57
Views
0
CrossRef citations to date
0
Altmetric
Review Article

An Overview of Three-Dimensional Fillers-Polymer Composites: Fabrications and Applications for Electronics and Energy Storage

&
Received 03 Feb 2024, Accepted 03 Jun 2024, Published online: 05 Jul 2024

References

  • Gantenbein, S.; Mascolo, C.; Houriet, C.; Zboray, R.; Neels, A.; Masania, K.; Studart, A. R. Spin-Printing of Liquid Crystal Polymer into Recyclable and Strong All-Fiber Materials, Adv. Funct. Mater. 2021, 31, 2104574. DOI: 10.1002/adfm.202104574.
  • Beims, R. F.; Rizkalla, A.; Kermanshahi-Pour, A.; Xu, C. C. Reengineering Wood into a High-Strength, and Lightweight Bio-Composite Material for Structural Applications. Chem. Eng. J. 2023, 454, 139896. DOI: 10.1016/j.cej.2022.139896.
  • Dai, Z. Z.; Bao, Z. W.; Ding, S.; Liu, C. C.; Sun, H. Y.; Wang, H.; Zhou, X.; Wang, Y. C.; Yin, Y. W.; Li, X. G. Scalable Polyimide-Poly(Amic Acid) Copolymer Based Nanocomposites for High-Temperature Capacitive Energy Storage. Adv. Mater. 2022, 34, e2101976. DOI: 10.1002/adma.202101976.
  • Pitchan, M. K.; Bhowmik, S.; Balachandran, M.; Abraham, M. Process Optimization of Functionalized MWCNT/Polyetherimide Nanocomposites for Aerospace Application. Mater. Design 2017, 127, 193–203. DOI: 10.1016/j.matdes.2017.04.081.
  • Xu, S. M.; Li, X. Y.; Sui, G. P.; Du, R. N.; Zhang, Q.; Fu, Q. Plasma Modification of PU Foam for Piezoresistive Sensor with High Sensitivity, Mechanical Properties and Long-Term Stability. Chem. Eng. J. 2020, 381, 122666. DOI: 10.1016/j.cej.2019.122666.
  • Rocha, D. P.; Squissato, A. L.; da Silva, S. M.; Richter, E. M.; Munoz, R. A. A. Improved Electrochemical Detection of Metals in Biological Samples Using 3D-Printed Electrode: Chemical/Electrochemical Treatment Exposes Carbon-Black Conductive Sites. Electrochim. Acta 2020, 335, 135688. DOI: 10.1016/j.electacta.2020.135688.
  • Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y.; et al. Highly Conductive, Stretchable and Biocompatible Ag-Au Core-Sheath Nanowire Composite for Wearable and Implantable Bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056. DOI: 10.1038/s41565-018-0226-8.
  • Dahiya, A. S.; Morini, F.; Boubenia, S.; Nadaud, K.; Alquier, D.; Poulin-Vittrant, G. Organic/Inorganic Hybrid Stretchable Piezoelectric Nanogenerators for Self-Powered Wearable Electronics. Adv. Mat. Technol. 2018, 3, 1700249. DOI: 10.1002/admt.201700249.
  • Ensafi, A. A.; Alinajafi, H. A.; Rezaei, B. Thermally Reduced Graphene Oxide/Polymelamine Formaldehyde Nanocomposite as a High Specific Capacitance Electrochemical Supercapacitor Electrode. J. Mater. Chem. A 2018, 6, 6045–6053. DOI: 10.1039/C7TA10825G.
  • Nazir, A.; Yu, H. J.; Wang, L.; Liu, J. H.; Li, S. B.; Ul Amin, B.; Naveed, K. U. R.; Khan, R. U.; Khan, A.; Usman, M.; et al. Electromagnetic Interference Shielding Effectiveness of Ferrocene-Based Polyimidazole/Carbon Material Composites. Polym. Comp. 2020, 41, 2068–2081. DOI: 10.1002/pc.25521.
  • Huangfu, Y.; Liang, C.; Han, Y.; Qiu, H.; Song, P.; Wang, L.; Kong, J.; Gu, J. Fabrication and Investigation on the Fe3O4/Thermally Annealed Graphene Aerogel/Epoxy Electromagnetic Interference Shielding Nanocomposites. Compos. Sci. Technol. 2019, 169, 70–75. DOI: 10.1016/j.compscitech.2018.11.012.
  • Moosaei, R.; Sharif, M.; Ramezannezhad, A. Enhancement of Tensile, Electrical and Thermal Properties of Epoxy Nanocomposites through Chemical Hybridization of Polypyrrole and Graphene Oxide. Polym. Test. 2017, 60, 173–186. DOI: 10.1016/j.polymertesting.2017.03.022.
  • Wan, M.; Yadav, R. R.; Singh, D.; Panday, M. S.; Rajendran, V. Temperature Dependent Ultrasonic and Thermo-Physical Properties of Polyaniline Nanofibers Reinforced Epoxy Composites. Compos. Part B-Eng. 2016, 87, 40–46. DOI: 10.1016/j.compositesb.2015.10.011.
  • Khezri, T.; Sharif, M.; Pourabas, B. Polythiophene-Graphene Oxide Doped Epoxy Resin Nanocomposites with Enhanced Electrical, Mechanical and Thermal Properties. RSC Adv. 2016, 6, 93680–93693. DOI: 10.1039/C6RA16701B.
  • Wang, K.; Chang, Y. H.; Zhang, C.; Wang, B. Conductive-on-Demand: Tailorable Polyimide/Carbon Nanotube Nanocomposite Thin Film by Dual-Material Aerosol Jet Printing. Carbon 2016, 98, 397–403. DOI: 10.1016/j.carbon.2015.11.032.
  • Ameli, A.; Kazemi, Y.; Wang, S.; Park, C. B.; Pötschke, P. Process-Microstructure-Electrical Conductivity Relationships in Injection-Molded Polypropylene/Carbon Nanotube Nanocomposite Foams. Compos. Part A-Appl S. 2017, 96, 28–36. DOI: 10.1016/j.compositesa.2017.02.012.
  • Zhou, Y.; Hu, J.; Dang, B.; He, J. L. Titanium Oxide Nanoparticle Increases Shallow Traps to Suppress Space Charge Accumulation in Polypropylene Dielectrics. RSC Adv. 2016, 6, 48720–48727. DOI: 10.1039/C6RA04868D.
  • Yin, X. Z.; Weng, P. X.; Yang, S. W.; Han, L.; Tan, Y. Q.; Pan, F.; Chen, D. Z.; Wang, L. X.; Qin, J.; Wang, H. Suspended Carbon Black Fluids Reinforcing and Toughening of Poly(Vinyl Alcohol) Composites. Mater. Design 2017, 130, 37–47. DOI: 10.1016/j.matdes.2017.05.049.
  • An, R.; Zhang, X. Y.; Han, L. L.; Wang, X. D.; Zhang, Y. L.; Shi, L. Y.; Ran, R. Healing, Flexible, High Thermal Sensitive Dual-Network Ionic Conductive Hydrogels for 3D Linear Temperature Sensor. Mat. Sci. Eng. C-Mater. 2020, 107, 110310. DOI: 10.1016/j.msec.2019.110310.
  • Costa, P.; Goncalves, S.; Mora, H.; Carabineiro, S. A. C.; Viana, J. C.; Lanceros-Mendez, S. Highly Sensitive Piezoresistive Praphene-Based Stretchable Composites for Sensing Applications. ACS Appl. Mater. Interfaces 2019, 11, 46286–46295. DOI: 10.1021/acsarni.9b19294.
  • Mohan, V. B.; Krebs, B. J.; Bhattacharyya, D. Development of Novel Highly Conductive 3D Printable Hybrid Polymer-Graphene Composites. Mater. Today Commun. 2018, 17, 554–561. DOI: 10.1016/j.mtcomm.2018.09.023.
  • Ma, J. K.; Shang, T. Y.; Ren, L. L.; Yao, Y. M.; Zhang, T.; Xie, J. Q.; Zhang, B. T.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Through-Plane Assembly of Carbon Fibers into 3D Skeleton Achieving Enhanced Thermal Conductivity of a Thermal Interface Material. Chem. Eng. J. 2020, 380, 122550. DOI: 10.1016/j.cej.2019.122550.
  • Park, J. Y.; Nam, H. J.; Lee, W. J.; Choa, S.-H. Highly Stretchable Conductive Electrode Composed of Silver Flake and Ecoflex. Sci. Adv. Mater. 2020, 12, 571–576. DOI: 10.1166/sam.2020.3667.
  • Wang, X.; Zhai, H. W.; Qie, B. Y.; Cheng, Q.; Li, A. J.; Borovilas, J.; Xu, B. Q.; Shi, C. M.; Jin, T. W.; Liao, X. B.; et al. Rechargeable Solid-State Lithium Metal Batteries with Vertically Aligned Ceramic Nanoparticle/Polymer Composite Electrolyte. Nano Energy 2019, 60, 205–212. DOI: 10.1016/j.nanoen.2019.03.051.
  • Su, Y.; Li, W.; Cheng, X.; Zhou, Y.; Yang, S.; Zhang, X.; Chen, C.; Yang, T.; Pan, H.; Xie, G.; et al. High-Performance Piezoelectric Composites via β Phase Programming. Nat. Commun. 2022, 13, 4867. DOI: 10.1038/s41467-022-32518-3.
  • Pérez-Madrigal, M. M.; Ochoa, D. A.; García, J. E.; Armelin, E.; Alemán, C. Enhanced Dielectric Performance of a Block Copolymer-Polythiophene Nanocomposite. J. Polym. Sci. Part B: Polym. Phys. 2016, 54, 1896–1905. DOI: 10.1002/polb.24095.
  • Zhang, Y.; Fang, W.; Zhao, Y.; Liu, Z.; Chen, S.; Hu, C.; Liu, J.; Liu, X. Electric Field‐Driven Preparation of Elastomer/Plastic Nanoparticles Gradient Films with Enhanced Damping Property. J. Appl. Polymer Sci. 2019, 137, 48401. DOI: 10.1002/app.48401.
  • Zhang, C. C.; Zhang, H. Y.; Li, C. Y.; Duan, S. X.; Jiang, Y.; Yang, J. M.; Han, B. Z.; Zhao, H. Crosslinked Polyethylene/Polypyrrole Nanocomposites with Improved Direct Current Electrical Characteristics. Polym. Test. 2018, 71, 223–230. DOI: 10.1016/j.polymertesting.2018.09.020.
  • Münstedt, H.; Starý, Z. Is Electrical Percolation in Carbon-Filled Polymers Reflected by Rheological Properties? Polymer 2016, 98, 51–60. DOI: 10.1016/j.polymer.2016.05.042.
  • Kwon, S.; Cho, H. W.; Gwon, G.; Kim, H.; Sung, B. J. Effects of Shape and Flexibility of Conductive Fillers in Nanocomposites on Percolating Network Formation and Electrical Conductivity. Phys. Rev. E 2016, 93, 032501. DOI: 10.1103/PhysRevE.93.032501.
  • Brink, R.; Choudhary, M.; Siwal, S.; Nandi, D.; Mallick, K. Silver-Polymer Functional-Nanocomposite: A Single Step Synthesis Approach with in-Situ Optical Study. Appl. Surf. Sci. 2017, 412, 482–488. DOI: 10.1016/j.apsusc.2017.03.269.
  • Liu, H.; Ding, M. D.; Ding, Z. L.; Gao, C. Q.; Zhang, W. Q. In Situ Synthesis of the Ag/Poly(4-Vinylpyridine)Block-Polystyrene Composite Nanoparticles by Dispersion RAFT Polymerization. Polym. Chem. 2017, 8, 3203–3210. DOI: 10.1039/C7PY00473G.
