129
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Melt-Processed Bi-Continuous Phase Polymer Composite with Selective Filler Localization: A Mini Review

, , , , &
Received 01 Dec 2023, Accepted 21 Jun 2024, Published online: 04 Jul 2024

References

  • An, D.; Chen, Y.; He, R.; Yu, H.; Sun, Z.; Liu, Y.; Liu, Y.; Lian, Q.; Feng, W.; Wong, C. The Polymer-Based Thermal Interface Materials with Improved Thermal Conductivity, Compression Resilience, and Electromagnetic Interference Shielding Performance by Introducing Uniformly Melamine Foam. Adv. Compos. Hybrid Mater. 2023, 6, 136. DOI: 10.1007/s42114-023-00709-1.
  • Wang, X.; Zhang, Z.; Wang, Y.; Malfait, W. J.; Zhao, S.; Tian, Y.; Liu, T.; Zhang, X.; Du, A.; Shen, J. Flexible, High-Temperature-Resistant Silica-Polymer Aerogel Hybrids by Templating Polymethylsilsesquioxane Microstructure with Trace Polyimide. Adv. Compos. Hybrid Mater. 2023, 6, 32. DOI: 10.1007/s42114-022-00587-z.
  • Zhang, J.; Hirschberg, V.; Rodrigue, D. Mechanical Fatigue of Polymer Foams – A Review. Polym. Rev. 2023, 63, 866–894. DOI: 10.1080/15583724.2023.2228874.
  • Lin, J.-C.; Liatsis, P.; Alexandridis, P. Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. Polym. Rev. 2023, 63, 67–126. DOI: 10.1080/15583724.2022.2059673.
  • Wang, F.; Wang, J.; Fang, D.; Zhou, S.; Huang, J.; Zhao, G.; Liu, Y. Surface Sizing Introducing Carbon Nanotubes for Interfacial Bond Strengthening of Basalt Fiber-Reinforced Polymer Composites. Adv. Compos. Hybrid Mater. 2023, 6, 117. 6 DOI: 10.1007/s42114-023-00695-4.
  • Chen, X.; Zhao, Y.; Li, L.; Wang, Y.; Wang, J.; Xiong, J.; Du, S.; Zhang, P.; Shi, X.; Yu, J. MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polym. Rev. 2021, 61, 80–115. DOI: 10.1080/15583724.2020.1729179.
  • Zhang, Z.; Abidi, N.; Lucia, L. A.; Yu, S. A “Bird Nest” Bioinspired Strategy Deployed for Inducing Cellulose Gelation without Concomitant Dissolution. Adv. Compos. Hybrid Mater. 2023, 6, 178. DOI: 10.1007/s42114-023-00745-x.
  • Gao, W. H.; Tu, Q. Y.; Wang, P.; Zeng, J. S.; Li, J. P.; Wang, B.; Xu, J.; Chen, K. F.; Zhang, Z.; Abidi, N.; Lucia, L. A. Conductive Polymer/Nanocellulose Composites as a Functional Platform for Electronic Devices: A Mini-Review. Polym. Rev. 2024, 64, 162–191. DOI: 10.1080/15583724.2023.2220018.
  • Vargo, E.; Dahl, J. C.; Evans, K. M.; Khan, T.; Alivisatos, P.; Xu, T. Using Machine Learning to Predict and Understand Complex Self-Assembly Behaviors of a Multicomponent Nanocomposite. Adv. Mater. 2022, 34, 2203168. DOI: 10.1002/adma.202203168.
  • Li, Y. J.; Gancheva, T.; Estakhrianhaghighi, E.; Favis, B. D.; Akbarzadeh, A. Material Extrusion of Quaternary Co-Continuous Biopolymers: A Strategy for Realizing Lightweight Cellular Solids with High Impact Toughness. Addit. Manuf. 2023, 77, 103805.
  • Kunduru, K. R.; Hogerat, R.; Ghosal, K.; Shaheen-Mualim, M.; Farah, S. Renewable Polyol-Based Biodegradable Polyesters as Greener Plastics for Industrial Applications. Chem. Eng. J. 2023, 459, 141211. DOI: 10.1016/j.cej.2022.141211.
  • Agrawal, D.; Awani, K.; Nabavi, S. A.; Balan, V.; Jin, M.; Aminabhavi, T. M.; Dubey, K. K.; Kumar, V. Carbon Emissions and Decarbonisation: The Role and Relevance of Fermentation Industry in Chemical Sector. Chem. Eng. J. 2023, 475, 146308. DOI: 10.1016/j.cej.2023.146308.
  • Pötschke, P.; Paul, D. R. Formation of Co-Continuous Structures in Melt-Mixed Immiscible Polymer Blends. J. Macromol. Sci. C 2003, 43, 87–141. DOI: 10.1081/MC-120018022.
  • Paul, D. R. Polymer Blends Volume 1; Amsterdam: Elsevier, 2012.
  • Ma, L.; Huang, H. J.; Vargo, E.; Huang, J. Y.; Anderson, C. L.; Chen, T.; Kuzmenko, I.; Ilavsky, J.; Wang, C.; Liu, Y.; Ercius, P.; Alexander-Katz, A.; Xu, T. Diversifying Composition Leads to Hierarchical Composites with Design Flexibility and Structural Fidelity. ACS Nano. 2021, 15, 14095–14104. DOI: 10.1021/acsnano.1c04606.
  • Boukheit, A.; Chabert, F.; Otazaghine, B.; Taguet, A. h-BN Modification Using Several Hydroxylation and Grafting Methods and Their Incorporation into a PMMA/PA6 Polymer Blend. Nanomaterials 2022, 12, 2735. DOI: 10.3390/nano12162735.
  • Wen, B. Y.; Zheng, X. L. Effect of the Selective Distribution of Graphite Nanoplatelets on the Electrical and Thermal Conductivities of a Polybutylene Terephthalate/Polycarbonate Blend. Compos. Sci. Technol. 2019, 174, 68–75. DOI: 10.1016/j.compscitech.2019.02.017.
  • Zhang, Z.; Zhao, X.; Zhang, J.; Chen, S. Effect of Nano-Particles-Induced Phase Inversion on Largely Improved Impact Toughness of PVC/α-Methylstyrene–Acrylonitrile Copolymer (α-MSAN)/CPE-Matrix Composites. Compos. Sci. Technol. 2013, 86, 122–128. DOI: 10.1016/j.compscitech.2013.07.009.
  • Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of Fillers and the Electrical Conductivity of Polymer Blends Filled with Carbon Black. Polym. Bull. 1991, 25, 265–271. DOI: 10.1007/BF00310802.
