34
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Progress on the Microlayer Coextrusion and Its Derivative Technologies

, , , , , , & show all
Received 22 Jan 2024, Accepted 21 Jun 2024, Published online: 04 Jul 2024

References

  • Wang, J.; Wang, C.; Zhang, X.; Wu, H.; Guo, S. Morphological Evolution and Toughening Mechanism of Polypropylene and Polypropylene/Poly(Ethylene-Co-Octene) Alternating Multilayered Materials with Enhanced Low-Temperature Toughness. RSC Adv. 2014, 4, 20297–20307. DOI: 10.1039/C3RA48036D.
  • Lei, F.; Du, Q.; Li, T.; Li, J.; Guo, S. Effect of Phase Morphology and Interfacial Strength on Barrier Properties of High Density Polyethylene/Polyamide 6 Membranes. Polym. Eng. Sci. 2013, 53, 1996–2003. DOI: 10.1002/pen.23448.
  • Zheng, Y.; Ji, X.; Yin, M.; Shen, J.; Guo, S. Strategy for Fabricating Multiple-Shape-Memory Polymeric Materials via the Multilayer Assembly of Co-Continuous Blends. ACS Appl. Mater. Interfaces. 2017, 9, 32270–32279. DOI: 10.1021/acsami.7b10345.
  • Zheng, Y.; Dong, R.; Shen, J.; Guo, S. Tunable Shape Memory Performances via Multilayer Assembly of Thermoplastic Polyurethane and Polycaprolactone. ACS Appl. Mater. Interfaces. 2016, 8, 1371–1380. DOI: 10.1021/acsami.5b10246.
  • Zeng, B.; Yang, L.; Qin, J.; Zheng, Y.; Guo, S. Nacre-Inspired Polymeric Materials with Body Heat-Responsive Shape-Memory Effect, High Optical Transparence, and Balanced Mechanical Properties. ACS Appl. Mater. Interfaces. 2020, 12, 52008–52017. DOI: 10.1021/acsami.0c15871.
  • Li, M.; Liu, Y.; Zhang, F.; Zhang, X.; Zhang, Z.; Omer, A. A. A.; Zhao, S.; Liu, W. Design of Multi-Passband Polymer Multilayer Film and Its Application in Photovoltaic Agriculture. Chin. Opt. Lett. 2021, 19, 112201. DOI: 10.3788/COL202119.112201.
  • Li, M.; Liu, W.; Zhang, F.; Zhang, X.; Abaker Omer, A. A.; Zhang, Z.; Liu, Y.; Zhao, S. Polymer Multilayer Film with Excellent UV-Resistance & High Transmittance and Its Application for Glass-Free Photovoltaic Modules. Sol. Energy Mater. Sol. Cells 2021, 229, 111103. DOI: 10.1016/j.solmat.2021.111103.
  • Ponting, M.; Burt, T. M.; Korley, L. T. J.; Andrews, J.; Hiltner, A.; Baer, E. Gradient Multilayer Films by Forced Assembly Coextrusion. Ind. Eng. Chem. Res. 2010, 49, 12111–12118. DOI: 10.1021/ie100321h.
  • Kazmierczak, T.; Song, H.; Hiltner, A.; Baer, E. Polymeric One-Dimensional Photonic Crystals by Continuous Coextrusion. Macromol. Rapid Commun. 2007, 28, 2210–2216. DOI: 10.1002/marc.200700367.
  • Zhang, X.; Zhang, J.; Li, C.; Wang, J.; Xia, L.; Xu, F.; Zhang, X.; Wu, H.; Guo, S. Endowing the High Efficiency Thermally Conductive and Electrically Insulating Composites with Excellent Antistatic Property through Selectively Multilayered Distribution of Diverse Functional Fillers. Chem. Eng. J. 2017, 328, 609–618. DOI: 10.1016/j.cej.2017.07.087.
  • Xia, L.; Wu, H.; Guo, S.; Sun, X.; Liang, W. Enhanced Sound Insulation and Mechanical Properties of LDPE/Mica Composites through Multilayered Distribution and Orientation of the Mica. Compos. Part A Appl. Sci. Manuf. 2016, 81, 225–233. DOI: 10.1016/j.compositesa.2015.11.023.
  • Liu, S.; Wu, H.; Guo, S.; Qiu, J. Ordered Stacking of Oriented BN in Confined Space to Construct Effective Heat Transfer Pathways. Polymer 2021, 236, 124300. DOI: 10.1016/j.polymer.2021.124300.
  • Zhang, Q.; Lan, L.; Zheng, Z.; Liu, P.; Wu, H.; Guo, S.; Lin, C.; He, G. Constructing Highly Oriented and Condensed Shish-Kebab Crystalline Structure of HDPE/UHMWPE Blends via Intense Stretching Process: Achieving High Mechanical Properties and in-Plane Thermal Conductivity. Polymer 2022, 241, 124532. DOI: 10.1016/j.polymer.2022.124532.
  • Zhang, X.; Wu, H.; Guo, S.; Wang, Y. Reinforced Thermal Conductivity and Mechanical Properties of in Situ Microfibrillar Composites through Multistage Stretching Extrusion. Polym. Compos. 2017, 38, 2663–2669. DOI: 10.1002/pc.23862.