  • Kang, Z.; Peng, Y.; Hu, Z.; Qian, Y.; Chi, C.; Yeo, L. Y.; Tee, L.; Zhao, D. Mixed Matrix Membranes Composed of Two-Imensional Metal-Organic Framework Nanosheets for Pre-Combustion CO2 Capture: A Relationship Study of Filler Morphology versus Membrane Performance. J. Mater. Chem. A 2015, 3, 20801–20810. DOI: 10.1039/C5TA03739E.
  • Wang, Y. J.; Kai, Y.; Tong, L. F.; You, Y.; Huang, Y. M.; Liu, X. B. The Frequency Independent Functionalized MoS2 Nanosheet/Poly(Arylene Ether Nitrile) Composites with Improved Dielectric and Thermal Properties via Mussel Inspired Surface Chemistry. Appl. Surf. Sci. 2019, 481, 1239–1248. DOI: 10.1016/j.apsusc.2019.03.235.
  • Han, N. M.; Wang, Z.; Shen, X.; Wu, Y.; Liu, X.; Zheng, Q.; Kim, T. H.; Yang, J.; Kim, J. K. Graphene Size-Dependent Multifunctional Properties of Unidirectional Graphene Aerogel/Epoxy Nanocomposites. ACS Appl. Mater. Interfaces 2018, 10, 6580–6592. DOI: 10.1021/acsami.7b19069.
  • Li, Q.; Xue, Q.; Hao, L.; Gao, X.; Zheng, Q. Large Dielectric Constant of the Chemically Functionalized Carbon Nanotube/Polymer Composites. Compos. Sci. Technol. 2008, 68, 2290–2296. DOI: 10.1016/j.compscitech.2008.04.019.
  • Gu, H.; Tadakamalla, S.; Zhang, X.; Huang, Y.; Jiang, Y.; Colorado, H. A.; Luo, Z.; Wei, S.; Guo, Z. Epoxy Resin Nanosuspensions and Reinforced Nanocomposites from Polyaniline Stabilized Multi-Walled Carbon Nanotubes. J. Mater. Chem. C 2013, 1, 729–743. DOI: 10.1039/C2TC00379A.
  • Dourani, A.; Haghgoo, M.; Hamadanian, M. Multi-Walled Carbon Nanotube and Carbon Nanofiber/Polyacrylonitrile Aerogel Scaffolds for Enhanced Epoxy Resins. Compos. Part B-Eng. 2019, 176, 107299. DOI: 10.1016/j.compositesb.2019.107299.
  • Wang, L.; Qiu, H.; Song, P.; Zhang, Y. L.; Lu, Y. J.; Liang, C. B.; Kong, J.; Chen, L. X.; Gu, J. W. 3D Ti3C2Tx MXene/C Hybrid Foam/Epoxy Nanocomposites with Superior Electromagnetic Interference Shielding Performances and Robust Mechanical Properties. Compos. Part A-Appl S. 2019, 123, 293–300. DOI: 10.1016/j.compositesa.2019.05.030.
  • Bae, J.; Li, Y. T.; Zhao, F.; Zhou, X. Y.; Ding, Y.; Yu, G. H. Designing 3D Nanostructured Garnet Frameworks for Enhancing Ionic Conductivity and Flexibility in Composite Polymer Electrolytes for Lithium Batteries. Energy Storage Mater. 2018, 15, 46–52. DOI: 10.1016/j.ensm.2018.03.016.
  • Chen, L.; Hou, X. S.; Song, N.; Shi, L. Y.; Ding, P. Cellulose/Graphene Bioplastic for Thermal Management: Enhanced Isotropic Thermally Conductive Property by Three-Dimensional Interconnected Graphene Aerogel. Compos. Part A-Appl S. 2018, 107, 189–196. DOI: 10.1016/j.compositesa.2017.12.014.
  • Li, Y. C.; Li, C. Q.; Zhao, S.; Cui, J.; Zhang, G. F.; Gao, A. L.; Yan, Y. H. Facile Fabrication of Highly Conductive and Robust Three-Dimensional Graphene/Silver Nanowires Bicontinuous Skeletons for Electromagnetic Interference Shielding Silicone Rubber Nanocomposites. Compos. Part A-Appl S. 2019, 119, 101–110. DOI: 10.1016/j.compositesa.2019.01.025.
  • Chen, Y.; Zhang, H.-B.; Yang, Y.; Wang, M.; Cao, A.; Yu, Z.-Z. High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding. Adv. Funct. Mater. 2016, 26, 447–455. DOI: 10.1002/adfm.201503782.
  • Han, J. K.; Du, G. L.; Gao, W. W.; Bai, H. An Anisotropically High Thermal Conductive Boron Nitride/Epoxy Composite Based on Nacre-Mimetic 3D Network, Adv. Funct. Mater. 2019, 29, 1900412. DOI: 10.1002/adfm.201900412.
  • Li, J.; Yang, Y.; Jiang, H.; Wang, Y.; Chen, Y.; Jiang, S.; Wu, J.-M.; Zhang, G. 3D Interpenetrating Piezoceramic-Polymer Composites with High Damping and Piezoelectricity for Impact Energy-Absorbing and Perception. Compos. Part B-Eng. 2022, 232, 109617. DOI: 10.1016/j.compositesb.2022.109617.
  • Wang, Y.; Xie, W.; Liu, H.; Gu, H. Hyperelastic Magnetic Reduced Graphene Oxide Three-Dimensional Framework with Superb Oil and Organic Solvent Adsorption Capability. Adv. Compos. Hybrid Mater. 2020, 3, 473–484. DOI: 10.1007/s42114-020-00191-z.
  • Li, J.; Li, J.; Meng, H.; Xie, S.; Zhang, B.; Li, L.; Ma, H.; Zhang, J.; Yu, M. Ultra-Light, Compressible and Fire-Resistant Graphene Aerogel as a Highly Efficient and Recyclable Absorbent for Organic Liquids. J. Mater. Chem. A 2014, 2, 2934–2941. DOI: 10.1039/c3ta14725h.
  • Chen, J.; Huang, X.; Zhu, Y.; Jiang, P. Cellulose Nanofiber Supported 3D Interconnected BN Nanosheets for Epoxy Nanocomposites with Ultrahigh Thermal Management Capability. Adv. Funct. Mater. 2017, 27, 1604754. DOI: 10.1002/adfm.201604754.
  • Wang, L.; Song, P.; Lin, C.-T.; Kong, J.; Gu, J. 3D Shapeable, Superior Electrically Conductive Cellulose Nanofibers/Ti3C2Tx mXene Aerogels/Epoxy Nanocomposites for Promising EMI Shielding. Research 2020, 2020, 4093732. DOI: 10.34133/2020/4093732.
  • Zheng, Y.; Wang, R.; Dong, X.; Wu, L.; Zhang, X. High Strength Conductive Polyamide 6 Nanocomposites Reinforced by Prebuilt Three-Dimensional Carbon Nanotube Networks. ACS Appl. Mater. Interfaces 2018, 10, 28103–28111. DOI: 10.1021/acsami.8b08944.
  • Li, Z. X.; Gao, X. Y.; Huang, P.; Li, Y. Q.; Fu, S. Y. A Flexible Carbonized Melamine Foam/Silicone/Epoxy Composite Pressure Sensor with Temperature and Voltage-Adjusted Piezoresistivity for Ultrawide Pressure Detection. J. Mater. Chem. A 2022, 10, 9114–9120. DOI: 10.1039/D1TA10965K.
  • Chen, J.; Huang, X.; Sun, B.; Wang, Y.; Zhu, Y.; Jiang, P. Vertically Aligned and Interconnected Boron Nitride Nanosheets for Advanced Flexible Nanocomposite Thermal Interface Materials. ACS Appl. Mater. Interfaces 2017, 9, 30909–30917. DOI: 10.1021/acsami.7b08061.
  • Han, X.; Wang, T.; Owuor, P. S.; Hwang, S. H.; Wang, C.; Sha, J.; Shen, L.; Yoon, J.; Wang, W.; Salvatierra, R. V.; et al. Ultra-Stiff Graphene Foams as Three-Dimensional Conductive Fillers for Epoxy Resin. ACS Nano 2018, 12, 11219–11228. DOI: 10.1021/acsnano.8b05822.
  • Wang, G. X.; Liu, H.; Liang, Y. H.; Wang, C.; Fan, L. Z. Composite Polymer Electrolyte with Three-Dimensional Ion Transport Channels Constructed by NaCl Template for Solid-State Lithium Metal Batteries. Energy Storage Mater. 2022, 45, 1212–1219. DOI: 10.1016/j.ensm.2021.11.021.
  • Sattar, T. Current Review on Synthesis, Composites and Multifunctional Properties of Graphene, Topics Curr. Chem. 2019, 377, 10. DOI: 10.1007/s41061-019-0235-6.
  • Yu, X. W.; Cheng, H. H.; Zhang, M.; Zhao, Y.; Qu, L. T.; Shi, G. Q. Graphene-Based Smart Materials. Nat. Rev. Mater. 2017, 2, 13. DOI: 10.1038/natrevmats.2017.46.
  • Zhu, G.; Isaza, L. G.; Dufresne, A. Cellulose Nanocrystal-Mediated Assembly of Graphene Oxide in Natural Rubber Nanocomposites with High Electrical Conductivity. J. Appl Polym. Sci. 2021, 138, c51460. DOI: 10.1002/app.51460.
  • Jing, J.; Xiong, Y.; Shi, S.; Pei, H.; Chen, Y.; Lambin, P. Facile Fabrication of Lightweight Porous FDM-Printed Polyethylene/Graphene Nanocomposites with Enhanced Interfacial Strength for Electromagnetic Interference Shielding. Compos. Sci. Technol. 2021, 207, 108732. DOI: 10.1016/j.compscitech.2021.108732.
  • Zhang, H-p.; Yang, B.; Wang, Z. M.; Xie, C.; Tang, P.; Bian, L.; Dong, F.; Tang, Y. Porous Graphene Oxide/Chitosan Nanocomposites Based on Interfacial Chemical Interactions. Eur. Polym. J. 2019, 119, 114–119. DOI: 10.1016/j.eurpolymj.2019.07.032.
  • Hu, Z.; Song, C.; Shao, Q.; Li, J.; Huang, Y. One-Step Functionalization of Graphene by Cycloaddition of Diarylcarbene and Its Application as Reinforcement in Epoxy Composites. Compos. Sci. Technol. 2016, 135, 21–27. DOI: 10.1016/j.compscitech.2016.09.008.
  • Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H.-M. Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding. Adv. Mater. 2013, 25, 1296–1300. DOI: 10.1002/adma.201204196.
  • Tao, Y.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X. Incorporating Graphene Oxide and Gold Nanoclusters: A Synergistic Catalyst with Surprisingly High Peroxidase-like Activity over a Broad pH Range and Its Application for Cancer Cell Detection. Adv. Mater. 2013, 25, 2594–2599. DOI: 10.1002/adma.201204419.
  • Fei, L.; Li, X.; Bi, W.; Zhuo, Z.; Wei, W.; Sun, L.; Lu, W.; Wu, X.; Xie, K.; Wu, C.; et al. Graphene/Sulfur Hybrid Nanosheets from a Space-Confined "Sauna" Reaction for High-Performance Lithium-Sulfur Batteries. Adv. Mater. 2015, 27, 5936–5942. DOI: 10.1002/adma.201502668.
  • Shao, L. B.; Shi, L. Y.; Li, X. H.; Song, N.; Ding, P. Synergistic Effect of BN and Graphene Nanosheets in 3D Framework on the Enhancement of Thermal Conductive Properties of Polymeric Composites. Compos. Sci. Technol. 2016, 135, 83–91. DOI: 10.1016/j.compscitech.2016.09.013.
