0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Advances on Collagen Biomaterial: From Extraction, Cross-Linking to Tissue Regeneration

, , , , , , , , , & show all
Received 06 Nov 2023, Accepted 15 Jul 2024, Published online: 29 Jul 2024

References

  • Avila Rodríguez, M. a I.; Rodríguez Barroso, L. G.; Sánchez, M. L. Collagen: A Review on Its Sources and Potential Cosmetic Applications. J. Cosmet. Dermatol. 2018, 17, 20–26. DOI: 10.1111/jocd.12450.
  • Naomi, R.; Ridzuan, P. M.; Bahari, H. Current Insights into Collagen Type I. Polymers 2021, 13, 2642. DOI: 10.3390/polym13162642.
  • Furtado, M.; Chen, L.; Chen, Z.; Chen, A.; Cui, W. Development of Fish Collagen in Tissue Regeneration and Drug Delivery. Engin. Regener. 2022, 3, 217–231. DOI: 10.1016/j.engreg.2022.05.002.
  • (a) Su, H.; Fujiwara, T.; Anderson, K. M.; Karydis, A.; Ghadri, M. N.; Bumgardner, J. D. A Comparison of Two Types of Electrospun Chitosan Membranes and a Collagen Membrane in Vivo. Dent. Mater. 2021, 37, 60–70. DOI: 10.1016/j.dental.2020.10.011. (b) Zhang, S.; Zhao, G.; Ma, W.; Song, Y.; Huang, C.; Xie, C.; Chen, K.; Li, X. The Root-like Chitosan Nanofiber Porous Scaffold Cross-Linked by Genipin with Type I Collagen and Its Osteoblast Compatibility. Carbohydr. Polym. 2022, 285, 119255. (c) Gu, L.; Shan, T.; Ma, Y-x.; Tay, F. R.; Niu, L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol. 2019, 37, 464–491.
  • (a) Zhang, X.; Xu, S.; Shen, L.; Li, G. Factors Affecting Thermal Stability of Collagen from the Aspects of Extraction, Processing and Modification. J. Leather Sci. Engin. 2020, 2, 1. (b) Song, Z.; Liu, H.; Chen, L.; Chen, L.; Zhou, C.; Hong, P.; Deng, C. Characterization and Comparison of Collagen Extracted from the Skin of the Nile Tilapia by Fermentation and Chemical Pretreatment. Food Chem. 2021, 340, 128139. DOI: 10.1016/j.foodchem.2020.128139. (c) Lin, K.; Zhang, D.; Macedo, M. H.; Cui, W.; Sarmento, B.; Shen, G. Advanced Collagen‐based Biomaterials for Regenerative Biomedicine. Adv. Funct. Mater. 2019, 29, 1804943. (d) Adamiak, K.; Sionkowska, A. Current Methods of Collagen Cross-Linking: Review. Int. J. Biol. Macromol. 2020, 161, 550–560.
  • Wang, J.; Pei, X.; Liu, H.; Zhou, D. Extraction and Characterization of Acid-Soluble and Pepsin-Soluble Collagen from Skin of Loach (Misgurnus Anguillicaudatus). Int. J. Biol. Macromol. 2018, 106, 544–550. DOI: 10.1016/j.ijbiomac.2017.08.046.
  • Liu, W.; Zhang, Y.; Cui, N.; Wang, T. Extraction and Characterization of Pepsin-Solubilized Collagen from Snakehead (Channa Argus) Skin: Effects of Hydrogen Peroxide Pretreatments and Pepsin Hydrolysis Strategies. Process Biochem. 2019, 76, 194–202. DOI: 10.1016/j.procbio.2018.10.017.
  • (a) Ata, O.; Kumcuoglu, S.; Tavman, S. Effects of Sonication on the Extraction of Pepsin-Soluble Collagens from Lamb Feet and Product Characterization. Lwt 2022, 159, 113253. DOI: 10.1016/j.lwt.2022.113253. (b) Matinong, A. M. E.; Chisti, Y.; Pickering, K. L.; Haverkamp, R. G. Collagen Extraction from Animal Skin. Biology 2022, 11, 905.
  • Huang, P.; Li, L.; Hsieh, D.-J.; Chang, K.-C. Electro-Optic Optimization of Porcine Collagen through Protein-Amicable Supercritical Treatment. ACS Sustainable Chem. Eng 2022, 10, 16037–16045. DOI: 10.1021/acssuschemeng.2c05700.