  • Ji, X.; Chen, D.; Shen, J.; Guo, S. Flexible and Flame-Retarding Thermoplastic Polyurethane-Based Electromagnetic Interference Shielding Composites. Chem. Eng. J. 2019, 370, 1341–1349. DOI: 10.1016/j.cej.2019.03.293.
  • Ji, X.; Chen, D.; Zheng, Y.; Shen, J.; Guo, S.; Harkin-Jones, E. Multilayered Assembly of Poly(Vinylidene Fluoride) and Poly(Methyl Methacrylate) for Achieving Multi-Shape Memory Effects. Chem. Eng. J. 2019, 362, 190–198. DOI: 10.1016/j.cej.2019.01.016.
  • Su, H.; Xue, J.; Cai, P.; Li, J.; Guo, S. Structure and Oxygen-Barrier Properties of (Linear Low-Density Polyethylene/Ethylene–Vinyl Alcohol Copolymer)/Linear Low-Density Polyethylene Composite Films Prepared by Microlayer Coextrusion. J. Appl. Polym. Sci. 2015, 132(27). DOI: 10.1002/app.42211.
  • Gholami, F.; Pakzad, L.; Behzadfar, E. Morphological, Interfacial and Rheological Properties in Multilayer Polymers: A Review. Polymer 2020, 208, 122950. DOI: 10.1016/j.polymer.2020.122950.
  • Li, C.; Gao, Y.; Wang, L.; Li, J.; Guo, S. Fabrication, Structure, and Properties of Poly-(Lactide) Multilayers with Ultrahigh Content, Ordered, and Continuous Transcrystallinity. Polymer 2021, 228, 123933. DOI: 10.1016/j.polymer.2021.123933.
  • Wang, L.; Yu, G.; Zhu, Y.; Li, C.; Li, J.; Guo, S. Fabrication of Polylactide with High-Content, Ordered, and Continuous Transcrystallinity via Multilayered Two-Dimensional Interface. Materials & Design 2021, 204, 109687. DOI: 10.1016/j.matdes.2021.109687.
  • Jiang, F.; Yang, Y.; Weng, J.; Zhang, X. Layer-by-Layer Self-Assembly for Reinforcement of Aged Papers. Ind. Eng. Chem. Res. 2016, 55, 10544–10554. DOI: 10.1021/acs.iecr.6b02988.
  • Zhang, H.; Lamnawar, K.; Maazouz, A. Rheological Modeling of the Mutual Diffusion and the Interphase Development for an Asymmetrical Bilayer Based on PMMA and PVDF Model Compatible Polymers. Macromolecules 2013, 46, 276–299. DOI: 10.1021/ma301620a.
  • Bironeau, A.; Salez, T.; Miquelard-Garnier, G.; Sollogoub, C. Existence of a Critical Layer Thickness in PS/PMMA Nanolayered Films. Macromolecules 2017, 50, 4064–4073. DOI: 10.1021/acs.macromol.7b00176.
  • Jordan, A. M.; Lee, B.; Kim, K.; Ludtke, E.; Lhost, O.; Jaffer, S. A.; Bates, F. S.; Macosko, C. W. Rheology of Polymer Multilayers: Slip in Shear, Hardening in Extension. J. Rheol. 2019, 63, 751–761. DOI: 10.1122/1.5109788.
  • Zhang, J.; Ji, S.; Song, J.; Lodge, T. P.; Macosko, C. W. Flow Accelerates Interfacial Coupling Reactions. Macromolecules 2010, 43, 7617–7624. DOI: 10.1021/ma100889p.
  • Hu, Z.; Wang, S.; Liu, Y.; Qu, Z.; Tan, Z.; Wu, K.; Shi, J.; Liang, L.; Lu, M. Constructing a Layer-by-Layer Architecture to Prepare a Transparent, Strong, and Thermally Conductive Boron Nitride Nanosheet/Cellulose Nanofiber Multilayer Film. Ind. Eng. Chem. Res. 2020, 59, 4437–4446. DOI: 10.1021/acs.iecr.9b05602.
  • Zhou, Z.; Carr, J.; Mackey, M.; Yin, K.; Schuele, D.; Zhu, L.; Baer, E. Interphase/Interface Modification on the Dielectric Properties of Polycarbonate/Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Multilayer Films for High-Energy Density Capacitors. J. Polym. Sci. B Polym. Phys. 2013, 51, 978–991. DOI: 10.1002/polb.23296.
  • Bondon, A.; Lamnawar, K.; Maazouz, A. Experimental Investigation of a New Type of Interfacial Instability in a Reactive Coextrusion Process. Polym. Eng. Sci. 2015, 55, 2542–2552. DOI: 10.1002/pen.24146.
  • Schrenk, W. J.; Bradley, N. L.; Alfrey, T. Jr.; Maack, H. Interfacial Flow Instability in Multilayer Coextrusion. Polym. Eng. Sci. 1978, 18, 620–623. DOI: 10.1002/pen.760180803.