  • Wang, H.; Wu, L.; Xu, L.; Zheng, L.; Wu, Y.; Wu, K.; Wang, J.; Chen, Q. Synthetic Multiscale Graphene Aerogel Polymer Composites with High-Conductive Performances for Hyperthermia Equipment. Adv. Eng. Mater. 2021, 23, 2001429. DOI: 10.1002/adem.202001429.
  • Sun, Y.; Xu, H.; Zhao, Z.; Zhang, L.; Ma, L.; Zhao, G.; Song, G.; Li, X. Investigation of Carbon Nanotube Grafted Graphene Oxide Hybrid Aerogel for Polystyrene Composites with Reinforced Mechanical Performance. Polymers 2021, 13, 735. DOI: 10.3390/polym13050735.
  • Li, C. L.; Yang, Z. J.; Tang, Z. H.; Guo, B. C.; Tian, M.; Zhang, L. Q. A Scalable Strategy for Constructing Three-Dimensional Segregated Graphene Network in Polymer via Hydrothermal Self-Assembly. Chem. Eng. J. 2019, 363, 300–308. DOI: 10.1016/j.cej.2019.01.142.
  • Chen, Y.; Zhang, H.-B.; Wang, M.; Qian, X.; Dasari, A.; Yu, Z.-Z. Phenolic Resin-Enhanced Three-Dimensional Graphene Aerogels and Their Epoxy Nanocomposites with High Mechanical and Electromagnetic Interference Shielding Performances. Compos. Sci. Technol. 2017, 152, 254–262. DOI: 10.1016/j.compscitech.2017.09.022.
  • Zhang, W. Y.; Kong, Q. Q.; Tao, Z. C.; Wei, J. C.; Xie, L. J.; Cui, X. Y.; Chen, C. M. 3D Thermally Cross-Linked Graphene Aerogel-Enhanced Silicone Rubber Elastomer as Thermal Interface Material. Adv. Mater. Interfaces 2019, 6, 1900147. DOI: 10.1002/admi.201900147.
  • Wan, Y. J.; Yu, S. H.; Yang, W. H.; Zhu, P. L.; Sun, R.; Wong, C. P.; Liao, W. H. Tuneable Cellular-Structured 3D Graphene Aerogel and Its Effect on Electromagnetic Interference Shielding Performance and Mechanical Properties of Epoxy Composites. RSC Adv. 2016, 6, 56589–56598. DOI: 10.1039/C6RA09459G.
  • Shen, X.; Wang, Z. Y.; Wu, Y.; Liu, X.; He, Y. B.; Zheng, Q. B.; Yang, Q. H.; Kang, F. Y.; Kim, J. K. A Three-Dimensional Multilayer Graphene Web for Polymer Nanocomposites with Exceptional Transport Properties and Fracture Resistance. Mater. Horiz. 2018, 5, 275–284. DOI: 10.1039/C7MH00984D.
  • Garlof, S.; Fukuda, T.; Mecklenburg, M.; Smazna, D.; Mishra, Y. K.; Adelung, R.; Schulte, K.; Fiedler, B. Electro-Mechanical Piezoresistive Properties of Three Dimensionally Interconnected Carbon Aerogel (Aerographite)-Epoxy Composites. Compos. Sci. Technol. 2016, 134, 226–233. DOI: 10.1016/j.compscitech.2016.08.019.
  • Chen, W. H.; Duan, W. F.; Liu, Y.; Wang, Q.; Qi, F. W. Facile Fabrication of Multifunctional Polymer Composites Based on Three-Dimensional Interconnected Networks of Graphene and Carbon Nanotubes. Ind. Eng. Chem. Res. 2019, 58, 21531–21541. DOI: 10.1021/acs.iecr.9b04854.
  • Song, P.; Liang, C.; Wang, L.; Qiu, H.; Gu, H.; Kong, J.; Gu, J. Obviously Improved Electromagnetic Interference Shielding Performances for Epoxy Composites via Constructing Honeycomb Structural Reduced Graphene Oxide. Compos. Sci. Technol. 2019, 181, 107698. DOI: 10.1016/j.compscitech.2019.107698.
  • Wang, Z. Y.; Shen, X.; Han, N. M.; Liu, X.; Wu, Y.; Ye, W. J.; Kim, J. K. Ultralow Electrical Percolation in Graphene Aerogel/Epoxy Composites. Chem. Mater. 2016, 28, 6731–6741. DOI: 10.1021/acs.chemmater.6b03206.
  • Liu, W. M.; Li, W. Z.; Yue, L. S.; Gan, W. Construction of Conductive Three-Dimensional Structure by Low Content of Silver Nanowires and Its Application in Epoxy Resin. J. Mater. Sci: Mater. Electron. 2019, 30, 12307–12314. DOI: 10.1007/s10854-019-01589-2.
  • Liang, G.; Zhang, J.; An, S.; Tang, J.; Ju, S.; Bai, S.; Jiang, D. Phase Change Material Filled Hybrid 2D/3D Graphene Structure with Ultra-High Thermal Effusivity for Effective Thermal Management. Carbon 2021, 176, 11–20. DOI: 10.1016/j.carbon.2020.12.046.
  • Guo, T.; Chen, X. L.; Zeng, G. J.; Yang, J. L.; Huang, X. Z.; Li, C. G.; Tang, X. Z. Impregnating Epoxy into N-doped-CNTs@Carbon Aerogel to Prepare High-Performance Microwave-Absorbing Composites with Extra-Low Filler Content. Compos. Part A-Appl S. 2021, 140, 106159. DOI: 10.1016/j.compositesa.2020.106159.
  • Ba, K. X.; Zhang, M. Y.; Wang, X. D.; Xu, P.; Song, W. J.; Wang, C. Y.; Yang, W. T.; Liu, Y. W. Porous Graphene Composites Fabricated by Template Method Used for Electromagnetic Shielding and Thermal Conduction. Diam. Relat. Mater. 2023, 131, 109585. DOI: 10.1016/j.diamond.2022.109585.
  • Xu, F.; Cui, Y.; Bao, D.; Lin, D.; Yuan, S.; Wang, X.; Wang, H.; Sun, Y. A 3D Interconnected Cu Network Supported by Carbon Felt Skeleton for Highly Thermally Conductive Epoxy Composites. Chem. Eng. J. 2020, 388, 124287. DOI: 10.1016/j.cej.2020.124287.
  • Beshahwured, S. L.; Mengesha, T. H.; Babulal, L. M.; Wu, Y. S.; Wu, S. H.; Chang, J. K.; Jose, R.; Yang, C. C. Hierarchical Interconnected Hybrid Solid Electrolyte Membrane for All-Solid-State Lithium-Metal Batteries Based on High-Voltage NCM811 Cathodes. ACS Appl. Energy Mater. 2022, 5, 2580–2595. DOI: 10.1021/acsaem.2c00046.
  • Fu, X.; Li, Y.; Liao, C.; Gong, W.; Yang, M.; Li, R. K. Y.; Tjong, S. C.; Lu, Z. Enhanced Electrochemical Performance of Solid PEO/LiClO4 Electrolytes with a 3D Porous Li6.28La3Zr2Al0.24O12 Network. Compos. Sci. Technol. 2019, 184, 107863. DOI: 10.1016/j.compscitech.2019.107863.
  • Yao, F.; Xie, W.; Ma, C.; Wang, D.; El-Bahy, Z. M.; Helal, M. H.; Liu, H.; Du, A.; Guo, Z.; Gu, H. Superb Electromagnetic Shielding Polymer Nanocomposites Filled with 3-Dimensional p-Phenylenediamine/Aniline Copolymer Nanofibers@Copper Foam Hybrid Nanofillers. Compos. Part B: Eng. 2022, 245, 110236. DOI: 10.1016/j.compositesb.2022.110236.
  • Wang, Z. X.; Han, X. S.; Zhou, Z. J.; Meng, W. Y.; Han, X. W.; Wang, S. J.; Pu, J. W. Lightweight and Elastic Wood-Derived Composites for Pressure Sensing and Electromagnetic Interference Shielding. Compos. Sci. Technol. 2021, 213, 108931. DOI: 10.1016/j.compscitech.2021.108931.
  • Sheng, X.; Dong, D.; Lu, X.; Zhang, L.; Chen, Y. MXene-Wrapped Bio-Based Pomelo Peel Foam/Polyethylene Glycol Composite Phase Change Material with Enhanced Light-to-Thermal Conversion Efficiency, Thermal Energy Storage Capability and Thermal Conductivity. Compos. Part A-Appl S. 2020, 138, 106067. DOI: 10.1016/j.compositesa.2020.106067.
  • Hu, D. W.; Huang, X. Y.; Li, S. T.; Jiang, P. K. Flexible and Durable Cellulose/MXene Nanocomposite Paper for Efficient Electromagnetic Interference Shielding. Compos. Sci. Technol. 2020, 188, 107995. DOI: 10.1016/j.compscitech.2020.107995.
  • Wu, S.; Zhang, J.; Ladani, R. B.; Ravindran, A. R.; Mouritz, A. P.; Kinloch, A. J.; Wang, C. H. Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors. ACS Appl. Mater. Interfaces 2017, 9, 14207–14215. DOI: 10.1021/acsami.7b00847.
  • Gao, W.; Wang, M.; Bai, H. A Review of Multifunctional Nacre-Mimetic Materials Based on Bidirectional Freeze Casting. J. Mech. Behav. Biomed. 2020, 109, 103820. DOI: 10.1016/j.jmbbm.2020.103820.
  • Yang, J.; Tang, L. S.; Bao, R. Y.; Bai, L.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B. An Ice-Templated Assembly Strategy to Construct Graphene Oxide/Boron Nitride Hybrid Porous Scaffolds in Phase Change Materials with Enhanced Thermal Conductivity and Shape Stability for Light-Thermal-Electric Energy Conversion. J. Mater. Chem. A 2016, 4, 18841–18851. DOI: 10.1039/C6TA08454K.
  • Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y.; Li, D. Biomimetic Superelastic Graphene-Based Cellular Monoliths. Nat. Commun. 2012, 3, 1241. DOI: 10.1038/ncomms2251.
  • Kim, J.; Han, N. M.; Kim, J.; Lee, J.; Kim, J.-K.; Jeon, S. Highly Conductive and Fracture-Resistant Epoxy Composite Based on Non-Oxidized Graphene Flake Aerogel. ACS Appl. Mater. Interfaces 2018, 10, 37507–37516. DOI: 10.1021/acsami.8b13415.
  • Shao, G.; Hanaor, D. A. H.; Shen, X.; Gurlo, A. Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures-a Review of Novel Materials, Methods, and Applications. Adv. Mater. 2020, 32, e1907176. DOI: 10.1002/adma.201907176.
  • Li, W. L.; Lu, K.; Walz, J. Y. Freeze Casting of Porous Materials: Review of Critical Factors in Microstructure Evolution. Int. Mater. Rev. 2012, 57, 37–60. DOI: 10.1179/1743280411Y.0000000011.
  • Cui, Y.; Gong, H.; Wang, Y.; Li, D.; Bai, H. A Thermally Insulating Textile Inspired by Polar Bear Hair. Adv. Mater. 2018, 30, e1706807. DOI: 10.1002/adma.201706807.
  • Huang, K.; Dong, S. M.; Yang, J. S.; Yan, J. Y.; Xue, Y. D.; You, X.; Hu, J. B.; Gao, L.; Zhang, X. Y.; Ding, Y. S. Three-Dimensional Printing of a Tunable Graphene-Based Elastomer for Strain Sensors with Ultrahigh Sensitivity. Carbon 2019, 143, 63–72. DOI: 10.1016/j.carbon.2018.11.008.