  • Li, H. X.; Russell, T. P.; Wang, D. Nanomechanical and Chemical Mapping of the Structure and Interfacial Properties in Immiscible Ternary Polymer Systems. Chin. J. Polym. Sci. 2021, 39, 651–658. DOI: 10.1007/s10118-021-2567-2.
  • Zhao, B.; Yuan, Q. Q.; Yang, H. K.; Russell, T. P.; Wang, D. Interfacial Reaction Induced Disruption and Dissolution of Dynamic Polymer Networks. Macromol. Rapid Comm. 2021, 42, 2100023.
  • Azubuike, L.; Wang, J.; Sundararaj, U. Carbon Nanotube Migration in a Compatibilized Blend System, Leading to Kinetically Induced Enhancement in Electrical Conductivity and Mechanical Properties. Nanomaterials 2023, 13, 1039. DOI: 10.3390/nano13061039.
  • Huang, Y.; Ellingford, C.; Bowen, C.; McNally, T.; Wu, D.; Wan, C. Tailoring the Electrical and Thermal Conductivity of Multi-Component and Multi-Phase Polymer Composites. Int. Mater. Rev. 2019, 65, 129–163. DOI: 10.1080/09506608.2019.1582180.
  • Zhang, Z.; Wang, S. C.; Zhang, J.; Zhu, W. Q.; Zhao, X. J.; Tian, T. S.; Chen, T. T. Self-Formation of Elastomer Network Assisted by Nano-Silicon Dioxide Particles: A Simple and Efficient Route toward Polymer Nanocomposites with Simultaneous Improved Toughness and Stiffness. Chem. Eng. J. 2016, 285, 439–448. DOI: 10.1016/j.cej.2015.09.066.
  • Qi, X-d.; Yang, J-h.; Zhang, N.; Huang, T.; Zhou, Z-w.; Kühnert, I.; Pötschke, P.; Wang, Y. Selective Localization of Carbon Nanotubes and Its Effect on the Structure and Properties of Polymer Blends. Prog. Polym. Sci. 2021, 123, 101471. DOI: 10.1016/j.progpolymsci.2021.101471.
  • Taguet, A.; Cassagnau, P.; Lopez-Cuesta, J. M. Structuration, Selective Dispersion and Compatibilizing Effect of (Nano)Fillers in Polymer Blends. Prog. Polym. Sci. 2014, 39, 1526–1563. DOI: 10.1016/j.progpolymsci.2014.04.002.
  • Ma, L.; Huang, H. J.; Ercius, P.; Alexander-Katz, A.; Xu, T. Symmetry-Breaking and Self-Sorting in Block Copolymer-Based Multicomponent Nanocomposites. ACS Nano. 2022, 16, 9368–9377. DOI: 10.1021/acsnano.2c02179.
  • Ramakrishnan, S.; Lencar, C.; Sundararaj, U. Influence of Processing Conditions on the Evolution of Morphology in PVDF/PS and PP/PS Polymer Blends: Examining the Processing‐Phase Inversion Mechanism. J. Appl. Polym. Sci. 2022, 140, e53548. DOI: 10.1002/app.53548.
  • Ho, Q. B.; Kontopoulou, M. Improving the Adhesion and Properties in the Material Extrusion of Polypropylene by Blending with a Polyolefin Elastomer. Addit. Manuf. 2022, 55, 102818.
  • Utracki, L. A. On the Viscosity-Concentration Dependence of Immiscible Polymer Blends. J. Rheol. 1991, 35, 1615–1637. DOI: 10.1122/1.550248.
  • Tan, L. P.; Yue, C. Y.; Tam, K. C.; Lam, Y. C.; Hu, X. Effects of Shear Rate, Viscosity Ratio and Liquid Crystalline Polymer Content on Morphological and Mechanical Properties of Polycarbonate and LCP Blends. Polym. Int. 2002, 51, 398–405. DOI: 10.1002/pi.889.
  • Hu, K. L.; Wei, T. T.; Li, H. X.; He, C. F.; Yang, H. K.; Russell, T. P.; Wang, D. Interfacial Broadening Kinetics between, a Network and a Linear Polymer and Their Composites Prepared by Melt Blending. Macromolecules 2019, 52, 9759–9765. DOI: 10.1021/acs.macromol.9b02114.
  • Shah, R. S.; Bryant, S.; Trifkovic, M. Microstructural Rearrangements and Their Rheological Signature in Coarsening of Cocontinuous Polymer Blends. Macromolecules 2020, 53, 10918–10926. DOI: 10.1021/acs.macromol.0c01688.
  • Amoabeng, D.; Tempalski, A.; Young, B. A.; Binks, B. P.; Velankar, S. S. Fumed Silica Induces Co-Continuity across a Wide Composition Range in Immiscible Polymer Blends. Polymer 2020, 186, 121831. DOI: 10.1016/j.polymer.2019.121831.
  • Bai, L.; He, S. Y.; Fruehwirth, J. W.; Stein, A.; Macosko, C. W.; Cheng, X. Localizing Graphene at the Interface of Cocontinuous Polymer Blends: Morphology, Rheology, and Conductivity of Cocontinuous Conductive Polymer Composites. J. Rheol. 2017, 61, 575–587. DOI: 10.1122/1.4982702.
  • Chen, Y. T.; Xie, X. L.; Zou, S. Q.; Qiu, R.; Zhong, G. J.; Lai, B.; Li, Z. M. Tailored Surface Porosity of Polyethylene-Based Co-Continuous Structures for Moving Bed Biofilm Reactor Carriers. ACS Appl. Polym. Mater. 2020, 2, 3226–3233. DOI: 10.1021/acsapm.0c00380.
  • Mofokeng, J. P.; Luyt, A. S. Morphology and Thermal Degradation Studies of Melt-Mixed Poly(Hydroxybutyrate-co-Valerate) (PHBV)/Poly(ε-Caprolactone) (PCL) Biodegradable Polymer Blend Nanocomposites with TiO2 as Filler. J. Mater. Sci. 2015, 50, 3812–3824. DOI: 10.1007/s10853-015-8950-z.
  • Liu, Y.; Cao, L.; Yuan, D.; Chen, Y. Design of Super-Tough Co-Continuous PLA/NR/SiO2 TPVs with Balanced Stiffness-Toughness Based on Reinforced Rubber and Interfacial Compatibilization. Compos. Sci. Technol. 2018, 165, 231–239. DOI: 10.1016/j.compscitech.2018.07.005.