  • Fernandes Nassar, S.; Delpouve, N.; Sollogoub, C.; Guinault, A.; Stoclet, G.; Régnier, G.; Domenek, S. Impact of Nanoconfinement on Polylactide Crystallization and Gas Barrier Properties. ACS Appl. Mater. Interfaces. 2020, 12, 9953–9965. DOI: 10.1021/acsami.9b21391.
  • Tan, X.; Li, J.; Guo, S. Temperature-Dependent Order-to-Order Transition of Polystyrene-Block-Poly(Ethylene-Co-Butylene)-Block-Polystyrene Triblock Copolymer under Multilayered Confinement. Macromolecules 2018, 51, 2099–2109. DOI: 10.1021/acs.macromol.7b02651.
  • Liu, R. Y. F.; Ranade, A. P.; Wang, H. P.; Bernal-Lara, T. E.; Hiltner, A.; Baer, E. Forced Assembly of Polymer Nanolayers Thinner Than the Interphase. Macromolecules 2005, 38, 10721–10727. DOI: 10.1021/ma051649x.
  • Zhang, F.; Guo, M.; Xu, K.; He, G.; Wu, H.; Guo, S. Multilayered Damping Composites with Damping Layer/Constraining Layer Prepared by a Novel Method. Compos. Sci. Technol. 2014, 101, 167–172. DOI: 10.1016/j.compscitech.2014.06.021.
  • Li, Z.; Olah, A.; Baer, E. Micro- and Nano-Layered Processing of New Polymeric Systems. Prog. Polym. Sci. 2020, 102, 101210. DOI: 10.1016/j.progpolymsci.2020.101210.
  • Zhang, X.; Xu, Y.; Zhang, X.; Wu, H.; Shen, J.; Chen, R.; Xiong, Y.; Li, J.; Guo, S. Progress on the Layer-by-Layer Assembly of Multilayered Polymer Composites: Strategy, Structural Control and Applications. Prog. Polym. Sci. 2019, 89, 76–107. DOI: 10.1016/j.progpolymsci.2018.10.002.
  • Andrews, J. H.; Crescimanno, M.; Singer, K. D.; Baer, E. Melt-Processed Polymer Multilayer Distributed Feedback Lasers: Progress and Prospects. J. Polym. Sci. B Polym. Phys. 2014, 52, 251–271. DOI: 10.1002/polb.23425.
  • Lova, P.; Manfredi, G.; Comoretto, D. Advances in Functional Solution Processed Planar 1D Photonic Crystals. Adv. Opt. Mater. 2018, 6, 1800730. DOI: 10.1002/adom.201800730.
  • Yang, J.; Lim, T.; Jeong, S.-M.; Ju, S. Information-Providing Flexible and Transparent Smart Window Display. ACS Appl. Mater. Interfaces. 2021, 13, 20689–20697. DOI: 10.1021/acsami.1c03085.
  • Schmidt, D. J.; Miller, J. R.; Hebrink, T. J.; O’Neill, M. B. Method of Making Multilayer Optical Film Comprising Layer-by-Layer Self-Assembled Layers and Articles. U.S. Patent 9829604B2, November 28, 2017.
  • Jarus, D.; Hiltner, A.; Baer, E. Barrier Properties of Polypropylene/Polyamide Blends Produced by Microlayer Coextrusion. Polymer 2002, 43, 2401–2408.
  • Bonk, H. W.; Goldwasser, D. J.; Mitchell, P. H. Flexible Membranes. U.S. 6082025A, July 4, 2000.
  • Hong, W.; Ran, L.; Yu, G.; Qin, J.; Ma, B.; Wu, H.; Guo, S.; Li, C. Superior Low-Temperature Mechanical Toughness of the PP-Based Blown Micro/Nano Layer Films. Polymer 2022, 256, 125257. DOI: 10.1016/j.polymer.2022.125257.
  • Tollar, J. E. Interfacial Surface Generator. U.S. 3239197A, March 8, 1966.
  • Christine, R. Cloeren Incorporated. Unlocking the Potential of your Variable Geometry Feedblock. https://www.tappi.org/globalassets/documents/events/europlace_proceedings/06_3_christine-ronaghan_unlocking-vg-feedblocks_tappi-place-porto_2019.pdf (accessed Sept 1, 2023).
  • Gma, M. Extrusion Die. https://www.extrusion.at/images/SBI/Inauguration_event-2017/GMA_Extrusion_Die-SBI_event_2017.pdf (accessed Sept 1, 2023).
  • Schrenk, W. J.; Shastri, R. K.; Ayres, R. F.; Gosen, D. J. Interfacial Surface Generator; Google Patents, 1992. Patent Issuance date: 1992-3-10
  • Schrenk, W. J.; Shastri, R. K.; Ayres, R. E.; Gosen, D. J. Methods and Apparatus for Generating Interfacial Surfaces. Google Patents, 1992. Patent Issuance date: 1992-3-10
  • Harder, R. E. Interfacial Surface Generator. Google Patents, 1965. Patent Issuance date: 1965-7-20
  • Harder, R. E. Interfacial Surface Generator. Google Patents, 1968. Patent Issuance date: 1968-10-8.