  • Shi, S. H.; Peng, Z. L.; Jing, J. J.; Yang, L.; Chen, Y. H.; Kotsilkova, R.; Ivanov, E. Preparation of Highly Efficient Electromagnetic Interference Shielding Polylactic Acid/Graphene Nanocomposites for Fused Deposition Modeling Three-Dimensional Printing. Ind. Eng. Chem. Res. 2020, 59, 15565–15575. DOI: 10.1021/acs.iecr.0c02400.
  • Li, Z. M.; Li, B.; Chen, B. Q.; Zhang, J.; Li, Y. 3D Printed Graphene/Polyurethane Wearable Pressure Sensor for Motion Fitness Monitoring. Nanotechnology 2021, 32, 395503. DOI: 10.1088/1361-6528/ac0b1b.
  • Wajahat, M.; Kim, J. H.; Ahn, J.; Lee, S.; Bae, J.; Pyo, J.; Seol, S. K. 3D Printing of Fe3O4 Functionalized Graphene-Polymer (FGP) Microarchitectures. Carbon 2020, 167, 278–284. DOI: 10.1016/j.carbon.2020.05.045.
  • Lv, Q. N.; Peng, Z. L.; Meng, Y.; Pei, H. R.; Chen, Y. H.; Ivanov, E.; Kotsilkova, R. Three-Dimensional Printing to Fabricate Graphene-Modified Polyolefin Elastomer Flexible Composites with Tailorable Porous Structures for Electromagnetic Interference Shielding and Thermal Management Application. Ind. Eng. Chem. Res. 2022, 61, 16733–16746. DOI: 10.1021/acs.iecr.2c03086.
  • Xie, X. L.; Mai, Y. W.; Zhou, X. P. Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review. Mat. Sci. Eng. R 2005, 49, 89–112. DOI: 10.1016/j.mser.2005.04.002.
  • Liu, X.; Li, H.; Zeng, Q.; Zhang, Y.; Kang, H.; Duan, H.; Guo, Y.; Liu, H. Electro-Active Shape Memory Composites Enhanced by Flexible Carbon Nanotube/Graphene Aerogels. J. Mater. Chem. A 2015, 3, 11641–11649. DOI: 10.1039/C5TA02490K.
  • Gu, H.; Zhang, H.; Ma, C.; Xu, X.; Wang, Y.; Wang, Z.; Wei, R.; Liu, H.; Liu, C.; Shao, Q.; et al. Trace Electrosprayed Nanopolystyrene Facilitated Dispersion of Multiwalled Carbon Nanotubes: Simultaneously Strengthening and Toughening Epoxy. Carbon 2019, 142, 131–140. DOI: 10.1016/j.carbon.2018.10.029.
  • Zhu, N. N.; Yuan, L.; Liang, G. Z.; Gu, A. J. Mechanism of Greatly Increasing Dielectric Constant at Lower Percolation Thresholds for Epoxy Resin Composites through Building Three-Dimensional Framework from Polyvinylidene Fluoride and Carbon Nanotubes. Compos. Part B-Eng. 2019, 171, 146–153. DOI: 10.1016/j.compositesb.2019.04.042.
  • Yu, J.; Yufeng, X.; Xuequan, L.; Li-Hua, S. Dual-Stimuli Responsive Carbon Nanotube sponge-PDMS Amphibious Actuator. Nanomaterials 2019, 9, 1704. DOI: 10.3390/nano9121704.
  • Nabeel, M.; Varga, M.; Kuzsela, L.; Filep, A.; Fiser, B.; Viskolcz, B.; Kollar, M.; Vanyorek, L. Preparation of Bamboo-like Carbon Nanotube Loaded Piezoresistive Polyurethane-Silicone Rubber Composite. Polymers 2021, 13, 2144. DOI: 10.3390/polym13132144.
  • Mei, H.; Zhao, X.; Xia, J. C.; Wei, F.; Han, D. Y.; Xiao, S. S.; Cheng, L. F. Compacting CNT Sponge to Achieve Larger Electromagnetic Interference Shielding Performance. Mater. Design 2018, 144, 323–330. DOI: 10.1016/j.matdes.2018.02.047.
  • Xia, D.; Xu, Y.; Mannering, J.; Ma, X.; Ismail, M. S.; Borman, D.; Baker, D. L.; Pourkashanian, M.; Menzel, R. Tuning the Electrical and Solar Thermal Heating Efficiencies of Nanocarbon Aerogels. Chem. Mater. 2020, 33, 392–402. DOI: 10.1021/acs.chemmater.0c04166.
  • Wang, J.; Zhang, X.; Liu, Y.; Xu, C.; Zhang, H.; Wu, D.; Tan, T.; Qin, X.; Sun, J.; Zhang, L. Preparation of Flexible and Elastic Thermal Conductive Nanocomposites via Ultrasonic-Assisted Forced Infiltration. Compos. Sci. Technol. 2021, 202, 108582. DOI: 10.1016/j.compscitech.2020.108582.
  • Huang, W.; Dai, K.; Zhai, Y.; Liu, H.; Zhan, P.; Gao, J.; Zheng, G.; Liu, C.; Shen, C. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability. ACS Appl. Mater. Interfaces 2017, 9, 42266–42277. DOI: 10.1021/acsami.7b16975.
  • Li, H.; Zong, Y.; He, J.; Ding, Q.; Jiang, Y.; Li, X.; Han, W. Wood-Inspired High Strength and Lightweight Aerogel Based on Carbon Nanotube and Nanocellulose Fiber for Heat Collection. Carbohyd. Polym. 2022, 280, 119036. DOI: 10.1016/j.carbpol.2021.119036.
  • Luo, J. W.; Wang, Y.; Qu, Z. J.; Wang, W.; Yu, D. Lightweight and Robust Cobalt Ferrite/Carbon Nanotubes/Waterborne Polyurethane Hybrid Aerogels for Efficient Microwave Absorption and Thermal Insulation. J. Mater. Chem. C 2021, 9, 12201–12212. DOI: 10.1039/D1TC02427B.
  • Wang, R.; Wang, H. Y.; Sun, L. Y.; Wang, E. Q.; Zhu, Y. X.; Zhu, Y. J. The Fabrication and Tribological Behavior of Epoxy Composites Modified by the Three-Dimensional Polyurethane Sponge Reinforced with Dopamine Functionalized Carbon Nanotubes. Appl. Surf. Sci. 2016, 360, 37–44. DOI: 10.1016/j.apsusc.2015.10.222.
  • Ji, K.; Zhao, H.; Zhang, J.; Chen, J.; Dai, Z. Fabrication and Electromagnetic Interference Shielding Performance of Open-Cell Foam of a Cu-Ni Alloy Integrated with CNTs. Appl. Surf. Sci. 2014, 311, 351–356. DOI: 10.1016/j.apsusc.2014.05.067.
  • Tang, Z.; Jia, S.; Zhou, C.; Li, B. 3D Printing of Highly Sensitive and Large-Measurement-Range Flexible Pressure Sensors with a Positive Piezoresistive Effect. ACS Appl. Mater. Interfaces 2020, 12, 28669–28680. DOI: 10.1021/acsami.0c06977.
  • Pei, X. Y.; Zhao, M. Y.; Li, R. X.; Lu, H.; Yu, R. R.; Xu, Z. W.; Li, D. S.; Tang, Y. H.; Xing, W. J. Porous Network Carbon Nanotubes/Chitosan 3D Printed Composites Based on Ball Milling for Electromagnetic Shielding. Compos. Part A-Appl S. 2021, 145, 106363. DOI: 10.1016/j.compositesa.2021.106363.
  • Memon, M. O.; Haillot, S.; Lafdi, K. Carbon Nanofiber Based Buckypaper Used as a Thermal Interface Material. Carbon 2011, 49, 3820–3828. DOI: 10.1016/j.carbon.2011.05.015.
  • Bal, S. Experimental Study of Mechanical and Electrical Properties of Carbon Nanofiber/Epoxy Composites. Mater. Design 2010, 31, 2406–2413. DOI: 10.1016/j.matdes.2009.11.058.
  • Liu, J.; Yue, Z.; Fong, H. Continuous Nanoscale Carbon Fibers with Superior Mechanical Strength. Small 2009, 5, 536–542. DOI: 10.1002/smll.200801440.
  • Li, C.; Ding, Y. W.; Hu, B. C.; Wu, Z. Y.; Gao, H. L.; Liang, H. W.; Chen, J. F.; Yu, S. H. Temperature-Invariant Superelastic and Fatigue Resistant Carbon Nanofiber Aerogels. Adv. Mater. 2020, 32, e1904331. DOI: 10.1002/adma.201904331.
  • Wang, Y.; Gao, Y.; Tang, B.; Wu, X.; Chen, J.; Shan, L.; Sun, K.; Zhao, Y.; Yang, K.; Yu, J.; Li, W. Epoxy Composite with High Thermal Conductivity by Constructing 3D-Oriented Carbon Fiber and BN Network Structure. RSC Adv. 2021, 11, 25422–25430. DOI: 10.1039/d1ra04602k.
  • Yan, Y. J.; Xia, H.; Fu, Y. Q.; Xu, Z. Z.; Ni, Q. Q. Carbon Nanofiber-Structured Polyurethane Foams for Compaction-Adjustable Microwave Shielding. Mater. Chem. Phys. 2020, 246, 122808. DOI: 10.1016/j.matchemphys.2020.122808.
  • Sridhar, D.; Omanovic, S.; Meunier, J. L. Direct Growth of Carbon Nanofiber Forest on Nickel Foam without Any External Catalyst. Diam. Relat. Mater. 2018, 81, 70–76. DOI: 10.1016/j.diamond.2017.11.011.
  • Song, L. T.; Wu, Z. Y.; Liang, H. W.; Zhou, F.; Yu, Z. Y.; Xu, L.; Pan, Z.; Yu, S. H. Macroscopic-Scale Synthesis of Nitrogen-Doped Carbon Nanofiber Aerogels by Template-Directed Hydrothermal Carbonization of Nitrogen-Containing Carbohydrates. Nano Energy 2016, 19, 117–127. DOI: 10.1016/j.nanoen.2015.10.004.
  • Chen, H.; Liu, T.; Mou, J.; Zhang, W.; Jiang, Z.; Liu, J.; Huang, J.; Liu, M. Free-Standing N-Self-Doped Carbon Nanofiber Aerogels for High-Performance All-Solid-State Supercapacitors. Nano Energy 2019, 63, 103836. DOI: 10.1016/j.nanoen.2019.06.032.
  • Wang, J.; Wan, Y. Z.; Xun, X. W.; Zheng, L. Y.; Zhang, Q. C.; Zhang, Z. H.; Xie, Y. X.; Luo, H. L.; Yang, Z. W. Engineering Bacteria for High-Performance Three-Dimensional Carbon Nanofiber Aerogel. Carbon 2021, 183, 267–276. DOI: 10.1016/j.carbon.2021.07.021.
  • Geng, H.; Zhang, X.; Xie, W.; Zhao, P.; Wang, G.; Liao, J.; Dong, L. Lightweight and Broadband 2D MoS2 Nanosheets/3D Carbon Nanofibers Hybrid Aerogel for High-Efficiency Microwave Absorption. J. Colloid Interf. Sci. 2022, 609, 33–42. DOI: 10.1016/j.jcis.2021.11.192.
  • Huang, J. Y.; Li, D. W.; Zhao, M.; Ke, H. Z.; Mensah, A.; Lv, P. F.; Tian, X. J.; Wei, Q. F. Flexible Electrically Conductive Biomass-Based Aerogels for Piezoresistive Pressure/Strain Sensors. Chem. Eng. J. 2019, 373, 1357–1366. DOI: 10.1016/j.cej.2019.05.136.