  • Gong, Z.; Huang, J.; Fan, J.; Chen, X.; Wang, H.; Chen, Y. Super-Tough Poly(Lactic Acid)-Based Thermoplastic Vulcanizate Based on Selective Dispersion and In Situ Compatibilization of Commercial Reinforcing Fillers and Its Application in Three-Dimensional Printing. Ind. Eng. Chem. Res. 2021, 61, 359–371. DOI: 10.1021/acs.iecr.1c03392.
  • Shamsoddini-Zarch, F.; Jahani, Y.; Karrabi, M.; Ohshima, M. Influence of Different Molecular Weights of Polyhexene-1 on the Morphology and Rheology of Cyclic Olefin Copolymer Blends. Polym. Eng. Sci. 2021, 61, 1485–1501. DOI: 10.1002/pen.25669.
  • Feng, J. Y.; Chan, C. M.; Li, J. X. A Method to Control the Dispersion of Carbon Black in an Immiscible Polymer Blend. Polym. Eng. Sci. 2003, 43, 1058–1063. DOI: 10.1002/pen.10089.
  • Snetkov, P.; Zakharova, K.; Morozkina, S.; Olekhnovich, R.; Uspenskaya, M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers 2020, 12, 1800. DOI: 10.3390/polym12081800.
  • Semenov, A. N. Theory of Long-Range Interactions in Polymer Systems. J. Phys. II. France 1996, 6, 1759–1780. DOI: 10.1051/jp2:1996159.
  • Le, H. H.; Prodanova, I.; Ilisch, S.; Radusch, H. J. Online Electrical Conductivity as a Measure to Characterize the Carbon Black Dispersion in Oil Containing Rubber Compounds with a Different Polarity of Rubber. Rubber Chem. Technol. 2004, 77, 815–829. DOI: 10.5254/1.3547853.
  • Salehiyan, R.; Ray, S. S. Tuning the Conductivity of Nanocomposites through Nanoparticle Migration and Interface Crossing in Immiscible Polymer Blends: A Review on Fundamental Understanding. Macro. Mater. Eng. 2019, 304, 1800431. DOI: 10.1002/mame.201800431.
  • Lützow, N.; Tihminlioglu, A.; Danner, R. P.; Duda, J. L.; De Haan, A.; Warnier, G.; Zielinski, J. M. Diffusion of Toluene and n-Heptane in Polyethylenes of Different Crystallinity. Polymer 1999, 40, 2797–2803. DOI: 10.1016/S0032-3861(98)00473-X.
  • Zhang, C.; Yi, X. S.; Asai, S.; Sumita, M. Morphology, Crystallization and Melting Behaviors of Isotactic Polypropylene/High Density Polyethylene Blend: Effect of the Addition of Short Carbon Fiber. J. Mater. Sci. 2000, 35, 673–683. DOI: 10.1023/A:1004749015907.
  • Zhang, H. X.; Chen, J. W.; Cui, X. H.; Hu, Y. X.; Lei, L. C.; Zhu, Y. T.; Jiang, W. Thermal Annealing Induced Enhancement of Electrical Properties of a Co-Continuous Polymer Blend Filled with Carbon Nanotubes. Compos. Sci. Technol. 2018, 167, 522–528. DOI: 10.1016/j.compscitech.2018.08.048.
  • Hao, T. F.; Xu, D.; Ming, Y. Q.; Zhang, S. H.; Wei, Y. Y.; Zhou, Z. P.; Nie, Y. J.; Yan, D. Y. Correlation between Molecular Weight and Confined Crystallization Behavior of Polymers Grafted onto a Zero-Dimensional Filler. CrystEngComm 2020, 22, 1779–1788. DOI: 10.1039/C9CE01606F.
  • Saiter, A.; Delpouve, N.; Dargent, E.; Oberhauser, W.; Conzatti, L.; Cicogna, F.; Passaglia, E. Probing the Chain Segment Mobility at the Interface of Semi-Crystalline Polylactide/Clay Nanocomposites. Eur. Polym. J. 2016, 78, 274–289. DOI: 10.1016/j.eurpolymj.2016.03.040.
  • Han, J.; Lee, M. J.; Lee, K.; Lee, Y. J.; Kwon, S. H.; Min, J. H.; Lee, E.; Lee, W.; Lee, S. W.; Kim, B. J. Role of Bicontinuous Structure in Elastomeric Electrolytes for High‐Energy Solid‐State Lithium‐Metal Batteries. Adv. Mater. 2022, 35, 2205194. DOI: 10.1002/adma.202205194.
  • Xu, Q.; Li, K. T.; Wang, P. L.; Tian, R.; Lu, C. Fluorescence Technique Lighting the Particle Migration in Polymers. Macromolecules 2022, 55, 5840–5848. DOI: 10.1021/acs.macromol.2c00788.
  • Kwon, T.; Ku, K. H.; Kang, D. J.; Lee, W. B.; Kim, B. J. Aspect-Ratio Effect of Nanorod Compatibilizers in Conducting Polymer Blends. ACS Macro Lett. 2014, 3, 398–404. DOI: 10.1021/mz500024n.
  • Bose, S.; Özdilek, C.; Leys, J.; Seo, J. W.; Wübbenhorst, M.; Vermant, J.; Moldenaers, P. Phase Separation as a Tool to Control Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Appl. Mater. Interfaces 2010, 2, 800–807. DOI: 10.1021/am9008067.
  • Scherzer, S. L.; Pavlova, E.; Esper, J. D.; Starý, Z. Phase Structure, Rheology and Electrical Conductivity of Co-Continuous Polystyrene/Polymethylmethacrylate Blends Filled with Carbon Black. Compos. Sci. Technol. 2015, 119, 138–147. DOI: 10.1016/j.compscitech.2015.10.003.
  • Göldel, A.; Marmur, A.; Kasaliwal, G. R.; Pötschke, P.; Heinrich, G. Shape-Dependent Localization of Carbon Nanotubes and Carbon Black in an Immiscible Polymer Blend during Melt Mixing. Macromolecules 2011, 44, 6094–6102. DOI: 10.1021/ma200793a.
  • Tai, C. W.; Narsimhan, V. Experimental and Theoretical Studies of Cross-Stream Migration of Non-Spherical Particles in a Quadratic Flow of a Viscoelastic Fluid. Soft Matter 2022, 18, 4613–4624. DOI: 10.1039/d2sm00011c.
  • Stabik, J. Studies on Motion of Filler Particles during Polymer Flow. Polimery 2004, 49, 712–718. DOI: 10.14314/polimery.2004.712.