  • Harder, R. E. Interfacial Surface Generators. Google Patents, 1971. Patent Issuance date: 1971-6-8
  • Morrison, F. A. Understanding Rheology; Oxford University Press, New York, 2001.
  • Baer, E.; Hiltner, A.; Keith, H. D. Hierarchical Structure in Polymeric Materials. Science 1987, 235, 1015–1022. DOI: 10.1126/science.3823866.
  • Harris, P. J.; Patz, J.; Huntington, B. A.; Bonnecaze, R. T.; Meltzer, D.; Maia, J. Improved Interfacial Surface Generator for the Co‐Extrusion of Micro‐and Nanolayered Polymers. Polym. Eng. Sci. 2014, 54, 636–645. DOI: 10.1002/pen.23597.
  • Harris, P. J. Layered Polymeric Systems: New Processing Methods and Novel Mechanical Design in Extensional Rheology; Case Western Reserve University, Cleveland, 2015.
  • Dooley, J. Viscoelastic flow effects in multilayer polymer coextrusion. Technische Universiteit Eindhoven 2002, 134p. DOI: 10.6100/IR555718.
  • Simulation of Mechanical Properties of Multilayered Propylene–Ethylene Copolymer/Ethylene 1-Octene Copolymer Composites by Equivalent Box Model and Its Experimental Verification. Eur. Polym. J. 2009, 45, 3269–3281. DOI: 10.1016/j.eurpolymj.2009.07.013.
  • Li, W.-P.; Huang, H.-X. Revealing Toughening Mechanism for Alternating Multilayered Polypropylene/Poly(Ethylene-Co-Octene) Sheets. Polym. Test. 2015, 41, 245–251. DOI: 10.1016/j.polymertesting.2014.12.006.
  • Zou, Z.; Hu, Z.; Pu, H. Lithium-Ion Battery Separators Based-on Nanolayer Co-Extrusion Prepared Polypropylene Nanobelts Reinforced Cellulose. J. Membr. Sci. 2023, 666, 121120. DOI: 10.1016/j.memsci.2022.121120.
  • Li, Y.; Yang, H.; Ahmadi, A.; Omari, A.; Pu, H. A Thermal Resistant and Flame Retardant Separator Reinforced by Attapulgite for Lithium-Ion Batteries via Multilayer Coextrusion. Polymer 2022, 253, 125027. DOI: 10.1016/j.polymer.2022.125027.
  • Luo, Q.; Pu, H.-T.; Zhang, Z.-H.; Zhang, X.; Yu, C.-L. Foam/Film Alternating Multilayer Structure with High Toughness and Low Thermal Conductivity Prepared via Microlayer Coextrusion. Chin. J. Polym. Sci. 2021, 39, 566–572. DOI: 10.1007/s10118-021-2524-0.
  • Cheng, J.; Li, H.; Cao, Z.; Wu, D.; Liu, C.; Pu, H. Nanolayer Coextrusion: An Efficient and Environmentally Friendly Micro/Nanofiber Fabrication Technique. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 95, 292–301. DOI: 10.1016/j.msec.2018.11.011.
  • Wang, S.; Shi, M.; Yang, W.; Yan, H.; Zhang, C.; An, Y.; Zhang, F. Experimental Investigation of Flame Retardancy and Mechanical Properties of APP/EG/TPU Multilayer Composites Prepared by Microlayer Coextrusion Technology. J. Appl. Polym. Sci. 2021, 138, 50219. DOI: 10.1002/app.50219.
  • Zhang, C.; Shi, M.; Zhang, Y.; Yang, W.; Jiao, Z.; Yang, L. EG/TPU Composites with Enhanced Flame Retardancy and Mechanical Properties Prepared by Microlayer Coextrusion Technology. RSC Adv. 2019, 9, 23944–23956. DOI: 10.1039/c9ra03653a.
  • Lu, B.; Alcouffe, P.; Sudre, G.; Pruvost, S.; Serghei, A.; Liu, C.; Maazouz, A.; Lamnawar, K. Unveiling the Effects of In Situ Layer–Layer Interfacial Reaction in Multilayer Polymer Films via Multilayered Assembly: From Microlayers to Nanolayers. Macro. Mater. Eng. 2020, 305, 2000076. DOI: 10.1002/mame.202000076.
  • Lu, B.; Zhang, H.; Maazouz, A.; Lamnawar, K. Interfacial Phenomena in Multi-Micro-/Nanolayered Polymer Coextrusion: A Review of Fundamental and Engineering Aspects. Polymers. 2021, 13, 417. DOI: 10.3390/polym13030417.
  • Li, J.; Touil, I.; Sudre, G.; Yousfi, M.; Lu, B.; Zhang, H.; Shen, J.; Morelle, X.; Maazouz, A.; Lamnawar, K. Fabrication of Architectured Multilayers with Mismatched Rheological Behaviors: Layer Stability, Structure, and Confinement Dictate Polyethylene-Based Film Properties. Ind. Eng. Chem. Res. 2024, 63, 1953–1964. DOI: 10.1021/acs.iecr.3c03923.