  • Huangfu, Y.; Ruan, K.; Qiu, H.; Lu, Y.; Liang, C.; Kong, J.; Gu, J. Fabrication and Investigation on the PANI/MWCNT/Thermally Annealed Graphene Aerogel/Epoxy Electromagnetic Interference Shielding Nanocomposites. Compos. Part A-Appl S. 2019, 121, 265–272. DOI: 10.1016/j.compositesa.2019.03.041.
  • Zhang, Y.; Jeong, C. K.; Wang, J. J.; Sun, H. J.; Li, F.; Zhang, G. Z.; Chen, L. Q.; Zhang, S. J.; Chen, W.; Wang, Q. Flexible Energy Harvesting Polymer Composites Based on Biofibril-Templated 3-Dimensional Interconnected Piezoceramics. Nano Energy 2018, 50, 35–42. DOI: 10.1016/j.nanoen.2018.05.025.
  • Zhang, Z.; Luo, S. B.; Yu, S. H.; Guan, Z. S.; Sun, R.; Wong, C. P. Significantly Enhanced Dielectric and Energy Storage Performance of Blend Polymer-Based Composites Containing Inorganic 3D-Network. Mater. Design 2018, 142, 106–113. DOI: 10.1016/j.matdes.2018.01.009.
  • Fang, H. M.; Bai, S. L.; Wong, C. P. Thermal, Mechanical and Dielectric Properties of Flexible BN Foam and BN Nanosheets Reinforced Polymer Composites for Electronic Packaging Application. Compos. Part A-Appl S. 2017, 100, 71–80. DOI: 10.1016/j.compositesa.2017.04.018.
  • Wang, X. W.; Wu, P. Y. Melamine Foam-Supported 3D Interconnected Boron Nitride Nanosheets Network Encapsulated in Epoxy to Achieve Significant Thermal Conductivity Enhancement at an Ultralow Filler Loading. Chem. Eng. J. 2018, 348, 723–731. DOI: 10.1016/j.cej.2018.04.196.
  • Han, Q.; Zhang, J.; Wang, X. Enhanced through-Thickness Thermal Conductivity of Epoxy with Cellulose-Supported Boron Nitride Nanosheets. Polymer 2019, 179, 121653. DOI: 10.1016/j.polymer.2019.121653.
  • Fan, L.; Zhang, S.; Zhao, G.; Fu, Q. Constructing Fibrillated Skeleton with Highly Aligned Boron Nitride Nanosheets Confined in Alumina Fiber via Electrospinning and Sintering for Thermally Conductive Composite. Compos. Part A-Appl S. 2021, 143, 106282. DOI: 10.1016/j.compositesa.2021.106282.
  • Wu, Y.; Yang, Z.; Wu, N.; Zhao, S.; Li, J.; Li, Y. Design of Three-Dimensional Interconnected Porous Hydroxyapatite Ceramic-Based Composite Phase Change Materials for Thermal Energy Storage. Int. J. Energy Res. 2020, 44, 11930–11940. DOI: 10.1002/er.5840.
  • Wang, Z. Y.; Xia, X. T.; Zhu, M.; Zhang, X. L.; Liu, R.; Ren, J.; Yang, J. Y.; Li, M.; Jiang, J.; Liu, Y. Rational Assembly of Liquid Metal/Elastomer Lattice Conductors for High-Performance and strain-Invariant Stretchable Electronics. Adv. Funct. Mater. 2022, 32, 2108336. DOI: 10.1002/adfm.202108336.
  • Yang, X.; Fan, S.; Li, Y.; Guo, Y.; Li, Y.; Ruan, K.; Zhang, S.; Zhang, J.; Kong, J.; Gu, J. Synchronously Improved Electromagnetic Interference Shielding and Thermal Conductivity for Epoxy Nanocomposites by Constructing 3D Copper Nanowires/Thermally Annealed Graphene Aerogel Framework. Compos. Part A-Appl S. 2020, 128, 105670. DOI: 10.1016/j.compositesa.2019.105670.
  • Oh, J. Y.; Lee, D.; Jun, G. H.; Ryu, H. J.; Hong, S. H. High Conductivity and Stretchability of 3D Welded Silver Nanowire Filled Graphene Aerogel Hybrid Nanocomposites. J. Mater. Chem. C 2017, 5, 8211–8218. DOI: 10.1039/C7TC01889D.
  • Liang, C.; Song, P.; Qiu, H.; Zhang, Y.; Ma, X.; Qi, F.; Gu, H.; Kong, J.; Cao, D.; Gu, J. Constructing Interconnected Spherical Hollow Conductive Networks in Silver Platelets/Reduced Graphene Oxide Foam/Epoxy Nanocomposites for Superior Electromagnetic Interference Shielding Effectiveness. Nanoscale 2019, 11, 22590–22598. DOI: 10.1039/C9NR06022G.
  • Loeblein, M.; Bolker, A.; Ngoh, Z. L.; Li, L. X.; Wallach, E.; Tsang, S. H.; Pawlik, M.; Verker, R.; Atar, N.; Gouzman, I.; Teo, E. H. T. Novel Timed and Self-Resistive Heating Shape Memory Polymer Hybrid for Large Area and Energy Efficient Application. Carbon 2018, 139, 626–634. DOI: 10.1016/j.carbon.2018.07.018.
  • Yang, W.; Wang, Y.; Li, Y.; Gao, C.; Tian, X.; Wu, N.; Geng, Z.; Che, S.; Yang, F.; Li, Y. Three-Dimensional Skeleton Assembled by Carbon Nanotubes/Boron Nitride as Filler in Epoxy for Thermal Management Materials with High Thermal Conductivity and Electrical Insulation. Compos. Part B-Eng. 2021, 224, 109168. DOI: 10.1016/j.compositesb.2021.109168.
  • Liang, C.; Song, P.; Ma, A.; Shi, X.; Gu, H.; Wang, L.; Qiu, H.; Kong, J.; Gu, J. Highly Oriented Three-Dimensional Structures of Fe3O4 Decorated CNTs/Reduced Graphene Oxide Foam/Epoxy Nanocomposites against Electromagnetic Pollution. Compos. Sci. Technol. 2019, 181, 107683. DOI: 10.1016/j.compscitech.2019.107683.
  • Hu, B.; Zhang, W.; Guo, H.; Xu, S.; Li, Y.; Li, M.; Li, B. Nacre-Mimetic Elastomer Composites with Synergistic Alignments of Boron Nitride/Graphene Oxide towards High through-Plane Thermal Conductivity. Compos. Part A-Appl S. 2022, 156, 106891. DOI: 10.1016/j.compositesa.2022.106891.
  • Ji, C.; Wang, Y.; Ye, Z.; Tan, L.; Mao, D.; Zhao, W.; Zeng, X.; Yan, C.; Sun, R.; Kang, D. J.; et al. Ice-Templated MXene/Ag-Epoxy Nanocomposites as High-Performance Thermal Management Materials. ACS Appl. Mater. Interfaces 2020, 12, 24298–24307. DOI: 10.1021/acsami.9b22744.
  • Jia, Z. X.; Zhang, M. F.; Liu, B.; Wang, F. C.; Wei, G.; Su, Z. Q. Graphene Foams for Electromagnetic Interference Shielding: A Review. ACS Appl. Nano Mater. 2020, 3, 6140–6155. DOI: 10.1021/acsanm.0c00835.
  • Unal, E.; Gokcen, A.; Kutlu, Y. Effective Electromagnetic Shielding. IEEE Microw. Mag. 2006, 7, 48–54. DOI: 10.1109/MMW.2006.1663989.
  • Wu, F.; Sun, M.; Jiang, W.; Zhang, K.; Xie, A.; Wang, Y.; Wang, M. A Self-Assembly Method for the Fabrication of a Three-Dimensional (3D) Polypyrrole (PPy)/Poly(3,4-Ethylenedioxythiophene) (PEDOT) Hybrid Composite with Excellent Absorption Performance against Electromagnetic Pollution. J. Mater. Chem. C 2016, 4, 82–88. DOI: 10.1039/C5TC02887F.
  • Chandra, R. B. J.; Shivamurthy, B.; Kulkarni, S. D.; Kumar, M. S. Hybrid Polymer Composites for EMI Shielding Application- a Review. Mater. Res. Express 2019, 6, 082008. DOI: 10.1088/2053-1591/aaff00.
  • Geetha, S.; Kumar, K. K. S.; Rao, C. R. K.; Vijayan, M.; Trivedi, D. C. EMI Shielding: Methods and Materials-a Review. J. Appl. Polym. Sci. 2009, 112, 2073–2086. DOI: 10.1002/app.29812.
  • Jiang, D. W.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z. C.; Shao, Q.; Wang, C.; Liu, H.; Lu, N.; et al. Electromagnetic Interference Shielding Polymers and Nanocomposites-a Review. Polym. Rev. 2019, 59, 280–337. DOI: 10.1080/15583724.2018.1546737.
  • Lee, J.; Liu, Y.; Liu, Y.; Park, S. J.; Park, M.; Kim, H. Y. Ultrahigh Electromagnetic Interference Shielding Performance of Lightweight, Flexible, and Highly Conductive Copper-Clad Carbon Fiber Nonwoven Fabrics. J. Mater. Chem. C 2017, 5, 7853–7861. DOI: 10.1039/C7TC02074K.
  • Yousefi, N.; Sun, X.; Lin, X.; Shen, X.; Jia, J.; Zhang, B.; Tang, B.; Chan, M.; Kim, J.-K. Highly Aligned Graphene/Polymer Nanocomposites with Excellent Dielectric Properties for High-Performance Electromagnetic Interference Shielding. Adv. Mater. 2014, 26, 5480–5487. DOI: 10.1002/adma.201305293.
  • Li, X. H.; Li, X.; Liao, K.-N.; Min, P.; Liu, T.; Dasari, A.; Yu, Z. Z. Thermally Annealed Anisotropic Graphene Aerogels and Their Electrically Conductive Epoxy Composites with Excellent Electromagnetic Interference Shielding Efficiencies. ACS Appl. Mater. Interfaces 2016, 8, 33230–33239. DOI: 10.1021/acsami.6b12295.
  • Liang, C. B.; Qiu, H.; Han, Y. Y.; Gu, H. B.; Song, P.; Wang, L.; Kong, J.; Cao, D. P.; Gu, J. W. Superior Electromagnetic Interference Shielding 3D Graphene Nanoplatelets/Reduced Graphene Oxide Foam/Epoxy Nanocomposites with High Thermal Conductivity. J. Mater. Chem. C 2019, 7, 2725–2733. DOI: 10.1039/C8TC05955A.
  • Wang, L.; Chen, L. X.; Song, P.; Liang, C. B.; Lu, Y. J.; Qiu, H.; Zhang, Y. L.; Kong, J.; Gu, J. W. Fabrication on the Annealed Ti3C2Tx MXene/Epoxy Nanocomposites for Electromagnetic Interference Shielding Application. Compos. Part B-Eng. 2019, 171, 111–118. DOI: 10.1016/j.compositesb.2019.04.050.
  • Liang, C. B.; Song, P.; Qiu, H.; Huangfu, Y. M.; Lu, Y. J.; Wang, L.; Kong, J.; Gu, J. W. Superior Electromagnetic Interference Shielding Performances of Epoxy Composites by Introducing Highly Aligned Reduced Graphene Oxide Films. Compos. Part A-Appl S. 2019, 124, 105512. DOI: 10.1016/j.compositesa.2019.105512.
  • Zhao, S.; Yan, Y.; Gao, A.; Zhao, S.; Cui, J.; Zhang, G. Flexible Polydimethylsilane Nanocomposites Enhanced with a Three-Dimensional Graphene/Carbon Nanotube Bicontinuous Framework for High-Performance Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2018, 10, 26723–26732. DOI: 10.1021/acsami.8b09275.