  • Sun, H. D.; Pang, L. X.; Ding, Y. L.; Xing, B. D.; Tang, Y. J.; Sun, X.; Yuan, J. C.; Zhou, L.; Wang, Y. F.; Lyu, Y.; Sha, F. Influence of the Physical Morphological Characteristics of Mineral Fillers on the Bitumen-Filler Interfacial Interaction. Constr. Build. Mater. 2023, 378, 131206. DOI: 10.1016/j.conbuildmat.2023.131206.
  • Prado, L. A. S. D.; Kopyniecka, A.; Chandrasekaran, S.; Broza, G.; Roslaniec, Z.; Schulte, K. Impact of Filler Functionalisation on the Crystallinity, Thermal Stability and Mechanical Properties of Thermoplastic Elastomer/Carbon Nanotube Nanocomposites. Macro. Mater. Eng. 2013, 298, 359–370. DOI: 10.1002/mame.201200066.
  • Kwon, T.; Kim, T.; Ali, F. B.; Kang, D. J.; Yoo, M.; Bang, J.; Lee, W.; Kim, B. J. Size-Controlled Polymer-Coated Nanoparticles as Efficient Compatibilizers for Polymer Blends. Macromolecules 2011, 44, 9852–9862. DOI: 10.1021/ma2020134.
  • Gong, T.; Liu, M. Q.; Liu, H.; Peng, S. P.; Li, T.; Bao, R. Y.; Yang, W.; Xie, B. H.; Yang, M. B.; Guo, Z. H. Selective Distribution and Migration of Carbon Nanotubes Enhanced Electrical and Mechanical Performances in Polyolefin Elastomers. Polymer 2017, 110, 1–11. DOI: 10.1016/j.polymer.2016.12.056.
  • Huang, S. J.; Bai, L.; Trifkovic, M.; Cheng, X.; Macosko, C. W. Controlling the Morphology of Immiscible Cocontinuous Polymer Blends via Silica Nanoparticles Jammed at the Interface. Macromolecules 2016, 49, 3911–3918. DOI: 10.1021/acs.macromol.6b00212.
  • Kou, Y. M.; Cote, A. T.; Liu, J. Y.; Cheng, X.; Macosko, C. W. Robust Networks of Interfacial Localized Graphene in Cocontinuous Polymer Blends. J. Rheol. 2021, 65, 1139–1153. DOI: 10.1122/8.0000294.
  • Asai, S.; Sakata, K.; Sumita, M.; Miyasaka, K. Effect of Interfacial Free-Energy on the Heterogeneous Distribution of Oxidized Carbon-Black in Polymer Blends. Polym. J. 1992, 24, 415–420. DOI: 10.1295/polymj.24.415.
  • Ravati, S.; Favis, B. D. Morphological States for a Ternary Polymer Blend Demonstrating Complete Wetting. Polymer 2010, 51, 4547–4561. DOI: 10.1016/j.polymer.2010.07.014.
  • Mao, Z. P.; Zhang, J. Largely Improved the Low Temperature Toughness of Acrylonitrile-Styrene-Acrylate (ASA) Resin: Fabricated a Core-Shell Structure of Two Elastomers through the Differences of Interfacial Tensions. Appl. Surf. Sci. 2018, 444, 345–354. DOI: 10.1016/j.apsusc.2018.03.066.
  • Virgilio, N.; Marc-Aurèle, C.; Favis, B. D. Novel Self-Assembling Close-Packed Droplet Array at the Interface in Ternary Polymer Blends. Macromolecules 2009, 42, 3405–3416. DOI: 10.1021/ma802544q.
  • Harkins, W. D. A General Thermodynamic Theory of the Spreading of Liquids to Form Duplex Films and of Liquids or Solids to Form Monolayers. J. Chem. Phys. 1941, 9, 552–568. DOI: 10.1063/1.1750953.
  • Torza, S.; Mason, S. G. Three-Phase Interactions in Shear and Electrical Fields. J. Colloid Interface Sci. 1970, 33, 67–83. DOI: 10.1016/0021-9797(70)90073-1.
  • Amoabeng, D.; Roell, D.; Clouse, K. M.; Young, B. A.; Velankar, S. S. A Composition-Morphology Map for Particle-Filled Blends of Immiscible Thermoplastic Polymers. Polymer 2017, 119, 212–223. DOI: 10.1016/j.polymer.2017.04.009.
  • Wei, Y.; Huang, R.; Dong, P.; Qi, X.-D.; Fu, Q. Preparation of Polylactide/Poly(Ether)Urethane Blends with Excellent Electro-Actuated Shape Memory via Incorporating Carbon Black and Carbon Nanotubes Hybrids Fillers. Chin. J. Polym. Sci. 2018, 36, 1175–1186. DOI: 10.1007/s10118-018-2138-3.
  • Xu, P. W.; Tan, S.; Niu, D. Y.; Yang, W. J.; Ma, P. M. Highly Toughened Sustainable Green Polyglycolic Acid/Polycaprolactone Blends with Balanced Strength: Morphology Evolution, Interfacial Compatibilization, and Mechanism. ACS Appl. Polym. Mater. 2022, 4, 5772–5780. DOI: 10.1021/acsapm.2c00715.
  • Lalire, T.; Taguet, A.; Roux, J. C.; Otazaghine, B.; Longuet, C. Chemical Modification Strategies for the Control of Graphene Localization in PS/PMMA Blend. FlatChem 2023, 39, 100500. DOI: 10.1016/j.flatc.2023.100500.
  • Dil, E. J.; Favis, B. D. Localization of Micro and Nano-Silica Particles in a High Interfacial Tension Poly(Lactic Acid)/Low Density Polyethylene System. Polymer 2015, 77, 156–166. DOI: 10.1016/j.polymer.2015.08.063.
  • Dil, E. J.; Favis, B. D. Localization of Micro- and Nano-Silica Particles in Heterophase Poly(Lactic Acid)/Poly(Butylene Adipate-Co-Terephthalate) Blends. Polymer 2015, 76, 295–306. DOI: 10.1016/j.polymer.2015.08.046.
  • Nofar, M.; Salehiyan, R.; Ray, S. S. Influence of Nanoparticles and Their Selective Localization on the Structure and Properties of Polylactide-Based Blend Nanocomposites. Compos. B-Eng. 2021, 215, 108845. DOI: 10.1016/j.compositesb.2021.108845.