  • Lu, B.; Bondon, A.; Touil, I.; Zhang, H.; Alcouffe, P.; Pruvost, S.; Liu, C.; Maazouz, A.; Lamnawar, K. Role of the Macromolecular Architecture of Copolymers at Layer–Layer Interfaces of Multilayered Polymer Films: A Combined Morphological and Rheological Investigation. Ind. Eng. Chem. Res. 2020, 59, 22144–22154. DOI: 10.1021/acs.iecr.0c04731.
  • Lozay, Q.; Beuguel, Q.; Follain, N.; Lebrun, L.; Guinault, A.; Miquelard-Garnier, G.; Tencé-Girault, S.; Sollogoub, C.; Dargent, E.; Marais, S. Structural and Barrier Properties of Compatibilized PE/PA6 Multinanolayer Films. Membranes. 2021, 11, 75. DOI: 10.3390/membranes11020075.
  • Messin, T.; Follain, N.; Lozay, Q.; Guinault, A.; Delpouve, N.; Soulestin, J.; Sollogoub, C.; Marais, S. Biodegradable PLA/PBSA Multinanolayer Nanocomposites: Effect of Nanoclays Incorporation in Multinanolayered Structure on Mechanical and Water Barrier Properties. Nanomaterials 2020, 10, 2561. DOI: 10.3390/nano10122561.
  • Sung, K.; Hiltner, A.; Baer, E. Three-Dimensional Interaction of Crazes and Micro-Shearbands in PC-SAN Microlayer Composites. J. Mater. Sci. 1994, 29, 5559–5568. DOI: 10.1007/BF00349947.
  • Li, C.; Yang, S.; Wang, J.; Guo, J.; Wu, H.; Guo, S. Unique Impact Behavior and Toughening Mechanism of the Polypropylene and Poly(Ethylene-Co-Octene) Alternating Multilayered Blends with Superior Toughness. RSC Adv. 2014, 4, 55119–55132. DOI: 10.1039/C4RA09302J.
  • Zheng, Y.; Zeng, B.; Yang, L.; Shen, J.; Guo, S. Fabrication of Thermoplastic Polyurethane/Polycaprolactone Multilayered Composites with Confined Distribution of MWCNTs for Achieving Tunable Thermo- and Electro-Responsive Shape-Memory Performances. Ind. Eng. Chem. Res. 2020, 59, 2977–2987. DOI: 10.1021/acs.iecr.9b06247.
  • Song, H.; Singer, K.; Lott, J.; Wu, Y.; Zhou, J.; Andrews, J.; Baer, E.; Hiltner, A.; Weder, C. Continuous Melt Processing of All-Polymer Distributed Feedback Lasers. J. Mater. Chem. 2009, 19, 7520–7524. DOI: 10.1039/b909348f.
  • Ryan, C.; Christenson, C. W.; Valle, B.; Saini, A.; Lott, J.; Johnson, J.; Schiraldi, D.; Weder, C.; Baer, E.; Singer, K. D.; Shan, J. Roll-to-Roll Fabrication of Multilayer Films for High Capacity Optical Data Storage. Adv. Mater. 2012, 24, 5222–5226, 5146. DOI: 10.1002/adma.201200669.
  • Chen, B.; Gao, W.; Shen, J.; Guo, S. The Multilayered Distribution of Intumescent Flame Retardants and Its Influence on the Fire and Mechanical Properties of Polypropylene. Compos. Sci. Technol. 2014, 93, 54–60. DOI: 10.1016/j.compscitech.2013.12.022.
  • Zhang, L.; Xia, Q.; Zhang, C.; Wu, H.; Liu, G.; Chen, R.; Guo, S. Controlled Directional Drug Release from Poly(ε-Caprolactone)/Polyethylene Oxide/Metoprolol Tartrate Composites with Multi-Layered Structures. Compos. Part A Appl. Sci. Manuf. 2022, 157, 106939. DOI: 10.1016/j.compositesa.2022.106939.
  • He, L.; Shi, Y.; Wang, Q.; Chen, D.; Shen, J.; Guo, S. Strategy for Constructing Electromagnetic Interference Shielding and Flame Retarding Synergistic Network in Poly (Butylene Succinate) and Thermoplastic Polyurethane Multilayered Composites. Compos. Sci. Technol. 2020, 199, 108324. DOI: 10.1016/j.compscitech.2020.108324.
  • Liu, G.; Zhang, C.; Song, H.; Pan, R.; Chen, R.; Guo, S. Controlled Metoprolol Tartrate Release from Poly(ε-Caprolactone)-Poly(ε-Caprolactone)/Polyethylene Oxide/Metoprolol Tartrate Composites with Alternating Multi-Layered Structures Prepared through Layer-Multiplying Co-Extrusion. Compos. Part A Appl. Sci. Manuf. 2022, 157, 106934. DOI: 10.1016/j.compositesa.2022.106934.
  • Yang, S.; Yu, H.; Lei, F.; Li, J.; Guo, S.; Wu, H.; Shen, J.; Xiong, Y.; Chen, R. Formation Mechanism and Morphology of β-Transcrystallinity of Polypropylene Induced by Two-Dimensional Layered Interface. Macromolecules 2015, 48, 3965–3973. DOI: 10.1021/acs.macromol.5b00396.
