1002/pola.10366.
  • Kost, B.; Basko, M.; Bednarek, M.; Socka, M.; Kopka, B.; Łapienis, G.; Biela, T.; Kubisa, P.; Brzeziński, M. The Influence of the Functional End Groups on the Properties of Polylactide-Based Materials. Prog. Polym. Sci. 2022, 130, 101556. DOI: 10.1016/j.progpolymsci.2022.101556.
  • Kost, B.; Brzeziński, M.; Zimnicka, M.; Socka, M.; Wielgus, E.; Słowianek, M.; Biela, T. PLA Stereocomplexed Microspheres Modified with Methyl-β-Cyclodextrin as an Atropine Delivery System. Synthesis and Characterization. Mater. Today Commun. 2020, 25, 101605. DOI: 10.1016/j.mtcomm.2020.101605.
  • Kost, B.; Brzeziński, M.; Socka, M.; Baśko, M.; Biela, T. Biocompatible Polymers Combined with Cyclodextrins: Fascinating Materials for Drug Delivery Applications. Molecules 2020, 25, 3404. DOI: 10.3390/molecules25153404.
  • Kost, B.; Svyntkivska, M.; Brzeziński, M.; Makowski, T.; Piorkowska, E.; Rajkowska, K.; Kunicka-Styczyńska, A.; Biela, T. PLA/β-CD-Based Fibres Loaded with Quercetin as Potential Antibacterial Dressing Materials. Colloids Surf. B Biointerfaces 2020, 190, 110949. DOI: 10.1016/j.colsurfb.2020.110949.
  • Biela, T.; Polanczyk, I. One-Pot Synthesis of Star-Shaped Aliphatic Polyesters with Hyperbranched Cores and Their Characterization with Size Exclusion Chromatography. J. Polym. Sci. A Polym. Chem. 2006, 44, 4214–4221. DOI: 10.1002/pola.21514.
  • Biela, T.; Duda, A.; Pasch, H.; Rode, K. Star-Shaped Poly(L-Lactide)s with Variable Numbers of Hydroxyl Groups at Polyester Arms Chain-Ends and Directly Attached to the Star-Shaped Core—Controlled Synthesis and Characterization. J. Polym. Sci. A Polym. Chem. 2005, 43, 6116–6133. DOI: 10.1002/pola.21035.
  • Demina, T. S.; Gilman, A. B.; Zelenetskii, A. N. Application of High-Energy Chemistry Methods to the Modification of the Structure and Properties of Polylactide (a Review). High Energy Chem. 2017, 51, 302–314. DOI: 10.1134/S0018143917040038.
  • Wang, S.; Cui, W.; Bei, J. Bulk and Surface Modifications of Polylactide. Anal. Bioanal. Chem. 2005, 381, 547–556. DOI: 10.1007/s00216-004-2771-2.
  • de Jong, S.; Arias, E.; Rijkers, D. T.; van Nostrum, C.; Kettenes-van den Bosch, J.; Hennink, W. New Insights into the Hydrolytic Degradation of Poly(Lactic Acid): Participation of the Alcohol Terminus. Polymer (Guildf). 2001, 42, 2795–2802. DOI: 10.1016/S0032-3861(00)00646-7.
  • Saulnier, B.; Ponsart, S.; Coudane, J.; Garreau, H.; Vert, M. Lactic Acid-Based Functionalized Polymers via Copolymerization and Chemical Modification. Macromol. Biosci. 2004, 4, 232–237. DOI: 10.1002/mabi.200300087.
  • Cohen-Arazi, N.; Domb, A. J.; Katzhendler, J. Poly (α -Hydroxy Alkanoic Acid)s Derived From α -Amino Acids. Macromol. Biosci. 2013, 13, 1689–1699. DOI: 10.1002/mabi.201300266.
  • Jing, F.; Hillmyer, M. A. A Bifunctional Monomer Derived from Lactide for Toughening Polylactide. J. Am. Chem. Soc. 2008, 130, 13826–13827. DOI: 10.1021/ja804357u.
  • Trimaille, T.; Möller, M.; Gurny, R. Synthesis and Ring-Opening Polymerization of New Monoalkyl-Substituted Lactides. J. Polym. Sci. A Polym. Chem. 2004, 42, 4379–4391. DOI: 10.1002/pola.20251.