  • Bhattacharjee, Y.; Chatterjee, D.; Bose, S. Core-Multishell Heterostructure with Excellent Heat Dissipation for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2018, 10, 30762–30773. DOI: 10.1021/acsami.8b10819.
  • Kuester, S.; Merlini, C.; Barra, G. M. O.; Ferreira, J. C.; Jr. Lucas, A.; de Souza, A. C.; Soares, B. G. Processing and Characterization of Conductive Composites Based on Poly(Styrene-b-Ethylene-Ran-Butylene-b-Styrene) (SEBS) and Carbon Additives: A Comparative Study of Expanded Graphite and Carbon Black. Compos. Part B-Eng. 2016, 84, 236–247. DOI: 10.1016/j.compositesb.2015.09.001.
  • Mondal, S.; Ganguly, S.; Das, P.; Bhawal, P.; Das, T. K.; Ravindren, R.; Ghosh, S.; Das, N. C. Effect of Thermal-Air Ageing Treatment on Mechanical Properties and Electromagnetic Interference Shielding Effectiveness of Low-Cost Nano-Structured Carbon Filled Chlorinated Polyethylene. Mater. Sci. Eng. B-Adv. 2017, 225, 140–149. DOI: 10.1016/j.mseb.2017.08.024.
  • Mondal, S.; Ganguly, S.; Das, P.; Khastgir, D.; Das, N. C. Low Percolation Threshold and Electromagnetic Shielding Effectiveness of Nano-Structured Carbon Based Ethylene Methyl Acrylate Nanocomposites. Compos. Part B-Eng. 2017, 119, 41–56. DOI: 10.1016/j.compositesb.2017.03.022.
  • Ravindren, R.; Mondal, S.; Bhawal, P.; Ali, S. M. N.; Das, N. C. Superior Electromagnetic Interference Shielding Effectiveness and Low Percolation Threshold through the Preferential Distribution of Carbon Black in the Highly Flexible Polymer Blend Composites. Polym. Composite 2019, 40, 1404–1418. DOI: 10.1002/pc.24874.
  • Shi, Y. D.; Yu, H. O.; Li, J.; Tan, Y. J.; Chen, Y. F.; Wang, M.; Wu, H.; Guo, S. Y. Low Magnetic Field-Induced Alignment of Nickel Particles in Segregated Poly (L-Lactide)/Poly(Epsilon-Caprolactone)/Multi-Walled Carbon Nanotube Nanocomposites: Towards Remarkable and Tunable Conductive Anisotropy. Chem. Eng. J. 2018, 347, 472–482. DOI: 10.1016/j.cej.2018.04.147.
  • Yadav, R. S.; Kuřitka, I.; Vilcakova, J.; Skoda, D.; Urbánek, P.; Machovsky, M.; Masař, M.; Kalina, L.; Havlica, J. Lightweight NiFe2O4-Reduced Graphene Oxide-Elastomer Nanocomposite Flexible Sheet for Electromagnetic Interference Shielding Application. Compos. Part B-Eng. 2019, 166, 95–111. DOI: 10.1016/j.compositesb.2018.11.069.
  • Abraham, J.; Arif, M.; Xavier, P.; Bose, S.; George, S. C.; Kalarikkal, N.; Thomas, S. Investigation into Dielectric Behaviour and Electromagnetic Interference Shielding Effectiveness of Conducting Styrene Butadiene Rubber Composites Containing Ionic Liquid Modified MWCNT. Polymer 2017, 112, 102–115. DOI: 10.1016/j.polymer.2017.01.078.
  • Bora, P. J.; Lakhani, G.; Ramamurthy, P. C.; Madras, G. Outstanding Electromagnetic Interference Shielding Effectiveness of Polyvinylbutyral-Polyaniline Nanocomposite Film. RSC Adv. 2016, 6, 79058–79065. DOI: 10.1039/C6RA14277J.
  • Dul, S.; Ecco, L. G.; Pegoretti, A.; Fambri, L. Graphene/Carbon Nanotube Hybrid Nanocomposites: Effect of Compression Molding and Fused Filament Fabrication on Properties. Polymers 2020, 12, 101. DOI: 10.3390/polym12010101.
  • Hoseini, A. H. A.; Arjmand, M.; Sundararaj, U.; Trifkovic, M. Significance of Interfacial Interaction and Agglomerates on Electrical Properties of Polymer-Carbon Nanotube Nanocomposites. Mater. Design 2017, 125, 126–134. DOI: 10.1016/j.matdes.2017.04.004.
  • Jang, J. U.; Cha, J. E.; Lee, S. H.; Kim, J.; Yang, B.; Kim, S. Y.; Kim, S. H. Enhanced Electrical and Electromagnetic Interference Shielding Properties of Uniformly Dispersed Carbon Nanotubes Filled Composite Films via Solvent-Free Process Using Ring-Opening Polymerization of Cyclic Butylene Terephthalate. Polymer 2020, 186, 122030. DOI: 10.1016/j.polymer.2019.122030.
  • Maiti, S.; Bera, R.; Karan, S. K.; Paria, S.; De, A.; Khatua, B. B. PVC Bead Assisted Selective Dispersion of MWCNT for Designing Efficient Electromagnetic Interference Shielding PVC/MWCNT Nanocomposite with Very Low Percolation Threshold. Compos. Part B-Eng. 2019, 167, 377–386. DOI: 10.1016/j.compositesb.2019.03.012.
  • Mondal, S.; Nayak, L.; Rahaman, M.; Aldalbahi, A.; Chaki, T. K.; Khastgir, D.; Das, N. C. An Effective Strategy to Enhance Mechanical, Electrical, and Electromagnetic Shielding Effectiveness of Chlorinated Polyethylene-Carbon Nanofiber Nanocomposites. Compos. Part B-Eng. 2017, 109, 155–169. DOI: 10.1016/j.compositesb.2016.10.049.
  • Arief, I.; Biswas, S.; Bose, S. Tuning the Shape Anisotropy and Electromagnetic Screening Ability of Ultrahigh Magnetic Polymer and Surfactant-Capped FeCo Nanorods and Nanocubes in Soft Conducting Composites. ACS Appl. Mater. Interfaces 2016, 8, 26285–26297. DOI: 10.1021/acsami.6b07464.
  • Ravindren, R.; Mondal, S.; Nath, K.; Das, N. C. Prediction of Electrical Conductivity, Double Percolation Limit and Electromagnetic Interference Shielding Effectiveness of Copper Nanowire Filled Flexible Polymer Blend Nanocomposites. Compos. Part B-Eng. 2019, 164, 559–569. DOI: 10.1016/j.compositesb.2019.01.066.
  • Sharika, T.; Abraham, J.; Arif, P.; George, M.; Kalarikkal, S. C.; Thomas, N. S. Excellent Electromagnetic Shield Derived from MWCNT Reinforced NR/PP Blend Nanocomposites with Tailored Microstructural Properties. Compos. Part B-Eng. 2019, 173, 106798. DOI: 10.1016/j.compositesb.2019.05.009.
  • Acharya, S.; Alegaonkar, P.; Datar, S. Effect of Formation of Heterostructure of SrAl4Fe8O19/RGO/PVDF on the Microwave Absorption Properties of the Composite. Chem. Eng. J. 2019, 374, 144–154. DOI: 10.1016/j.cej.2019.05.078.
  • Bhawal, P.; Ganguly, S.; Das, T. K.; Mondal, S.; Choudhury, S.; Das, N. C. Superior Electromagnetic Interference Shielding Effectiveness and Electro-Mechanical Properties of EMA-IRGO Nanocomposites through the in-Situ Reduction of GO from Melt Blended EMA-GO Composites. Compos. Part B-Eng. 2018, 134, 46–60. DOI: 10.1016/j.compositesb.2017.09.046.
  • Chen, Y.; Zhang, H. B.; Huang, Y. Q.; Jiang, Y.; Zheng, W. G.; Yu, Z. Z. Magnetic and Electrically Conductive Epoxy/Graphene/Carbonyl Iron Nanocomposites for Efficient Electromagnetic Interference Shielding. Compos. Sci. Technol. 2015, 118, 178–185. DOI: 10.1016/j.compscitech.2015.08.023.
  • Chhetri, S.; Adak, N. C.; Samanta, P.; Murmu, N. C.; Srivastava, S. K.; Kuila, T. Synergistic Effect of Fe3O4 Anchored N-Doped rGO Hybrid on Mechanical, Thermal and Electromagnetic Shielding Properties of Epoxy Composites. Compos. Part B-Eng. 2019, 166, 371–381. DOI: 10.1016/j.compositesb.2019.02.036.
  • Im, H. J.; Oh, J. Y.; Ryu, S.; Hong, S. H. The Design and Fabrication of a Multilayered Graded GNP/Ni/PMMA Nanocomposite for Enhanced EMI Shielding Behavior. RSC Adv. 2019, 9, 11289–11295. DOI: 10.1039/c9ra00573k.
  • Kashi, S.; Gupta, R. K.; Baum, T.; Kao, N.; Bhattacharya, S. N. Dielectric Properties and Electromagnetic Interference Shielding Effectiveness of Graphene-Based Biodegradable Nanocomposites. Mater. Design 2016, 109, 68–78. DOI: 10.1016/j.matdes.2016.07.062.
  • Kashi, S.; Hadigheh, S. A.; Varley, R. Microwave Attenuation of Graphene Modified Thermoplastic Poly(Butylene Adipate-co-Terephthalate) Nanocomposites. Polymers 2018, 10, 582. DOI: 10.3390/polym10060582.
  • Kuester, S.; Demarquette, N. R.; Ferreira, J. C.; Soares, B. G.; Barra, G. M. O. Hybrid Nanocomposites of Thermoplastic Elastomer and Carbon Nanoadditives for Electromagnetic Shielding. Eur. Polym. J. 2017, 88, 328–339. DOI: 10.1016/j.eurpolymj.2017.01.023.
  • Li, Y.; Wang, S.; Peng, Q.; Zhou, Z.; Yang, Z.; He, X.; Li, Y. Active Control of Graphene-Based Membrane-Type Acoustic Metamaterials Using a Low Voltage. Nanoscale 2019, 11, 16384–16392. DOI: 10.1039/c9nr04931b.
  • Liu, H. J.; Liang, C. Z.; Chen, J. J.; Huang, Y. W.; Cheng, F.; Wen, F. B.; Xu, B. B.; Wang, B. Novel 3D Network Porous Graphene Nanoplatelets/Fe3O4/Epoxy Nanocomposites with Enhanced Electromagnetic Interference Shielding Efficiency. Compos. Sci. Technol. 2019, 169, 103–109. DOI: 10.1016/j.compscitech.2018.11.005.
  • Verma, M.; Chauhan, S. S.; Dhawan, S. K.; Choudhary, V. Graphene Nanoplatelets/Carbon Nanotubes/Polyurethane Composites as Efficient Shield against Electromagnetic Polluting Radiations. Compos. Part B-Eng. 2017, 120, 118–127. DOI: 10.1016/j.compositesb.2017.03.068.
  • Wu, J.; Ye, Z.; Ge, H.; Chen, J.; Liu, W.; Liu, Z. Modified Carbon Fiber/Magnetic Graphene/Epoxy Composites with Synergistic Effect for Electromagnetic Interference Shielding over Broad Frequency Band. J. Colloid Interf. Sci. 2017, 506, 217–226. DOI: 10.1016/j.jcis.2017.07.020.