  • Yu, Y.; Yang, S.; Yu, H.; Li, J.; Guo, S. Temperature-Dependent Alternating α- or β-Transcrystalline Layers in Coextruded Isotactic Polypropylene Multilayered Films. Macromolecules 2017, 50, 5098–5106. DOI: 10.1021/acs.macromol.7b01012.
  • Li, C.; Jiang, T.; Wang, J.; Peng, S.; Wu, H.; Shen, J.; Guo, S.; Zhang, X.; Harkin-Jones, E. Enhancing the Oxygen-Barrier Properties of Polylactide by Tailoring the Arrangement of Crystalline Lamellae. ACS Sustain. Chem. Eng. 2018, 6, 6247–6255. DOI: 10.1021/acssuschemeng.8b00026.
  • Wang, M.; Shen, J.; Li, J.; Guo, S. Effect of Morphology on the Interfacial Slip of Immiscible Polypropylene/Polystyrene Blends. Rheol. Acta 2013, 52, 963–972. DOI: 10.1007/s00397-013-0725-3.
  • Carr, J. M.; Langhe, D. S.; Ponting, M. T.; Hiltner, A.; Baer, E. Confined Crystallization in Polymer Nanolayered Films: A Review. J. Mater. Res. 2012, 27, 1326–1350. DOI: 10.1557/jmr.2012.17.
  • Luo, S.; Yi, L.; Zheng, Y.; Shen, J.; Guo, S. Crystallization of Polypropylene in Multilayered Spaces: Controllable Morphologies and Properties. Eur. Polym. J. 2017, 89, 138–149. DOI: 10.1016/j.eurpolymj.2017.02.013.
  • Hong, W.; Ji, Y.; Ran, L.; Yu, G.; Qin, J.; Wu, H.; Guo, S.; Li, C. Development of Nanolayer Blown Film Technology. Ind. Eng. Chem. Res. 2022, 61, 17137–17144. DOI: 10.1021/acs.iecr.2c03014.
  • Dooley, J.; Robacki, J.; Jenkins, S.; Wrisley, R.; Lee, P. C. Development of Microlayer Blown Film Technology by Combining Film Die and Layer Multiplication Concepts. Polym. Eng. Sci. 2016, 56, 598–604. DOI: 10.1002/pen.24285.
  • Yu, G.; Ji, Y.; Qin, J.; Hong, W.; Li, C.; Zhang, G.; Wu, H.; Guo, S. Producing Microlayer Pipes and Tubes through Multiplication Coextrusion and Unique Annular Die: Simulation and Experiment. Ind. Eng. Chem. Res. 2021, 60, 18408–18420. DOI: 10.1021/acs.iecr.1c03894.
  • Schneider, T.; Danda, C.; Ling, G.; Colton, M. F.; McCauley, K. M.; Maia, J. Microlayer and Nanolayer Tubing and Piping via Layer Multiplication Coextrusion. I. Validation. J. Appl. Polym. Sci. 2020, 137, 48683. DOI: 10.1002/app.48683.
  • Schneider, T.; Colton, M. F.; McCauley, K. M.; Maia, J. Microlayer and Nanolayer Tubing and Piping via Layer Multiplication Coextrusion. II. Rheologically Mismatched Systems. J. Appl. Polym. Sci. 2020, 137, 48684.
  • Wang, L.; Wang, H.; Feng, L.; Lin, T. Tape Extrusion of Heterogeneous Polymer Blends: Polymer Films with Highly Oriented Nanoribbons, Structural–Optical Property, and Anisotropic Mechanical Strength. Macromol. Mater. Eng. 2014, 299, 878–884. DOI: 10.1002/mame.201300329.
  • Xie, L.; Xu, H.; Chen, J.-B.; Zhang, Z.-J.; Hsiao, B. S.; Zhong, G.-J.; Chen, J.; Li, Z.-M. From Nanofibrillar to Nanolaminar Poly(Butylene Succinate): Paving the Way to Robust Barrier and Mechanical Properties for Full-Biodegradable Poly(Lactic Acid) Films. ACS Appl. Mater. Interfaces. 2015, 7, 8023–8032. DOI: 10.1021/acsami.5b00294.
  • Slouf, M.; Ostafinska, A.; Nevoralova, M.; Fortelny, I. Morphological Analysis of Polymer Systems with Broad Particle Size Distribution. Polym. Test. 2015, 42, 8–16. DOI: 10.1016/j.polymertesting.2014.12.012.
  • Geng, C.; Zhu, Y.; Yang, G.; Fu, Q.; Zhang, C.; Wang, K.; Zhou, T. Size Distribution and Anisotropy of the Minor Phase Droplets in Polypropylene/Ethylene-Octene Copolymer Blends: Effects of Shear and Component Miscibility. Chin. J. Polym. Sci. 2014, 32, 9–20. DOI: 10.1007/s10118-014-1382-4.