  • Çetin, D.; Arıcan, M. O.; Kenar, H.; Mert, S.; Mert, O. Poly(Asymmetrical Glycolide)s: The Mechanisms and Thermosensitive Properties. Macromolecules 2021, 54, 272–290. DOI: 10.1021/acs.macromol.0c01893.
  • Trimaille, T.; Gurny, R.; Möller, M. Poly(Hexyl-Substituted Lactides): Novel Injectable Hydrophobic Drug Delivery Systems. J. Biomed. Mater. Res. A 2007, 80, 55–65. DOI: 10.1002/jbm.a.30888.
  • Trimaille, T.; Gurny, R.; Möller, M. Synthesis and Properties of Novel Poly(Hexyl-Substituted Lactides) for Pharmaceutical Applications. Chimia. 2005, 59, 348. DOI: 10.2533/000942905777676344.
  • Zhang, J.; Song, J. Amphiphilic Degradable Polymers for Immobilization and Sustained Delivery of Sphingosine 1-Phosphate. Acta Biomater. 2014, 10, 3079–3090. DOI: 10.1016/j.actbio.2014.02.051.
  • Jing, F.; Smith, M. R.; Baker, G. L. Cyclohexyl-Substituted Polyglycolides with High Glass Transition Temperatures. Macromolecules 2007, 40, 9304–9312. DOI: 10.1021/ma071430d.
  • Lee, C.-U.; Khalifehzadeh, R.; Ratner, B.; Boydston, A. J. Facile Synthesis of Fluorine-Substituted Polylactides and Their Amphiphilic Block Copolymers. Macromolecules 2018, 51, 1280–1289. DOI: 10.1021/acs.macromol.7b02531.
  • Leemhuis, M.; van Nostrum, C. F.; Kruijtzer, J. A. W.; Zhong, Z. Y.; ten Breteler, M. R.; Dijkstra, P. J.; Feijen, J.; Hennink, W. E. Functionalized Poly(α-Hydroxy Acid)s via Ring-Opening Polymerization: Toward Hydrophilic Polyesters with Pendant Hydroxyl Groups. Macromolecules 2006, 39, 3500–3508. DOI: 10.1021/ma052128c.
  • Gerhardt, W. W.; Noga, D. E.; Hardcastle, K. I.; García, A. J.; Collard, D. M.; Weck, M. Functional Lactide Monomers: Methodology and Polymerization. Biomacromolecules 2006, 7, 1735–1742. DOI: 10.1021/bm060024j.
  • Leemhuis, M.; van Steenis, J. H.; van Uxem, M. J.; van Nostrum, C. F.; Hennink, W. E. A Versatile Route to Functionalized Dilactones as Monomers for the Synthesis of Poly(α-Hydroxy) Acids. Eur. J. Org. Chem. 2003, 2003, 3344–3349. DOI: 10.1002/ejoc.200300181.
  • Zou, J.; Hew, C. C.; Themistou, E.; Li, Y.; Chen, C.-K.; Alexandridis, P.; Cheng, C. Clicking Well-Defined Biodegradable Nanoparticles and Nanocapsules by UV-Induced Thiol-Ene Cross-Linking in Transparent Miniemulsions. Adv. Mater. 2011, 23, 4274–4277. DOI: 10.1002/adma.201101646.
  • Yu, Y.; Zou, J.; Yu, L.; Ji, W.; Li, Y.; Law, W.-C.; Cheng, C. Functional Polylactide- g -Paclitaxel–Poly(Ethylene Glycol) by Azide–Alkyne Click Chemistry. Macromolecules 2011, 44, 4793–4800. DOI: 10.1021/ma2005102.
  • Rubinshtein, M.; James, C. R.; Young, J. L.; Ma, Y. J.; Kobayashi, Y.; Gianneschi, N. C.; Yang, J. Facile Procedure for Generating Side Chain Functionalized Poly(α-Hydroxy Acid) Copolymers from Aldehydes via a Versatile Passerini-Type Condensation. Org. Lett. 2010, 12, 3560–3563. DOI: 10.1021/ol101433v.
  • Nottelet, B.; Di Tommaso, C.; Mondon, K.; Gurny, R.; Möller, M. Fully Biodegradable Polymeric Micelles Based on Hydrophobic- and Hydrophilic-Functionalized Poly(Lactide) Block Copolymers. J. Polym. Sci. A Polym. Chem. 2010, 48, 3244–3254. DOI: 10.1002/pola.24100.