  • Maji, R.; Bhattacharyya, S.; Dasgupta, S.; Bandyopadhyay, S.; Mukhopadhyay, R.; Deuri, A. S. Improvement of Polymer Blend Properties by Changing Sequence of Mixing. J. Appl. Polym. Sci. 2007, 104, 2735–2742. DOI: 10.1002/app.25832.
  • Oreski, G.; Barretta, C.; Macher, A.; Eder, G.; Neumaier, L.; Feichtner, M.; Aarnio-Winterhof, M. Investigation of the Crack Propensity of Co-Extruded Polypropylene Backsheet Films for Photovoltaic Modules. Sol. Energy Mater. Sol. Cells 2023, 259, 112438. DOI: 10.1016/j.solmat.2023.112438.
  • Han, S. W.; Woo, Y. Y.; Lee, T.; Kim, J.; Jeong, J. H.; Moon, Y. H. Manufacturing of a Corrugated Double-Layered Tube for the High-Performance Compact Heat Exchanger. Int. J. Adv. Manuf. Technol. 2021, 112, 2065–2080. DOI: 10.1007/s00170-020-06419-y.
  • Xie, L.; Zhu, Y. T. Tune the Phase Morphology to Design Conductive Polymer Composites: A Review. Polym. Compos. 2018, 39, 2985–2996. DOI: 10.1002/pc.24345.
  • Pötschke, P.; Bhattacharyya, A. R.; Janke, A. Morphology and Electrical Resistivity of Melt Mixed Blends of Polyethylene and Carbon Nanotube Filled Polycarbonate. Polymer 2003, 44, 8061–8069. DOI: 10.1016/j.polymer.2003.10.003.
  • Shi, Y. Y.; Yang, J. H.; Huang, T.; Zhang, N.; Chen, C.; Wang, Y. Selective Localization of Carbon Nanotubes at the Interface of Poly(L-Lactide)/Ethylene-co-Vinyl Acetate Resulting in Lowered Electrical Resistivity. Compos B-Eng 2013, 55, 463–469. DOI: 10.1016/j.compositesb.2013.07.012.
  • Zhang, C.; Yi, X. S.; Yui, H.; Asai, S.; Sumita, M. Morphology and Electrical Properties of Short Carbon Fiber-Filled Polymer Blends: High-Density Polyethylene Poly(Methyl Methacrylate). J. Appl. Polym. Sci. 1998, 69, 1813–1819. DOI: 10.1002/(SICI)1097-4628(19980829)69:9<1813::AID-APP16>3.0.CO;2-M.
  • Zhang, H.; Zhang, L.; Zhang, Z.; Chen, T.; Zhang, J.; Rumi, S. S.; Abidi, N. Unique Bi-Continuous Phase Structure Can Facilitate the Development of Fire-Resistant Surface. Chem. Eng. J. 2024, 479, 147547. DOI: 10.1016/j.cej.2023.147547.
  • Zhang, H. R.; Heng, Z. G.; Zhou, J.; Shi, Y.; Chen, Y.; Zou, H. W.; Liang, M. In-Situ Co-Continuous Conductive Network Induced by Carbon Nanotubes in Epoxy Composites with Enhanced Electromagnetic Interference Shielding Performance. Chem. Eng. J. 2020, 398, 125559. DOI: 10.1016/j.cej.2020.125559.
  • Zhou, Z. C.; Yang, Z. B.; Sun, H. X.; Zhang, J. Design of Sandwich Structure Conductive Polypropylene/Styrene-Butadiene-Styrene Triblock Copolymer/Carbon Black Composites with Inherent Morphological Tunability. J. Appl. Polym. Sci. 2021, 138, app50567. DOI: 10.1002/app.50567.
  • Nasti, G.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V. Double Percolation of Multiwalled Carbon Nanotubes in Polystyrene/Polylactic Acid Blends. Polymer 2016, 99, 193–203. DOI: 10.1016/j.polymer.2016.06.058.
  • Moreira, A. C. F.; Cario, F. O. Jr.; Soares, B. G. Cocontinuous Morphologies in Polystyrene/Ethylene-Vinyl Acetate Blends: The Influence of the Processing Temperature. J. Appl. Polym. Sci. 2003, 89, 386–398. DOI: 10.1002/app.12073.
  • Mao, Z. P.; Sun, H. X.; Zhang, J. Selective Distribution of SrTiO in Co-Continuous Composites: An Effective Method to Improve the Dielectric and Mechanical Properties. Compos A-Appl. S 2021, 143, 106312. DOI: 10.1016/j.compositesa.2021.106312.
  • Lu, X.; Kang, B. H.; Shi, S. Y. Selective Localization of Carbon Black in Bio-Based Poly(Lactic Acid)/Recycled High-Density Polyethylene Co-Continuous Blends to Design Electrical Conductive Composites with a Low Percolation Threshold. Polymers 2019, 11, 1583. DOI: 10.3390/polym11101583.
  • Jiang, X. L.; Ma, P. F.; You, F.; Yao, C.; Yao, J. L.; Liu, F. J. A Facile Strategy for Modifying Boron Nitride and Enhancing Its Effect on the Thermal Conductivity of Polypropylene/Polystyrene Blends. RSC Adv. 2018, 8, 32132–32137. DOI: 10.1039/C8RA06140H.
  • Jiang, X.; Ma, P.; Zhou, C.; Zhu, W.; You, F.; Yao, C.; Liu, F. Simultaneously Enhancing the Thermal Conductivity and Dielectric Constant of BN/CF Hybrid Filled Polypropylene/Polystyrene Composites via in Situ Reactive Processing. Polym. Compos. 2019, 41, 1234–1241. DOI: 10.1002/pc.25449.
  • Huang, J. R.; Zhu, Y. T.; Xu, L. N.; Chen, J. W.; Jiang, W.; Nie, X. A. Massive Enhancement in the Thermal Conductivity of Polymer Composites by Trapping Graphene at the Interface of a Polymer Blend. Compos. Sci. Technol. 2016, 129, 160–165. DOI: 10.1016/j.compscitech.2016.04.029.
  • He, J. L.; Zhang, H. R.; Chen, Y.; Zou, H. W.; Liang, M. Bi-Continuous Conductive Network Induced by In-Situ Phase Separation in Epoxy Composites with Enhanced Electromagnetic Interference Shielding Performance. React. Funct. Polym. 2021, 164, 104918. DOI: 10.1016/j.reactfunctpolym.2021.104918.
  • Fina, A.; Han, Z. D.; Saracco, G.; Gross, U.; Mainil, M. Morphology and Conduction Properties of Graphite-Filled Immiscible PVDF/PPgMA Blends. Polymers Adv. Technol. 2012, 23, 1572–1579. DOI: 10.1002/pat.3031.