  • Liu, S.; Li, C.; Wu, H.; Guo, S. Novel Structure to Improve Mechanical Properties of Polymer Blends: Multilayered Ribbons. Ind. Eng. Chem. Res. 2020, 59, 20221–20231. DOI: 10.1021/acs.iecr.0c04448.
  • Jarus, D.; Hiltner, A.; Baer, E. Microlayer Coextrusion as a Route to Innovative Blend Structures. Polym. Eng. Sci. 2001, 41, 2162–2171. DOI: 10.1002/pen.10911.
  • Sollogoub, C.; Grandmontagne, A.; Guinault, A. Microlayer Coextrusion Process as a Way to Improve Thermomechanical Properties of ABS/PC Blends. AIP Conf. Proc. 2011, 1353, 832–837.
  • Xu, W.; Ravichandran, D.; Jambhulkar, S.; Zhu, Y.; Song, K. Hierarchically Structured Composite Fibers for Real Nanoscale Manipulation of Carbon Nanotubes. Adv. Funct. Mater. 2021, 31, 2009311. DOI: 10.1002/adfm.202009311.
  • Jordan, A. M.; Korley, L. T. J. Toward a Tunable Fibrous Scaffold: Structural Development during Uniaxial Drawing of Coextruded Poly(ε-Caprolactone) Fibers. Macromolecules 2015, 48, 2614–2627. DOI: 10.1021/acs.macromol.5b00370.
  • Lenart, W. R.; Jang, K.-S.; Jordan, A. M.; Baer, E.; Korley, L. T. J. Mechanically Tunable Dual-Component Polyolefin Fiber Mats via Two-Dimensional Multilayer Coextrusion. Polymer 2016, 103, 328–336. DOI: 10.1016/j.polymer.2016.09.060.
  • Li, C.; Jiang, T.; Wang, J.; Wu, H.; Guo, S.; Zhang, X.; Li, J.; Shen, J.; Chen, R.; Xiong, Y. In Situ Formation of Microfibrillar Crystalline Superstructure: Achieving High-Performance Polylactide. ACS Appl. Mater. Interfaces 2017, 9, 25818–25829. DOI: 10.1021/acsami.7b06705.
  • Li, T.; Dai, Y.; Li, J.; Guo, S.; Xie, G. A High-Barrier PP/EVOH Membrane Prepared through the Multistage Biaxial-Stretching Extrusion. J. Appl. Polym. Sci. 2017, 134, 26. DOI: 10.1002/app.45016.
  • Wang, J.; Yang, M.; Wu, H.; Guo, S. Mechanically Strong and Ductile Polypropylene/Poly(Ethylene-Co-Octene) Blends Prepared Through Multistretched Extrusion: Morphological Evolution, Toughening, and Reinforcing Mechanism. Polym. Plast. Technol. Eng. 2018, 57, 417–428. DOI: 10.1080/03602559.2016.1263866.
  • Wang, J.; Wu, H.; Guo, S. Realizing Simultaneous Reinforcement and Toughening in Polypropylene Based on Polypropylene/Elastomer via Control of the Crystalline Structure and Dispersed Phase Morphology. RSC Adv. 2016, 6, 1313–1323. DOI: 10.1039/C5RA24758F.
  • Wang, J.; Zhang, X.; Zhao, T.; Shen, L.; Wu, H.; Guo, S. Morphologies and Properties of Polycarbonate/Polyethylene in Situ Microfibrillar Composites Prepared through Multistage Stretching Extrusion. J. Appl. Polym. Sci. 2014, 131, 7. DOI: 10.1002/app.40108.
  • Zhang, X.; Shen, L.; Wu, H.; Guo, S. Enhanced Thermally Conductivity and Mechanical Properties of Polyethylene (PE)/Boron Nitride (BN) Composites through Multistage Stretching Extrusion. Compos. Sci. Technol. 2013, 89, 24–28. DOI: 10.1016/j.compscitech.2013.09.017.
  • Carr, J. M.; Mackey, M.; Flandin, L.; Hiltner, A.; Baer, E. Structure and Transport Properties of Polyethylene Terephthalate and Poly (Vinylidene Fluoride-Co-Tetrafluoroethylene) Multilayer Films. Polymer 2013, 54, 1679–1690. DOI: 10.1016/j.polymer.2013.01.037.
  • Anderson, P. D.; Dooley, J.; Meijer, H. E. Viscoelastic Effects in Multilayer Polymer Extrusion. Appl. Rheol. 2006, 16, 198–205. DOI: 10.1515/arh-2006-0014.
  • Lee, P. C.; Park, H. E.; Morse, D. C.; Macosko, C. W. Polymer-Polymer Interfacial Slip in Multilayered Films. J. Rheol. 2009, 53, 893–915. DOI: 10.1122/1.3114370.
  • Han, C. D.; Shetty, R. Studies on Multilayer Film Coextrusion II. Interfacial Instability in Flat Film Coextrusion. Polym. Eng. Sci. 1978, 18, 180–186. DOI: 10.1002/pen.760180303.