  • Fuoco, T.; Finne-Wistrand, A.; Pappalardo, D. A Route to Aliphatic Poly(Ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds. Biomacromolecules 2016, 17, 1383–1394. DOI: 10.1021/acs.biomac.6b00005.
  • Long, T. R.; Wongrakpanich, A.; Do, A.-V.; Salem, A. K.; Bowden, N. B. Long-Term Release of a Thiobenzamide from a Backbone Functionalized Poly(Lactic Acid). Polym. Chem. 2015, 6, 7188–7195. DOI: 10.1039/C5PY01059D.
  • Borchmann, D. E.; ten Brummelhuis, N.; Weck, M. GRGDS-Functionalized Poly(Lactide)- Graft -Poly(Ethylene Glycol) Copolymers: Combining Thiol–Ene Chemistry with Staudinger Ligation. Macromolecules 2013, 46, 4426–4431. DOI: 10.1021/ma4005633.
  • Fiore, G. L.; Jing, F.; Young, V. G. Jr., Cramer, C. J.; Hillmyer, M. A. High Tg Aliphatic Polyesters by the Polymerization of Spirolactide Derivatives. Polym. Chem. 2010, 1, 870. DOI: 10.1039/c0py00029a.
  • Castillo, J. A.; Borchmann, D. E.; Cheng, A. Y.; Wang, Y.; Hu, C.; García, A. J.; Weck, M. Well-Defined Poly(Lactic Acid)s Containing Poly(Ethylene Glycol) Side Chains. Macromolecules 2012, 45, 62–69. DOI: 10.1021/ma2016387.
  • Marcincinova-Benabdillah, K.; Boustta, M.; Coudane, J.; Vert, M. Novel Degradable Polymers Combining d -Gluconic Acid, a Sugar of Vegetal Origin, with Lactic and Glycolic Acids. Biomacromolecules 2001, 2, 1279–1284. DOI: 10.1021/bm015585j.
  • Sinclair, F.; Shaver, M. P. Cross-Metathesis Functionalized Exo-Olefin Derivatives of Lactide. J. Polym. Sci. Part A: Polym. Chem. 2018, 56, 741–748. DOI: 10.1002/pola.28947.
  • Arıcan, M. O.; Erdoğan, S.; Mert, O. Amine-Functionalized Polylactide–PEG Copolymers. Macromolecules 2018, 51, 2817–2830. DOI: 10.1021/acs.macromol.7b02751.
  • Yin, M.; Baker, G. L. Preparation and Characterization of Substituted Polylactides. Macromolecules 1999, 32, 7711–7718. DOI: 10.1021/ma9907183.
  • Iwakura, Y.; Iwata, K.; Matsuo, S.; Tohara, A. Synthesis of Optically Active Poly(L-α- Hydroxyisovalerate) and Poly(L-α-Hydroxyisocaproate). Makromol. Chem. 1971, 146, 21–32. DOI: 10.1002/macp.1971.021460103.
  • Iwakura, Y.; Iwata, K.; Matsuo, S.; Tohara, A. Preliminary Synthesis and Conformational Studies of Poly(L-α-Hydroxyisovalerate). Makromol. Chem. 1969, 122, 275–280. DOI: 10.1002/macp.1969.0212201245.
  • Arıcan, M. O.; Mert, O. Synthesis and Properties of Novel Diisopropyl-Functionalized Polyglycolide–PEG Copolymers. RSC Adv. 2015, 5, 71519–71528. DOI: 10.1039/C5RA10972H.
  • Jiang, X.; Vogel, E. B.; Smith, M. R.; Baker, G. L. “Clickable” Polyglycolides: Tunable Synthons for Thermoresponsive, Degradable Polymers. Macromolecules 2008, 41, 1937–1944. DOI: 10.1021/ma7027962.
  • Onur Arıcan, M.; Mert, O. Symmetrical Substituted Glycolides: Methodology and Polymerization. Polym. Chem. 2020, 11, 4477–4491. DOI: 10.1039/D0PY00611D.
  • Trimaille, T.; Mondon, K.; Gurny, R.; Möller, M. Novel Polymeric Micelles for Hydrophobic Drug Delivery Based on Biodegradable Poly(Hexyl-Substituted Lactides). Int. J. Pharm. 2006, 319, 147–154. DOI: 10.1016/j.ijpharm.2006.03.036.