  • Liang, X.; Dai, F. Epoxy Nanocomposites with Reduced Graphene Oxide-Constructed Three-Dimensional Networks of Single Wall Carbon Nanotube for Enhanced Thermal Management Capability with Low Filler Loading. ACS Appl. Mater. Interfaces 2020, 12, 3051–3058. DOI: 10.1021/acsami.9b20189.
  • Conrado, F.; Pavese, M. A Continuous 3D-Graphene Network to Overcome Threshold Issues and Contact Resistance in Thermally Conductive Graphene Nanocomposites. J. Nanomater. 2017, 1, 8974174. DOI: 10.1155/2017/8974174.
  • Yang, W.; Xiong, J.; Wu, L.; Du, Y. Methods for Enhancing the Thermal Properties of Epoxy Matrix Composites Using 3D Network Structures. Compos. Commun. 2019, 12, 14–20. DOI: 10.1016/j.coco.2018.12.004.
  • Pu, X.; Zhang, H. B.; Li, X. F.; Gui, C. X.; Yu, Z. Z. Thermally Conductive and Electrically Insulating Epoxy Nanocomposites with Silica-Coated Graphene. RSC Adv. 2014, 4, 15297–15303. DOI: 10.1039/C4RA00518J.
  • Du, F. P.; Yang, W.; Zhang, F.; Tang, C. Y.; Liu, S. P.; Yin, L.; Law, W. C. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure. ACS Appl. Mater. Interfaces 2015, 7, 14397–14403. DOI: 10.1021/acsami.5b03196.
  • Rafiee, M.; Nitzsche, F.; Laliberte, J.; Hind, S.; Robitaille, F.; Labrosse, M. R. Thermal Properties of Doubly Reinforced Fiberglass/Epoxy Composites with Graphene Nanoplatelets, Graphene Oxide and Reduced-Graphene Oxide. Compos. Part B-Eng. 2019, 164, 1–9. DOI: 10.1016/j.compositesb.2018.11.051.
  • Pan, Y. T.; Wan, J. T.; Zhao, X. L.; Li, C.; Wang, D. Y. Interfacial Growth of MOF-Derived Layered Double Hydroxide Nanosheets on Graphene Slab towards Fabrication of Multifunctional Epoxy Nanocomposites. Chem. Eng. J. 2017, 330, 1222–1231. DOI: 10.1016/j.cej.2017.08.059.
  • Zhang, R. C.; Huang, Z. R.; Huang, Z. H.; Zhong, M. L.; Zang, D. M.; Lu, A.; Lin, Y. F.; Millar, B.; Garet, G.; Turner, J.; et al. Uniaxially Stretched Polyethylene/Boron Nitride Nanocomposite Films with Metal-like Thermal Conductivity. Compos. Sci. Technol. 2020, 196, 108154. DOI: 10.1016/j.compscitech.2020.108154.
  • Lin, M. Y.; Li, Y. H.; Xu, K.; Ou, Y. H.; Su, L. F.; Feng, X.; Li, J.; Qi, H. S.; Liu, D. T. Thermally Conductive Nanostructured, Aramid Dielectric Composite Films with Boron Nitride Nanosheets. Compos. Sci. Technol. 2019, 175, 85–91. DOI: 10.1016/j.compscitech.2019.02.006.
  • Gu, J. W.; Liang, C. B.; Zhao, X. M.; Gan, B.; Qiu, H.; Guo, Y. Q.; Yang, X. T.; Zhang, Q. Y.; Wang, D. Y. Highly Thermally Conductive Flame-Retardant Epoxy Nanocomposites with Reduced Ignitability and Excellent Electrical Conductivities. Compos. Sci. Technol. 2017, 139, 83–89. DOI: 10.1016/j.compscitech.2016.12.015.
  • Guo, H.; Li, X.; Li, B. A.; Wang, J. X.; Wang, S. C. Thermal Conductivity of Graphene/Poly(Vinylidene Fluoride) Nanocomposite Membrane. Mater. Design 2017, 114, 355–363. DOI: 10.1016/j.matdes.2016.11.010.
  • Han, W. F.; Chen, M. Y.; Song, W.; Ge, C. H.; Zhang, X. D. Construction of Hexagonal Boron Nitride@Polystyrene Nanocomposite with High Thermal Conductivity for Thermal Management Application. Ceram. Int. 2020, 46, 7595–7601. DOI: 10.1016/j.ceramint.2019.11.259.
  • Chang, H. P.; Liu, H. C.; Tan, C. S. Using Supercritical CO2-Assisted Mixing to Prepare Graphene/Carbon Nanotube/Epoxy Nanocomposites. Polymer 2015, 75, 125–133. DOI: 10.1016/j.polymer.2015.08.023.
  • Wang, Y. Y.; Zhang, X.; Ding, X.; Zhang, P.; Shu, M. T.; Zhang, Q.; Gong, Y.; Zheng, K.; Tian, X. Y. Imidization-Induced Carbon Nitride Nanosheets Orientation towards Highly Thermally Conductive Polyimide Film with Superior Flexibility and Electrical Insulation. Compos. Part B-Eng. 2020, 199, 108267. DOI: 10.1016/j.compositesb.2020.108267.
  • Gonçalves, J.; Lima, P.; Krause, B.; Pötschke, P.; Lafont, U.; Gomes, J. R.; Abreu, C. S.; Paiva, M. C.; Covas, J. A. Electrically Conductive Polyetheretherketone Nanocomposite Filaments: From Production to Fused Deposition Modeling. Polymers 2018, 10, 925. DOI: 10.3390/polym10080925.
  • Wang, C. M.; Chen, K.; Huang, J.; Cai, Z. Y.; Hu, Z. J.; Wang, T. J. Thermal Behavior of Polyethylene Glycol Based Phase Change Materials for Thermal Energy Storage with Multiwall Carbon Nanotubes Additives. Energy 2019, 180, 873–880. DOI: 10.1016/j.energy.2019.05.163.
  • Song, S. K.; Qiu, F.; Zhu, W. T.; Guo, Y.; Zhang, Y.; Ju, Y. Y.; Feng, R.; Liu, Y.; Chen, Z.; Zhou, J.; et al. Polyethylene Glycol/Halloysite@Ag Nanocomposite PCM for Thermal Energy Storage: Simultaneously High Latent Heat and Enhanced Thermal Conductivity. Sol. Energ. Mat. Sol. C 2019, 193, 237–245. DOI: 10.1016/j.solmat.2019.01.023.
  • Jafarpour, E.; Shojaei, A.; Ahmadijokani, F. High-Performance Styrene-Butadiene Rubber Nanocomposites Based on Carbon Nanotube/Nanodiamond Hybrid with Synergistic Thermal Conduction Characteristics and Electrically Insulating Properties. Polymer 2020, 196, 122470. DOI: 10.1016/j.polymer.2020.122470.
  • Lule, Z.; Kim, J. Surface Modification of Aluminum Nitride to Fabricate Thermally Conductive Poly(Butylene Succinate) Nanocomposite. Polymers 2019, 11, 148. DOI: 10.3390/polym11010148.
  • Ji, C.; Yan, C. Z.; Wang, Y.; Xiong, S. X.; Zhou, F. R.; Li, Y. Y.; Sun, R.; Wong, C. P. Thermal Conductivity Enhancement of CNT/MoS2/Graphene-Epoxy Nanocomposites Based on Structural Synergistic Effects and Interpenetrating Network. Compos. Part B-Eng. 2019, 163, 363–370. DOI: 10.1016/j.compositesb.2018.11.005.
  • Huang, H.; Yan, L.; Guo, Y.; Lin, H. L.; Chen, L.; Yang, L.; Xie, Y. J.; Bian, J. Morphological, Mechanical and Thermal Properties of PA6 Nanocomposites Co-Incorporated with Nano-Al2O3 and Graphene Oxide Fillers. Polymer 2020, 188, 122119. DOI: 10.1016/j.polymer.2019.122119.
  • Flaifel, M. H.; Ahmad, S. H.; Hassan, A.; Bahri, S.; Tarawneh, M. A.; Yu, L. J. Thermal Conductivity and Dynamic Mechanical Analysis of NiZn Ferrite Nanoparticles Filled Thermoplastic Natural Rubber Nanocomposite. Compos. Part B-Eng. 2013, 52, 334–339. DOI: 10.1016/j.compositesb.2013.04.021.
  • El-Shamy, A. G. Novel Hybrid Nanocomposite Based on Poly(Vinyl Alcohol)/Carbon Quantum Dots/Fullerene (PVA/CQDs/C-60) for Thermoelectric Power Applications. Compos. Part B-Eng. 2019, 174, 106993. DOI: 10.1016/j.compositesb.2019.106993.
  • Mo, Z.; Mo, P.; Yi, M.; Hu, Z.; Tan, G.; Selim, M. S.; Chen, Y.; Chen, X.; Hao, Z.; Wei, X. Ti3C2Tx@Polyvinyl Alcohol Foam-Supported Phase Change Materials with Simultaneous Enhanced Thermal Conductivity and Solar-Thermal Conversion Performance. Sol. Energ. Mat. Sol. C 2021, 219, 110813. DOI: 10.1016/j.solmat.2020.110813.
  • Zhu, C.; Zhao, C.; Chen, Z.; Zhu, R.; Sheng, N.; Rao, Z. Anisotropically Thermal Transfer Improvement and Shape Stabilization of Paraffin Supported by SiC-Coated Biomass Carbon Fiber Scaffolds for Thermal Energy Storage. J. Energy Storage 2022, 46, 103866. DOI: 10.1016/j.est.2021.103866.
  • Gong, S.; Li, X.; Sheng, M.; Liu, S.; Zheng, Y.; Wu, H.; Lu, X.; Qu, J. High Thermal Conductivity and Mechanical Strength Phase Change Composite with Double Supporting Skeletons for Industrial Waste Heat Recovery. ACS Appl. Mater. Interfaces 2021, 13, 47174–47184. DOI: 10.1021/acsami.1c15670.
  • Tang, L.; Zhao, X.; Feng, C.; Bai, L.; Yang, J.; Bao, R.; Liu, Z.; Yang, M.; Yang, W. Bacterial Cellulose/MXene Hybrid Aerogels for Photodriven Shape-Stabilized Composite Phase Change Materials. Sol. Energ. Mat. Sol. C 2019, 203, 110174. DOI: 10.1016/j.solmat.2019.110174.
  • Shao, Y. W.; Hu, W. W.; Gao, M. H.; Xiao, Y. Y.; Huang, T.; Zhang, N.; Yang, J. H.; Qi, X. D.; Wang, Y. Flexible MXene-Coated Melamine Foam Based Phase Change Material Composites for Integrated Solar-Thermal Energy Conversion/Storage, Shape Memory and Thermal Therapy Functions, Compos. Part A-Appl S. 2021, 143, 106291. DOI: 10.1016/j.compositesa.2021.106291.
  • Zheng, Z.; Liu, H.; Wu, D.; Wang, X. Polyimide/MXene Hybrid Aerogel-Based Phase-Change Composites for Solar-Driven Seawater Desalination. Chem. Eng. J. 2022, 440, 135862. DOI: 10.1016/j.cej.2022.135862.
  • Sun, L.; Huang, W. M.; Ding, Z.; Zhao, Y.; Wang, C. C.; Purnawali, H.; Tang, C. Stimulus-Responsive Shape Memory Materials: A Review. Mater. Design 2012, 33, 577–640. DOI: 10.1016/j.matdes.2011.04.065.
  • Zhou, G.; Zhang, H.; Xu, S.; Gui, X.; Wei, H.; Leng, J.; Koratkar, N.; Zhong, J. Fast Triggering of Shape Memory Polymers Using an Embedded Carbon Nanotube Sponge Network. Sci. Rep. 2016, 6, 24148. DOI: 10.1038/srep24148.