  • Chen, J.; Zhang, J.; Deng, J.; Qiu, S.; Zheng, J.; Chen, Y.; Zhang, W.; Huang, S.; Chen, A.; Lei, C. Control of Graphene Nanoplatelets at the Interface of the Co-Continuous Polypropylene/Polyamides 6 Blend under the Elongational Flow. Eur. Polym. J. 2023, 182, 111703. DOI: 10.1016/j.eurpolymj.2022.111703.
  • Chen, J.; Cui, X.; Zhu, Y.; Jiang, W.; Sui, K. Design of Superior Conductive Polymer Composite with Precisely Controlling Carbon Nanotubes at the Interface of a Co-Continuous Polymer Blend via a Balance of π-π Interactions and Dipole-Dipole Interactions. Carbon 2017, 114, 441–448. DOI: 10.1016/j.carbon.2016.12.048.
  • Bose, S.; Bhattacharyya, A. R.; Bondre, A. P.; Kulkarni, A. R.; Pötschke, P. Rheology, Electrical Conductivity, and the Phase Behavior of Cocontinuous PA6/ABS Blends with MWNT: Correlating the Aspect Ratio of MWNT with the Percolation Threshold. J. Polym. Sci. B Polym. Phys. 2008, 46, 1619–1631. DOI: 10.1002/polb.21501.
  • Banerji, A.; Jin, K. L.; Mahanthappa, M. K.; Bates, F. S.; Ellison, C. J. Porous Fibers Templated by Melt Blowing Cocontinuous Immiscible Polymer Blends. ACS Macro Lett. 2021, 10, 1196–1203. DOI: 10.1021/acsmacrolett.1c00456.
  • Fung, K. L.; Li, R. K. Y. Effect of Blending Sequence on the Mechanical Properties of Ternary Blends Prepared from Recycled Poly(Ethylene Terephthalate). J. Mater. Sci. 2006, 41, 6123–6125. DOI: 10.1007/s10853-006-0587-5.
  • Mun, S. C.; Kim, M. J.; Cobos, M.; Gu, L. L.; Macosko, C. W. Strategies for Interfacial Localization of Graphene/Polyethylene-Based Cocontinuous Blends for Electrical Percolation. AlChE. J. 2019, 65, e16579. DOI: 10.1002/aic.16579.
  • Li, Y.; Huang, X. Y.; Hu, Z. W.; Jiang, P. K.; Li, S. T.; Tanaka, T. Large Dielectric Constant and High Thermal Conductivity in Poly(Vinylidene Fluoride)/Barium Titanate/Silicon Carbide Three-Phase Nanocomposites. ACS Appl. Mater. Interfaces 2011, 3, 4396–4403. DOI: 10.1021/am2010459.
  • Marwat, Z. K.; Baloch, M. K. Miscibility between PS and PSAN Affected by Solvent and Temperature of the System. Chin. J. Polym. Sci. 2014, 32, 1442–1449. DOI: 10.1007/s10118-014-1534-6.
  • Galloway, J. A.; Koester, K. J.; Paasch, B. J.; Macosko, C. W. Effect of Sample Size on Solvent Extraction for Detecting Cocontinuity in Polymer Blends. Polymer 2004, 45, 423–428. DOI: 10.1016/j.polymer.2003.10.098.
  • Kubo, T.; Tsujioka, N.; Tanaka, N.; Hosoya, K. Co-Continuous Monolithic Titania Prepared by Organic Polymer Monolith as Pore Template. Mater. Lett. 2010, 64, 177–180. DOI: 10.1016/j.matlet.2009.10.037.
  • Liberelle, B.; Dil, E. J.; Sabri, F.; Favis, B. D.; De Crescenzo, G.; Virgilio, N. Immobilizing Enzyme Biocatalysts onto Porous Polymer Monoliths Prepared from Cocontinuous Polymer Blends. ACS Appl. Polym. Mater. 2021, 3, 6359–6365. DOI: 10.1021/acsapm.1c01144.
  • Münstedt, H.; Starý, Z. Is Electrical Percolation in Carbon-Filled Polymers Reflected by Rheological Properties? Polymer 2016, 98, 51–60. DOI: 10.1016/j.polymer.2016.05.042.
  • Wang, W.; Li, W. Y.; Lin, T.; Wu, T.; Pan, L. M.; Liu, Y. B. Generalized k-Core Percolation on Higher-Order Dependent Networks. Appl. Math. Comput. 2022, 420, 126793.
  • Bonnet, P.; Sireude, D.; Garnier, B.; Chauvet, O. Thermal Properties and Percolation in Carbon Nanotube-Polymer Composites. Appl. Phys. Lett. 2007, 91, 201910
  • McQueen, D. H.; Jäger, K.-M.; Pelí Ková, M. Multiple Threshold Percolation in Polymer/Filler Composites. J. Phys. D: Appl. Phys. 2004, 37, 2160–2169. DOI: 10.1088/0022-3727/37/15/018.
  • Gharehnazifam, Z.; Baniassadi, M.; Abrinia, K.; Rahimi, M.; Izadi, M. Electrical Percolation in Nanocomposites with Impenetrable Ellipsoidal Inclusion (Comprehensive Study of Tunneling, Geometry, Anisotropy and Mixing). J. Comp. Theo. Nano. 2015, 12, 1010–1016. DOI: 10.1166/jctn.2015.3843.
  • Chau, H. F.; Cheng, K. S. An Alternative Proof of Some Percolation-Threshold [P(C)] Using the Idea of Self-Organized Criticality. Nuov. Cim. D 1994, 16, 243–249. DOI: 10.1007/BF02463776.
  • Zhang, C.; Yi, X. S.; Yui, H.; Asai, S.; Sumita, M. Selective Location and Double Percolation of Short Carbon Fiber Filled Polymer Blends: High-Density Polyethylene Isotactic Polypropylene. Mater. Lett. 1998, 36, 186–190. DOI: 10.1016/S0167-577X(98)00023-8.
  • Zhang, M.; Li, D. J.; Wu, D. F.; Yan, C. H.; Lu, P.; Qiu, G. M. Poly(Ethylene Terephthalate)/Expanded Graphite Conductive Composites: Structure, Properties, and Transport Behavior. J. Appl. Polym. Sci. 2008, 108, 1482–1489. DOI: 10.1002/app.27745.
  • S.-P, R.; F.-H, K.; K.-C, C. Dispersion of Carbon Black in a Continuous Phase: Electrical, Rheological, and Morphological Studies. Coll. Polym. Sci. 2002, 280, 1110–1115. DOI: 10.1007/s00396-002-0718-8.