  • Kalelkar, P. P.; Alas, G. R.; Collard, D. M. Synthesis of an Alkene-Containing Copolylactide and Its Facile Modification by the Addition of Thiols. Macromolecules 2016, 49, 2609–2617. DOI: 10.1021/acs.macromol.5b02431.
  • Liu, T.; Simmons, T. L.; Bohnsack, D. A.; Mackay, M. E.; Smith, M. R.; Baker, G. L. Synthesis of Polymandelide: A Degradable Polylactide Derivative with Polystyrene-like Properties. Macromolecules 2007, 40, 6040–6047. DOI: 10.1021/ma061839n.
  • Simmons, T. L.; Baker, G. L. Poly(Phenyllactide): Synthesis, Characterization, and Hydrolytic Degradation. Biomacromolecules 2001, 2, 658–663. DOI: 10.1021/bm005639.
  • Noga, D. E.; Petrie, T. A.; Kumar, A.; Weck, M.; García, A. J.; Collard, D. M. Synthesis and Modification of Functional Poly(Lactide) Copolymers: Toward Biofunctional Materials. Biomacromolecules 2008, 9, 2056–2062. DOI: 10.1021/bm800292z.
  • Zhang, X.; Dai, Y. A Functionalized Cyclic Lactide Monomer for Synthesis of Water-Soluble Poly(Lactic Acid) and Amphiphilic Diblock Poly(Lactic Acid). Macromol. Rapid Commun. 2017, 38, 1600593. DOI: 10.1002/marc.201600593.
  • Ouchi, T.; Fujino, A. Synthesis of Poly(α-Malic Acid) and Its Hydrolysis Behavior in Vitro. Makromol. Chem. 1989, 190, 1523–1530. DOI: 10.1002/macp.1989.021900703.
  • Pounder, R. J.; Dove, A. P. Synthesis and Organocatalytic Ring-Opening Polymerization of Cyclic Esters Derived from l -Malic Acid. Biomacromolecules 2010, 11, 1930–1939. DOI: 10.1021/bm1004355.
  • Zhang, Q.; Ren, H.; Baker, G. L. Synthesis and Click Chemistry of a New Class of Biodegradable Polylactide towards Tunable Thermo-Responsive Biomaterials. Polym. Chem. 2015, 6, 1275–1285. DOI: 10.1039/C4PY01425A.
  • Jiang, X.; Smith, M. R.; Baker, G. L. Water-Soluble Thermoresponsive Polylactides. Macromolecules 2008, 41, 318–324. DOI: 10.1021/ma070775t.
  • Hayashi, Y.; Kinoshita, Y.; Hidaka, K.; Kiso, A.; Uchibori, H.; Kimura, T.; Kiso, Y. Analysis of Amide Bond Formation with an α-Hydroxy-β-Amino Acid Derivative, 3-Amino-2-Hydroxy-4-Phenylbutanoic Acid, as an Acyl Component: Byproduction of Homobislactone. J. Org. Chem. 2001, 66, 5537–5544. DOI: 10.1021/jo010233o.
  • Nagase, R.; Iida, Y.; Sugi, M.; Misaki, T.; Tanabe, Y. Improved Robust Method for Preparing Optically Active 3-Alkyl-3-Phenyl-1,4-Dioxane-2,5-Diones; A Promising New Chiral Template. Synthesis (Stuttg). 2008, 2008, 3670–3674. DOI: 10.1055/s-0028-1083211.
  • Van Wouwe, P.; Dusselier, M.; Vanleeuw, E.; Sels, B. Lactide Synthesis and Chirality Control for Polylactic Acid Production. ChemSusChem 2016, 9, 907–921. DOI: 10.1002/cssc.201501695.
  • Upare, P. P.; Hwang, Y. K.; Chang, J.-S.; Hwang, D. W. Synthesis of Lactide from Alkyl Lactate via a Prepolymer Route. Ind. Eng. Chem. Res. 2012, 51, 4837–4842. DOI: 10.1021/ie202714n.
  • Scheibelhoffer, A. S.; Blose, W. A.; Harwood, H. J. Synthesis, Polymerization and Copolymerization of Dimethyleneglycolide and Methylenemethylglycolide. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1969, 10, 1375–1380.