  • Zatloukal, M.; Kopytko, W.; Saha, P.; Martyn, M.; Coates, P. D. Theoretical and Experimental Investigation of Interfacial Instability Phenomena Occurring during Viscoelastic Coextrusion. Plast. Rubber Compos. 2005, 34, 403–409. DOI: 10.1179/174328905X71995.
  • Mavridis, H.; Shroff, R. N. Multilayer Extrusion: Experiments and Computer Simulation. Polym. Eng. Sci. 1994, 34, 559–569. DOI: 10.1002/pen.760340704.
  • Lamnawar, K.; Maazouz, A. Role of the Interphase in the Flow Stability of Reactive Coextruded Multilayer Polymers. Polym. Eng. Sci. 2009, 49, 727–739. DOI: 10.1002/pen.21334.
  • Khomami, B.; Ranjbaran, M. M. Experimental Studies of Interfacial Instabilities in Multilayer Pressure-Driven Flow of Polymeric Melts. Rheol. Acta 1997, 36, 345–366. DOI: 10.1007/s003970050052.
  • Joseph, D. D.; Renardy, M.; Renardy, Y. Instability of the Flow of Two Immiscible Liquids with Different Viscosities in a Pipe. J. Fluid Mech. 1984, 141, 309–317. DOI: 10.1017/S0022112084000860.
  • Wilson, G. M.; Khomami, B. An Experimental Investigation of Interfacial Instabilities in Multilayer Flow of Viscoelastic Fluids: Part I. Incompatible Polymer Systems. J. Non-Newtonian Fluid Mech. 1992, 45, 355–384. DOI: 10.1016/0377-0257(92)80068-9.
  • Hatzikiriakos, S. G.; Migler, K. B. Polymer Processing Instabilities: Control and Understanding; CRC Press, New York, 2004.
  • Borzacchiello, D.; Leriche, E.; Blottière, B.; Guillet, J. On the Mechanism of Viscoelastic Encapsulation of Fluid Layers in Polymer Coextrusion. J. Rheol. 2014, 58, 493–512. DOI: 10.1122/1.4865817.
  • Maklad, O.; Poole, R. J. A Review of the Second Normal-Stress Difference; Its Importance in Various Flows, Measurement Techniques, Results for Various Complex Fluids and Theoretical Predictions. J. Non-Newtonian Fluid Mech. 2021, 292, 104522. DOI: 10.1016/j.jnnfm.2021.104522.
  • Poole, R. J.; Lindner, A.; Alves, M. A. Viscoelastic Secondary Flows in Serpentine Channels. J. Non-Newtonian Fluid Mech. 2013, 201, 10–16. DOI: 10.1016/j.jnnfm.2013.07.001.
  • Debbaut, B.; Avalosse, T.; Dooley, J.; Hughes, K. On the Development of Secondary Motions in Straight Channels Induced by the Second Normal Stress Difference: Experiments and Simulations. J. Non-Newtonian Fluid Mech. 1997, 69, 255–271. DOI: 10.1016/S0377-0257(96)01543-1.
  • Townsend, P.; Walters, K.; Waterhouse, W. M. Secondary Flows in Pipes of Square Cross-Section and the Measurement of the Second Normal Stress Difference. J. Non-Newtonian Fluid Mech. 1976, 1, 107–123. DOI: 10.1016/0377-0257(76)80011-0.
  • Matsunaga, K.; Funatsu, K.; Kajiwara, T. Numerical Simulation of Multi‐Layer Flow for Polymer Melts—A Study of the Effect of Viscoelasticity on Interface Shape of Polymers within Dies. Polym. Eng. Sci. 1998, 38, 1099–1111. DOI: 10.1002/pen.10277.
  • Nano-multilayer Film PICASUSTM | TORAY FILMS | TORAY. https://www.films.toray/en/products/picasus/ (accessed May 13, 2024).
  • ChameleonLab. https://chameleonlab.com/ (accessed May 13, 2024).
  • Jin, Y.; Tai, H.; Hiltner, A.; Baer, E.; Shirk, J. S. New Class of Bioinspired Lenses with a Gradient Refractive Index. J. Appl. Polym. Sci. 2007, 103, 1834–1841. DOI: 10.1002/app.25404.
  • Fein, H.; Ponting, M. SWaP Advantage of Replacing High Performance Glass Achromatic Doublet with a Polymeric Nanolayer GRIN Achromatic Singlet. In Advanced Optics for Defense Applications: UV through LWIR III; SPIE, 2018; Vol. 10627, pp 79–88. DOI: 10.1117/12.2304828. Howard Fein, Michael Ponting; Orlando, FL, United States.
  • Ran, L.; Hong, W.; Yu, G.; Du, Q.; Guo, S.; Li, C. Preparation and Improving Mechanism of PBAT/PPC-Based Micro-Layer Biodegradable Mulch Film with Excellent Water Resistance and Mechanical Properties. Polymer 2024, 291, 126614. DOI: 10.1016/j.polymer.2023.126614.
  • Machine Wrap Film. - Scientex Berhad. https://scientex.com.my/product/innovation/machine-wrap-film/ (accessed May 13, 2024).
  • NanoPlex LDF | Peak. https://www.peaknano.com/products/nanoplex-ldf (accessed May 13, 2024).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.