  • Pargi, M. N. F.; Leng, T. P.; Husseinsyah, S.; Yeoh, C. K. The Effect of Coarse Particle Size on the Properties of Recycled Copper-Filled Epoxy Composites. Polym.-Plast. Technol. Eng. 2015, 54, 265–269. DOI: 10.1080/03602559.2014.977053.
  • Dang, Z. M.; Shehzad, K.; Zha, J. W.; Mujahid, A.; Hussain, T.; Nie, J.; Shi, C. Y. Complementary Percolation Characteristics of Carbon Fillers Based Electrically Percolative Thermoplastic Elastomer Composites. Compos. Sci. Technol. 2011, 72, 28–35. DOI: 10.1016/j.compscitech.2011.08.020.
  • Vleminckx, G.; Bose, S.; Leys, J.; Vermant, J.; Wübbenhorst, M.; Abdala, A. A.; Macosko, C.; Moldenaers, P. Effect of Thermally Reduced Graphene Sheets on the Phase Behavior, Morphology, and Electrical Conductivity in Poly[(α-Methyl Styrene)-Co-(Acrylonitrile)/Poly(Methyl-Methacrylate) Blends. ACS Appl. Mater. Interfaces 2011, 3, 3172–3180. DOI: 10.1021/am200669w.
  • Zhang, Q. Y.; Zhang, B. Y.; Guo, Z. X.; Yu, J. Comparison between the Efficiencies of Two Conductive Networks Formed in Carbon Black-Filled Ternary Polymer Blends by Different Hierarchical Structures. Polym. Test. 2017, 63, 141–149. DOI: 10.1016/j.polymertesting.2017.08.016.
  • Zhang, H.; Yang, Z. B.; Su, K. S.; Huang, W. X.; Zhang, J. Effects and Mechanism of Filler Content on Thermal Conductivity of Composites: A Case Study on Plasticized Polyvinyl Chloride/Graphite Composites. J. Polym. Eng. 2022, 42, 599–608. DOI: 10.1515/polyeng-2021-0268.
  • Kim, H. S.; Jang, J. U.; Yu, J.; Kim, S. Y. Thermal Conductivity of Polymer Composites Based on the Length of Multi-Walled Carbon Nanotubes. Compos. B-Eng. 2015, 79, 505–512. DOI: 10.1016/j.compositesb.2015.05.012.
  • Ye, C. M.; Shentu, B. Q.; Weng, Z. X. Thermal Conductivity of High Density Polyethylene Filled with Graphite. J. Appl. Polym. Sci. 2006, 101, 3806–3810. DOI: 10.1002/app.24044.
  • Lee, H. L.; Kwon, O. H.; Ha, S. M.; Kim, B. G.; Kim, Y. S.; Won, J. C.; Kim, J.; Choi, J. H.; Yoo, Y. Thermal Conductivity Improvement of Surface-Enhanced Polyetherimide (PEI) Composites Using Polyimide-Coated h-BN Particles. Phys. Chem. Chem. Phys. 2014, 16, 20041–20046. DOI: 10.1039/c4cp02730b.
  • Ju, H. S.; Im, D. H.; Park, S. D.; Lee, H. G.; Kim, E. S. Thermal Conductivity of Al2O3/Poly(Vinyl Butyral) Composites. Jpn. J. Appl. Phys. 2012, 51, 09ML01. DOI: 10.1143/JJAP.51.09ML01.
  • Yang, Q. R.; Zhang, Z. L.; Gong, X. F.; Yao, E. R.; Liu, T.; Zhang, Y.; Zou, H. S. Thermal Conductivity of Graphene-Polymer Composites: Implications for Thermal Management. Heat Mass Transfer 2020, 56, 1931–1945. DOI: 10.1007/s00231-020-02821-0.
  • Zhang, H.; Jia, Y.; Yang, J.; Wang, Z. P.; Zhang, J. Enhanced Thermal Conductivity of Plasticized Polyvinyl Chloride Composites Based on 2D Structural Regulation of Flaky Graphite. Diam. Relat. Mater. 2022, 129, 109360. DOI: 10.1016/j.diamond.2022.109360.
  • Cao, M.; Shu, J. J.; Chen, P.; Xia, R.; Yang, B.; Miao, J. B.; Qian, J. S. Orientation of Boron Nitride Nanosheets in CM/EPDM Co-Continuous Blends and Their Thermal Conductive Properties. Polym. Test. 2018, 69, 208–213. DOI: 10.1016/j.polymertesting.2018.05.028.
  • Jing, X. Y.; Li, Y. C.; Zhu, J. H.; Chang, L.; Maganti, S.; Naik, N.; Xu, B. B.; Murugadoss, V.; Huang, M. N.; Guo, Z. H. Improving Thermal Conductivity of Polyethylene/Polypropylene by Styrene-Ethylene-Propylene-Styrene Wrapping Hexagonal Boron Nitride at the Phase Interface. Adv. Compos. Hybrid Mater. 2022, 5, 1090–1099. DOI: 10.1007/s42114-022-00438-x.
  • Li, C. L.; Zhang, H.; Zhang, X. W.; Zhang, Z. C.; Li, N.; Liu, Y.; Zheng, X. T.; Gao, D. L.; Wu, D. M.; Sun, J. Y. Construction of Bi-Continuous Structure in fPC/ABS-hBN(GB) Composites with Simultaneous Enhanced Thermal Conductivity and Mechanical Properties. Compos. Sci. Technol. 2022, 223, 109437. DOI: 10.1016/j.compscitech.2022.109437.
  • Cao, J. P.; Zhao, J.; Zhao, X. D.; You, F.; Yu, H. Z.; Hu, G. H.; Dang, Z. M. High Thermal Conductivity and High Electrical Resistivity of Poly(Vinylidene Fluoride)/Polystyrene Blends by Controlling the Localization of Hybrid Fillers. Compos. Sci. Technol. 2013, 89, 142–148. DOI: 10.1016/j.compscitech.2013.09.024.
  • Cao, J. P.; Zhao, X.; Zhao, J.; Zha, J. W.; Hu, G. H.; Dang, Z. M. Improved Thermal Conductivity and Flame Retardancy in Polystyrene/Poly(Vinylidene Fluoride) Blends by Controlling Selective Localization and Surface Modification of SiC Nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 6915–6924. DOI: 10.1021/am401703m.