  • Hoyle, C. E.; Lee, T. Y.; Roper, T. Thiol-Enes: Chemistry of the Past with Promise for the Future. J. Polym. Sci. A Polym. Chem. 2004, 42, 5301–5338. DOI: 10.1002/pola.20366.
  • Pounder, R. J.; Dove, A. P. Towards Poly(Ester) Nanoparticles: Recent Advances in the Synthesis of Functional Poly(Ester)s by Ring-Opening Polymerization. Polym. Chem. 2010, 1, 260. DOI: 10.1039/b9py00327d.
  • Leemhuis, M.; Kruijtzer, J. A. W.; van Nostrum, C. F.; Hennink, W. E. In Vitro Hydrolytic Degradation of Hydroxyl-Functionalized Poly(α-Hydroxy Acid)S. Biomacromolecules 2007, 8, 2943–2949. DOI: 10.1021/bm700476h.
  • Zhang, Q.; Ren, H.; Baker, G. L. Synthesis of a Library of Propargylated and PEGylated α-Hydroxy Acids Toward “Clickable” Polylactides via Hydrolysis of Cyanohydrin Derivatives. J. Org. Chem. 2014, 79, 9546–9555. DOI: 10.1021/jo5016135.
  • Kolitz, M.; Cohen-Arazi, N.; Hagag, I.; Katzhendler, J.; Domb, A. J. Biodegradable Polyesters Derived from Amino Acids. Macromolecules 2009, 42, 4520–4530. DOI: 10.1021/ma900464g.
  • Jiang, X.; Vogel, E. B.; Smith, M. R.; Baker, G. L. Amphiphilic PEG/Alkyl-Grafted Comb Polylactides. J. Polym. Sci. A Polym. Chem. 2007, 45, 5227–5236. DOI: 10.1002/pola.22268.
  • Penczek, S.; Pretula, J.; Slomkowski, S. Ring-Opening Polymerization. Chem. Teach. Int. 2021, 3, 33–57. DOI: 10.1515/cti-2020-0028.
  • Sedush, N. G.; Chvalun, S. N. Kinetics and Thermodynamics of L-Lactide Polymerization Studied by Differential Scanning Calorimetry. Eur. Polym. J. 2015, 62, 198–203. DOI: 10.1016/j.eurpolymj.2014.11.038.
  • Duda, A.; Penczek, S. Thermodynamics of L-Lactide Polymerization. Equilibrium Monomer Concentration. Macromolecules 1990, 23, 1636–1639. DOI: 10.1021/ma00208a012.
  • Yu, Y.; Chen, C.-K.; Law, W.-C.; Mok, J.; Zou, J.; Prasad, P. N.; Cheng, C. Well-Defined Degradable Brush Polymer–Drug Conjugates for Sustained Delivery of Paclitaxel. Mol. Pharm. 2013, 10, 867–874. DOI: 10.1021/mp3004868.
  • Barker, I. A.; Hall, D. J.; Hansell, C. F.; Du Prez, F. E.; O'Reilly, R. K.; Dove, A. P. Tetrazine-Norbornene Click Reactions to Functionalize Degradable Polymers Derived from Lactide. Macromol. Rapid Commun. 2011, 32, 1362–1366. DOI: 10.1002/marc.201100324.
  • Biela, T.; Duda, A.; Penczek, S. Control o f Mn, Mw/Mn, End-Groups, and Kinetics in Living Polymerization of Cyclic Esters. Macromol. Symp. 2002, 183, 1–10. DOI: 10.1002/1521-3900(200207)183:1<1::AID-MASY1>3.0.CO;2-Q.
  • Save, M.; Schappacher, M.; Soum, A. Controlled Ring-Opening Polymerization of Lactones and Lactides Initiated by Lanthanum Isopropoxide, 1. General Aspects and Kinetics. Macromol. Chem. Phys. 2002, 203, 889–899. DOI: 10.1002/1521-3935(20020401)203:5/6<889::AID-MACP889>3.0.CO;2-O.
  • Mondon, K.; Zeisser-Labouèbe, M.; Gurny, R.; Möller, M. MPEG-HexPLA Micelles as Novel Carriers for Hypericin, a Fluorescent Marker for Use in Cancer Diagnostics. Photochem. Photobiol. 2011, 87, 399–407. DOI: 10.1111/j.1751-1097.2010.00879.x.