  • Jiang, H.; Kelch, S.; Lendlein, A. Polymers Move in Response to Light. Adv. Mater. 2006, 18, 1471–1475. DOI: 10.1002/adma.200502266.
  • Guo, W.; Lu, C.-H.; Orbach, R.; Wang, F.; Qi, X.-J.; Cecconello, A.; Seliktar, D.; Willner, I. Willner, I. pH-Stimulated DNA Hydrogels Exhibiting Shape-Memory Properties. Adv. Mater. 2015, 27, 73–78. DOI: 10.1002/adma.201403702.
  • Schmidt, A. M. Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles. Macromol. Rapid Commun. 2006, 27, 1168–1172. [Database] DOI: 10.1002/marc.200600225.
  • Chan, B. Q. Y.; Low, Z. W. K.; Heng, S. J. W.; Chan, S. Y.; Owh, C.; Loh, X. J. Recent Advances in Shape Memory Soft Materials for Biomedical Applications. ACS Appl. Mater. Interfaces 2016, 8, 10070–10087. DOI: 10.1021/acsami.6b01295.
  • Liu, Y. F.; Wu, J. L.; Song, S. L.; Xu, L. X.; Chen, J.; Peng, W. Thermo-Mechanical Properties of Glass Fiber Reinforced Shape Memory Polyurethane for Orthodontic Application. J. Mater. Sci: Mater. Med. 2018, 29, 157. DOI: 10.1007/s10856-018-6157-y.
  • Mu, T.; Liu, L.; Lan, X.; Liu, Y.; Leng, J. Shape Memory Polymers for Composites. Compos. Sci. Technol. 2018, 160, 169–198. DOI: 10.1016/j.compscitech.2018.03.018.
  • Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Adv. Mater. 2021, 33, e2000713. DOI: 10.1002/adma.202000713.
  • Xu, L.; Zhao, J.; Shi, M.; Liu, J.; Wang, Z. Thermodynamic Properties of TPI Shape Memory Polymer Composites Reinforced by GO/SiO2 Modified Carbon Fiber. Compos. Sci. Technol. 2022, 226, 109551. DOI: 10.1016/j.compscitech.2022.109551.
  • Cho, J. W.; Kim, J. W.; Jung, Y. C.; Goo, N. S. Electroactive Shape-Memory Polyurethane Composites Incorporating Carbon Nanotubes. Macromol. Rapid Commun. 2005, 26, 412–416. [Database] DOI: 10.1002/marc.200400492.
  • Abishera, R.; Velmurugan, R.; Gopal, K. V. N. Reversible Plasticity Shape Memory Effect in Carbon Nanotubes Reinforced Epoxy Nanocomposites. Compos. Sci. Technol. 2016, 137, 148–158. DOI: 10.1016/j.compscitech.2016.10.030.
  • Gu, H.; Zhang, H.; Ma, C.; Sun, H.; Liu, C.; Dai, K.; Zhang, J.; Wei, R.; Ding, T.; Guo, Z. Smart Strain Sensing Organic- Inorganic Hybrid Hydrogels with Nano Barium Ferrite as the Cross- Linker. J. Mater. Chem. C 2019, 7, 2353–2360. DOI: 10.1039/C8TC05448G.
  • Xie, W.; Yao, F.; Gu, H.; Du, A.; Lei, Q.; Naik, N.; Guo, Z. Magnetoresistive and Piezoresistive Polyaniline Nanoarrays in-Situ Polymerized Surrounding Magnetic Graphene Aerogel. Adv. Compos. Hybrid Mater. 2022, 5, 1003–1016. DOI: 10.1007/s42114-021-00413-y.
  • Li, J.; Li, N.; Zheng, Y.; Lou, D.; Jiang, Y.; Jiang, J.; Xu, Q.; Yang, J.; Sun, Y.; Pan, C.; et al. Interfacially Locked Metal Aerogel inside Porous Polymer Composite for Sensitive and Durable Flexible Piezoresistive Sensors. Adv. Sci. 2022, 9, 2201912. DOI: 10.1002/advs.202201912.
  • Zhang, G. F.; Wei, Z. X.; Chen, B. Q.; Chen, B. Abnormal Transient Liquid Phase Bondability of High-Volume Fraction SiC Particle-Reinforced A356 Composite for Cu Interlayer and the Interlayer Improvement Routes. J. Materi. Eng. Perform. 2017, 26, 5921–5937. DOI: 10.1007/s11665-017-3070-3.
  • Liu, W. J.; Liu, N. S.; Yue, Y.; Rao, J. Y.; Luo, C.; Zhang, H.; Yang, C. X.; Su, J.; Liu, Z. T.; Gao, Y. H. A Flexible and Highly Sensitive Pressure Sensor Based on Elastic Carbon Foam. J. Mater. Chem. C 2018, 6, 1451–1458. DOI: 10.1039/C7TC05228F.
  • Chen, Y.-F.; Li, J.; Tan, Y.-J.; Cai, J.-H.; Tang, X.-H.; Liu, J.-H.; Wang, M. Achieving Highly Electrical Conductivity and Piezoresistive Sensitivity in Polydimethylsiloxane/Multi-Walled Carbon Nanotube Composites via the Incorporation of Silicon Dioxide Micro-Particles. Compos. Sci. Technol. 2019, 177, 41–48. DOI: 10.1016/j.compscitech.2019.04.017.
  • Sun, Y.; Li, D.; Kim, J. U.; Li, B.; Cho, S.-H.; Kim, T-i.; Nam, J.-D.; Ci, L.; Suhr, J. Carbon Aerogel Reinforced PDMS Nanocomposites with Controllable and Hierarchical Microstructures for Multifunctional Wearable Devices. Carbon 2021, 171, 758–767. DOI: 10.1016/j.carbon.2020.09.073.
  • Huang, J.; Wang, J.; Yang, Z.; Yang, S. High-Performance Graphene Sponges Reinforced with Polyimide for Room-Temperature Piezoresistive Sensing. ACS Appl. Mater. Interfaces 2018, 10, 8180–8189. DOI: 10.1021/acsami.7b17018.
  • Wang, T.; Li, J.; Zhang, Y.; Liu, F.; Zhang, B.; Wang, Y.; Jiang, R.; Zhang, G.; Sun, R.; Wong, C. P. Highly Ordered 3D Porous Graphene Sponge for Wearable Piezoresistive Pressure Sensor Applications. Chemistry 2019, 25, 6378–6384. DOI: 10.1002/chem.201900014.
  • Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem-US 2019, 5, 2326–2352. DOI: 10.1016/j.chempr.2019.05.009.
  • Liu, L. H.; Lyu, J.; Mo, J. S.; Peng, P.; Li, J. R.; Jiang, B.; Chu, L. H.; Li, M. C. Flexible, High-Voltage, Ion-Conducting Composite Membranes with 3D Aramid Nanofiber Frameworks for Stable All-Solid-State Lithium Metal Batteries. Sci. China Mater. 2020, 63, 703–718. DOI: 10.1007/s40843-019-1240-2.
  • Li, Z.; Sha, W. X.; Guo, X. Three-Dimensional Garnet Framework-Reinforced Solid Composite Electrolytes with High Lithium-Ion Conductivity and Excellent Stability. ACS Appl. Mater. Interfaces 2019, 11, 26920–26927. DOI: 10.1021/acsami.9b07830.
  • Luo, S. B.; Shen, Y. B.; Yu, S. H.; Wan, Y. J.; Liao, W. H.; Sun, R.; Wong, C. P. Construction of a 3D-BaTiO3 Network Leading to Significantly Enhanced Dielectric Permittivity and Energy Storage Density of Polymer Composites. Energy Environ. Sci. 2017, 10, 137–144. DOI: 10.1039/C6EE03190K.
  • You, X. Q.; Chen, N.; Du, G. P. Constructing Three-Dimensionally Interwoven Structures for Ceramic/Polymer Composites to Exhibit Colossal Dielectric Constant and High Mechanical Strength: CaCu3Ti4O12/Epoxy as an Example. Compos. Part A-Appl S. 2018, 105, 214–222. DOI: 10.1016/j.compositesa.2017.11.025.
  • Yang, J.; Zhu, X. T.; Wang, H. L.; Wang, X.; Hao, C. C.; Fan, R. H.; Dastan, D.; Shi, Z. C. Achieving Excellent Dielectric Performance in Polymer Composites with Ultralow Filler Loadings via Constructing Hollow-Structured Filler Frameworks, Compos. Part A-Appl S. 2020, 131, 105814. DOI: 10.1016/j.compositesa.2020.105814.
  • Harito, C.; Bavykin, D. V.; Yuliarto, B.; Dipojono, H. K.; Walsh, F. C. Polymer Nanocomposites Having a High Filler Content: Synthesis, Structures, Properties, and Applications. Nanoscale 2019, 11, 4653–4682. DOI: 10.1039/c9nr00117d.
  • Mysore, T. H. M.; Patil, A. Y.; Hegde, C.; Sudeept, M. A.; Kumar, R.; Soudagar, M. E. M.; Fattah, I. M. R. Apatite Insights: From Synthesis to Biomedical Applications. Eur. Polym. J. 2024, 209, 112842. DOI: 10.1016/j.eurpolymj.2024.112842.
  • Kim, H.; Rigo, B.; Wong, G.; Lee, Y. J.; Yeo, W.-H. Advances in Wireless, Batteryless, Implantable Electronics for Real-Time, Continuous Physiological Monitoring. Nano-Micro Lett. 2024, 16, 6. DOI: 10.1007/s40820-023-01272-6.
  • Zou, S.; Li, Y.; Jin, H.; Ning, F.; Xu, P.; Wen, Q.; Pan, S.; Dan, X.; Li, W.; Zhou, X. Highly Safe, Durable, Adaptable, and Flexible Fuel Cell Using Gel/Sponge Composite Material. Adv. Energy Mater. 2022, 12, 178. DOI: 10.1002/aenm.202103178.
  • Abetz, C.; Georgopanos, P.; Pistidda, C.; Klassen, T.; Abetz, V. Reactive Hydride Composite Confined in a Polymer Matrix: New Insights into the Desorption and Absorption of Hydrogen in a Storage Material with High Cycling Stability. Adv. Mater. Technol-US 2022, 7, 84. DOI: 10.1002/admt.202101584.
  • Guo, H.; Yoon, G. W.; Li, Z. J.; Yun, Y.; Lee, S.; Seo, Y.-H.; Jeon, N. J.; Han, G. S.; Jung, H. S. In Situ Polymerization of Cross-Linked Perovskite-Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells. Adv. Energy Mater. 2024, 14, 5. DOI: 10.1002/aenm.202470005.
  • Rodrigues-Marinho, T.; Correia, V.; Tubio, C. R.; Ares-Pernas, A.; Abad, M. J.; Lanceros-Mendez, S.; Costa, P. Flexible Thermoelectric Energy Harvesting System Based on Polymer Composites. Chem. Eng. J. 2023, 473, 145297. DOI: 10.1016/j.cej.2023.145297.
  • Gao, Y.; Zhang, M.; Chen, X.; Zhu, Y.; Wang, H.; Yuan, S.; Xu, F.; Cui, Y.; Bao, D.; Shen, X.; et al. A High-Performance Thermal Conductive and Outstanding Electrical Insulating Composite Based on Robust Neuron-like Microstructure. Chem. Eng. J. 2021, 426, 131280. DOI: 10.1016/j.cej.2021.131280.
  • Zhou, J.; Li, H.; Wen, C.; Wang, Y.; Liao, X.; Shi, B. Ferroconcrete-Inspired Construction of Wearable Composites with a Natural Leather Matrix for Excellent Neutron-Shielding Performance. Compos. Part B-Eng. 2023, 266, 111043. DOI: 10.1016/j.compositesb.2023.111043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.