  • Zhang, H.; Jia, Y.; Mao, Z.; Li, G.; Zhang, Z.; Abidi, N.; Lucia, L. A.; Zhang, J. One-Pot Upcycling Strategy Achieved in Bi-Continuous Thermal Conductive Polymer Composites. J. Cleaner Prod. 2023, 423, 138780. DOI: 10.1016/j.jclepro.2023.138780.
  • Biswas, S.; Kar, G. P.; Bose, S. Tailor-Made Distribution of Nanoparticles in Blend Structure toward Outstanding Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2015, 7, 25448–25463. DOI: 10.1021/acsami.5b08333.
  • Zhang, X.; Fan, C.; Ma, Y.; Zhao, H.; Sui, J.; Liu, J.; Sun, C. Elastic Composites Fabricating for Electromagnetic Interference Shielding Based on MWCNTs and Fe3O4 Unique Distribution in Immiscible NR/NBR Blends. Polym. Eng. Sci. 2022, 62, 2019–2030. DOI: 10.1002/pen.25985.
  • Han, X.; Liang, X. C.; Cai, L.; He, A. H.; Nie, H. R. Amphiphilic Janus Nanosheets by Grafting Reactive Rubber Brushes for Reinforced Rubber Materials. Polym. Chem. 2019, 10, 5184–5190. DOI: 10.1039/C9PY00863B.
  • Brigandi, P. J.; Cogen, J. M.; Pearson, R. A. Electrically Conductive Multiphase Polymer Blend Carbon-Based Composites. Polym. Eng. Sci. 2014, 54, 1–16. DOI: 10.1002/pen.23530.
  • Yang, Y.; Li, L. Y.; Yin, B.; Yang, M. B. An Effective Strategy to Achieve Ultralow Electrical Percolation Threshold with CNTs Anchoring at the Interface of PVDF/PS Bi-Continuous Structures to Form an Interfacial Conductive Layer. Macro. Mater. Eng. 2020, 305, 1900835. DOI: 10.1002/mame.201900835.
  • Gebrekrstos, A.; Ray, S. S. Superior Electrical Conductivity and Mechanical Properties of Phase-Separated Polymer Blend Composites by Tuning the Localization of Nanoparticles for Electromagnetic Interference Shielding Applications. J. Polym. Sci. 2023, 61, 2567–2584. DOI: 10.1002/pol.20230059.
  • Yang, J.; Xi, L. L.; Qiu, W. J.; Wu, L. H.; Shi, X.; Chen, L. D.; Yang, J. H.; Zhang, W. Q.; Uher, C.; Singh, D. J. On the Tuning of Electrical and Thermal Transport in Thermoelectrics: An Integrated Theory-Experiment Perspective. npj Comput. Mater. 2016, 2, 15015. DOI: 10.1038/npjcompumats.2015.15.
  • Zhang, J.; Huang, S. Q.; Wang, J. Y.; Chen, C. M.; Wang, H. T.; Ye, L. J.; Li, Y. J. Formation of Interconnected Elastomeric Phase Unevenly Jammed by Nanosilica in the Plastic Matrix during Melt Processing. Macromolecules 2024, 57, 373–384. DOI: 10.1021/acs.macromol.3c01921.
  • Zhao, X. W.; Wang, H. T.; Fu, Z.; Li, Y. J. Enhanced Interfacial Adhesion by Reactive Carbon Nanotubes: New Route to High-Performance Immiscible Polymer Blend Nanocomposites with Simultaneously Enhanced Toughness, Tensile Strength, and Electrical Conductivity. ACS Appl. Mater. Interfaces 2018, 10, 8411–8416. DOI: 10.1021/acsami.8b01704.
  • Zhang, L.; Cui, T.; Cao, X.; Zhao, C.; Chen, Q.; Wu, L.; Li, H. Inorganic‐Macroion‐Induced Formation of Bicontinuous Block Copolymer Nanocomposites with Enhanced Conductivity and Modulus. Angew. Chem. Int. Ed. Engl. 2017, 56, 9013–9017. DOI: 10.1002/anie.201702785.
  • Tolvanen, J.; Nelo, M.; Alasmäki, H.; Siponkoski, T.; Mäkelä, P.; Vahera, T.; Hannu, J.; Juuti, J.; Jantunen, H. Ultraelastic and High-Conductivity Multiphase Conductor with Universally Autonomous Self-Healing. Adv. Sci. 2022, 9, 2205485.
  • Zhou, L.; Wu, L.; Wu, T.; Chen, D.; Yang, X.; Sui, G. A ‘Ceramer’ Aerogel with Unique Bicontinuous Inorganic–Organic Structure Enabling Super-Resilience, Hydrophobicity, and Thermal Insulation. Mater. Today Nano 2023, 22, 100306. DOI: 10.1016/j.mtnano.2023.100306.
  • Subramania, A.; Sundaram, N. T. K.; Kumar, G. V. Structural and Electrochemical Properties of Micro-Porous Polymer Blend Electrolytes Based on PVdF-co-HFP-PAN for Li-Ion Battery Applications. J. Power Sources 2006, 153, 177–182. DOI: 10.1016/j.jpowsour.2004.12.009.
  • Wang, G.; Li, J.; Zhai, L.; Li, X.; He, H.; Guo, H.; Li, H.; Zhao, C.; Wu, L.; Li, H. Polyoxometalate-Polymer Nanocomposites with Multiplex Proton Transport Channels for High-Performance Proton Exchange Membranes. Compos. Sci. Technol. 2023, 232, 109842. DOI: 10.1016/j.compscitech.2022.109842.
  • Xiang, L.; Li, Q.; Li, C.; Yang, Q.; Xu, F.; Mai, Y. Block Copolymer Self‐Assembly Directed Synthesis of Porous Materials with Ordered Bicontinuous Structures and Their Potential Applications. Adv. Mater. 2022, 35, 2207684. DOI: 10.1002/adma.202207684.
  • Zeng, D.; Hayward, R. C. Effects of Randomly End-Linked Copolymer Network Parameters on the Formation of Disordered Cocontinuous Phases. Macromolecules 2019, 52, 2642–2650. DOI: 10.1021/acs.macromol.9b00050.
  • Joshi, J.; Lehman, R.; Nosker, T. Selected Physical Characteristics of Polystyrene/High Density Polyethylene Composites Prepared from Virgin and Recycled Materials. J. Appl. Polym. Sci. 2006, 99, 2044–2051. DOI: 10.1002/app.22492.
  • Mangaraj, D. Role of Compatibilization in Recycling Rubber Waste by Blending with Plastics. Rubber Chem. Technol. 2005, 78, 536–547. DOI: 10.5254/1.3547895.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.