  • Ghassemi, A. H.; van Steenbergen, M. J.; Talsma, H.; van Nostrum, C. F.; Jiskoot, W.; Crommelin, D. J. A.; Hennink, W. E. Preparation and Characterization of Protein Loaded Microspheres Based on a Hydroxylated Aliphatic Polyester, Poly(Lactic-Co-Hydroxymethyl Glycolic Acid). J. Control. Release 2009, 138, 57–63. DOI: 10.1016/j.jconrel.2009.04.025.
  • Chen, C.-K.; Law, W.-C.; Aalinkeel, R.; Nair, B.; Kopwitthaya, A.; Mahajan, S. D.; Reynolds, J. L.; Zou, J.; Schwartz, S. A.; Prasad, P. N.; Cheng, C. Well-Defined Degradable Cationic Polylactide as Nanocarrier for the Delivery of SiRNA to Silence Angiogenesis in Prostate Cancer. Adv. Healthc. Mater. 2012, 1, 751–761. DOI: 10.1002/adhm.201200094.
  • Jones, C. H.; Chen, C.-K.; Jiang, M.; Fang, L.; Cheng, C.; Pfeifer, B. A. Synthesis of Cationic Polylactides with Tunable Charge Densities as Nanocarriers for Effective Gene Delivery. Mol. Pharm. 2013, 10, 1138–1145. DOI: 10.1021/mp300666s.
  • Chen, C.-K.; Jones, C. H.; Mistriotis, P.; Yu, Y.; Ma, X.; Ravikrishnan, A.; Jiang, M.; Andreadis, S. T.; Pfeifer, B. A.; Cheng, C. Poly(Ethylene Glycol)-Block-Cationic Polylactide Nanocomplexes of Differing Charge Density for Gene Delivery. Biomaterials 2013, 34, 9688–9699. DOI: 10.1016/j.biomaterials.2013.08.063.
  • Fuoco, T.; Pappalardo, D.; Finne-Wistrand, A. Redox-Responsive Disulfide Cross-Linked PLA–PEG Nanoparticles. Macromolecules 2017, 50, 7052–7061. DOI: 10.1021/acs.macromol.7b01318.
  • Kolishetti, N.; Dhar, S.; Valencia, P. M.; Lin, L. Q.; Karnik, R.; Lippard, S. J.; Langer, R.; Farokhzad, O. C. Engineering of Self-Assembled Nanoparticle Platform for Precisely Controlled Combination Drug Therapy. Proc. Natl. Acad. Sci. U S A 2010, 107, 17939–17944. DOI: 10.1073/pnas.1011368107.
  • Di Tommaso, C.; Como, C.; Gurny, R.; Möller, M. Investigations on the Lyophilisation of MPEG–HexPLA Micelle Based Pharmaceutical Formulations. Eur. J. Pharm. Sci. 2010, 40, 38–47. DOI: 10.1016/j.ejps.2010.02.006.
  • Mondon, K.; Zeisser-Labouèbe, M.; Gurny, R.; Möller, M. Novel Cyclosporin A Formulations Using MPEG–Hexyl-Substituted Polylactide Micelles: A Suitability Study. Eur. J. Pharm. Biopharm. 2011, 77, 56–65. DOI: 10.1016/j.ejpb.2010.09.012.
  • Wang, H.; Song, H.; Chen, X.; Deng, Y. Release of Ibuprofen from PEG-PLLA Electrospun Fibers Containing Poly(Ethylene Glycol)-b-Poly(α-Hydroxy Octanoic Acid) as an Additive. Chin. J. Polym. Sci. 2010, 28, 417–425. DOI: 10.1007/s10118-010-9041-x.
  • Park, J. H.; Park, S. H.; Park, J. Y.; Ju, H. J.; Ji, Y. B.; Kim, J. H.; Min, B. H.; Kim, M. S. Preparation and Characterization of Biodegradable and Hemocompatible Copolymers. React. Funct. Polym. 2020, 146, 104373. DOI: 10.1016/j.reactfunctpolym.2019.104373.
  • Kim, J. I.; Kim, D. Y.; Kwon, D. Y.; Kang, H. J.; Kim, J. H.; Min, B. H.; Kim, M. S. An Injectable Biodegradable Temperature-Responsive Gel with an Adjustable Persistence Window. Biomaterials 2012, 33, 2823–2834. DOI: 10.1016/j.biomaterials.2012.01.004.
  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Tilkin, R. G.; Régibeau, N.; Lambert, S. D.; Grandfils, C. Correlation between Surface Properties of Polystyrene and Polylactide Materials and Fibroblast and Osteoblast Cell Line Behavior: A Critical Overview of the Literature. Biomacromolecules 2020, 21, 1995–2013. DOI: 10.1021/acs.biomac.0c00214.
  • Jiao, Y.-P.; Cui, F.-Z. Surface Modification of Polyester Biomaterials for Tissue Engineering. Biomed. Mater. 2007, 2, R24–R37. DOI: 10.1088/1748-6041/2/4/R02.
  • IUPAC. Compendium of Chemical Terminology. 2nd ed. (the “Gold Book”); Blackwell Scientific Publications: Oxford, 1997. Compiled by A. D. McNaught and A. Wilkinson.
  • Law, K.-Y. Water–Surface Interactions and Definitions for Hydrophilicity, Hydrophobicity and Superhydrophobicity. Pure Appl. Chem 2015, 87, 759–765. DOI: 10.1515/pac-2014-1206.
  • Ren, Q.; Zhu, X.; Li, W.; Wu, M.; Cui, S.; Ling, Y.; Ma, X.; Wang, G.; Wang, L.; Zheng, W. Fabrication of Super-Hydrophilic and Highly Open-Porous Poly (Lactic Acid) Scaffolds Using Supercritical Carbon Dioxide Foaming. Int. J. Biol. Macromol. 2022, 205, 740–748. DOI: 10.1016/j.ijbiomac.2022.03.107.
  • De Felice, A. C.; Di Lisio, V.; Francolini, I.; Mariano, A.; Piozzi, A.; Scotto d‘Abusco, A.; Sturabotti, E.; Martinelli, A. One-Pot Preparation of Hydrophilic Polylactide Porous Scaffolds by Using Safe Solvent and Choline Taurinate Ionic Liquid. Pharmaceutics 2022, 14, 158. DOI: 10.3390/pharmaceutics14010158.
  • Zimina, A.; Senatov, F.; Choudhary, R.; Kolesnikov, E.; Anisimova, N.; Kiselevskiy, M.; Orlova, P.; Strukova, N.; Generalova, M.; Manskikh, V.; et al. Biocompatibility and Physico-Chemical Properties of Highly Porous PLA/HA Scaffolds for Bone Reconstruction. Polymers. (Basel) 2020, 12, 2938. DOI: 10.3390/polym12122938.
  • Demina, T. S.; Piskarev, M. S.; Shpichka, A. I.; Gilman, A. B.; Timashev, P. S. Wettability and Aging of Polylactide Films as a Function of AC-Discharge Plasma Treatment Conditions. J. Phys: Conf. Ser. 2020, 1492, 012001. DOI: 10.1088/1742-6596/1492/1/012001.
  • Ahmed, J.; Varshney, S. K. Polylactides—Chemistry, Properties and Green Packaging Technology: A Review. Int. J. Food Prop. 2011, 14, 37–58. DOI: 10.1080/10942910903125284.
  • Lu, Y.; Yin, L.; Zhang, Y.; Zhang, Z.; Xu, Y.; Tong, R.; Cheng, J. Synthesis of Water-Soluble Poly(α-Hydroxy Acids) from Living Ring-Opening Polymerization of O -Benzyl- l -Serine Carboxyanhydrides. ACS Macro Lett. 2012, 1, 441–444. DOI: 10.1021/mz200165c.
  • Gorrasi, G.; Pantani, R. Hydrolysis and Biodegradation of Poly(Lactic Acid). In Synthesis, Structure and Properties of Poly(Lactic Acid). Advances in Polymer Science; Di Lorenzo, M., Androsch, R., Eds.; Springer: Cham, 2017; Vol. 279. DOI: 10.1007/12_2016_12.
  • Kaup, G. Organic Solid-State Reactions with 100% Yield. In Organic Solid State Reactions. Topics in Current Chemistry; Toda, F., Ed.; Springer: Berlin, Heidelberg, 2005; Vol. 254. DOI: 10.1007/b100997.
  • Jorner, K.; Tomberg, A.; Bauer, C.; Sköld, C.; Norrby, P.-O. Organic Reactivity from Mechanism to Machine Learning. Nat. Rev. Chem. 2021, 5, 240–255. DOI: 10.1038/s41570-021-00260-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.