  • Bisht, M.; Martins, M.; Dias, A. C.; Ventura, S. n P.; Coutinho, J. o A. Uncovering the Potential of Aqueous Solutions of Deep Eutectic Solvents on the Extraction and Purification of Collagen Type I from Atlantic Codfish (Gadus Morhua). Green Chem. 2021, 23, 8940–8948. DOI: 10.1039/D1GC01432C.
  • Malcor, J.-D.; Hunter, E. J.; Davidenko, N.; Bax, D. V.; Cameron, R.; Best, S.; Sinha, S.; Farndale, R. W. Collagen Scaffolds Functionalized with Triple-Helical Peptides Support 3D HUVEC Culture. Regen. Biomater. 2020, 7, 471–482. DOI: 10.1093/rb/rbaa025.
  • Keerthivasan, S.; Şenbabaoğlu, Y.; Martinez-Martin, N.; Husain, B.; Verschueren, E.; Wong, A.; Yang, Y. A.; Sun, Y.; Pham, V.; Hinkle, T.; et al. Homeostatic Functions of Monocytes and Interstitial Lung Macrophages Are Regulated via Collagen Domain-Binding Receptor LAIR1. Immunity 2021, 54, 1511–1526.e8. DOI: 10.1016/j.immuni.2021.06.012.
  • (a) Abbasi, A.; Khatoon, F.; Ikram, S. A Review on Remediation of Dye Adulterated System by Ecologically Innocuous "Biopolymers/Natural Gums-Based Composites. Int. J. Biol. Macromol. 2023, 231, 123240. DOI: 10.1016/j.ijbiomac.2023.123240. (b) Merrett, K.; Wan, F.; Lee, C.-J.; Harden, J. L. Enhanced Collagen-like Protein for Facile Biomaterial Fabrication. ACS Biomater. Sci. Eng. 2021, 7, 1414–1427. (c) Zhang, T.; Chen, H.; Zhang, Y.; Zan, Y.; Ni, T.; Liu, M.; Pei, R. Photo-Crosslinkable, Bone Marrow-Derived Mesenchymal Stem Cells-Encapsulating Hydrogel Based on Collagen for Osteogenic Differentiation. Colloids Surf, B 2019, 174, 528–535. (d) Stejskalová, A.; Oliva, N.; England, F. J.; Almquist, B. D. Biologically Inspired, Cell‐Selective Release of Aptamer‐Trapped Growth Factors by Traction Forces. Adv. Mater. 2019, 31, 1806380.
  • (a) Yan, M.; An, X.; Duan, S.; Jiang, Z.; Liu, X.; Zhao, X.; Li, Y. A Comparative Study on Cross-Linking of Fibrillar Gel Prepared by Tilapia Collagen and Hyaluronic Acid with EDC/NHS and Genipin. Int J. Biol Macromol. 2022, 213, 639–650. DOI: 10.1016/j.ijbiomac.2022.06.006. (b) Rütsche, D.; Nanni, M.; Rüdisser, S.; Biedermann, T.; Zenobi‐Wong, M. Enzymatically Crosslinked Collagen as A Versatile Matrix for In Vitro and In Vivo Co-Engineering of Blood and Lymphatic Vasculature28d. Construction of Collagen/Nanocrystalline Cellulose based-Hydrogel Scaffolds: Synthesis, Characterization, and Mechanical Properties Evaluation. Adv. Mater. 2022, 2209476. (c) Bax, D. V.; Davidenko, N.; Hamaia, S. W.; Farndale, R. W.; Best, S. M.; Cameron, R. E. Impact of UV- and Carbodiimide-Based Crosslinking on the Integrin-Binding Properties of Collagen-Based Materials. Acta Biomater. 2019, 100, 280–291.
  • Wu, Z.; Liu, J.; Lin, J.; Lu, L.; Tian, J.; Li, L.; Zhou, C. Novel Digital Light Processing Printing Strategy Using a Collagen-Based Bioink with Prospective Cross-Linker Procyanidins. Biomacromolecules 2021, 23, 240–252. DOI: 10.1021/acs.biomac.1c01244.
  • Lu, Z.; Liu, S.; Le, Y.; Qin, Z.; He, M.; Xu, F.; Zhu, Y.; Zhao, J.; Mao, C.; Zheng, L. An Injectable Collagen-Genipin-Carbon Dot Hydrogel Combined with Photodynamic Therapy to Enhance Chondrogenesis. Biomaterials 2019, 218, 119190. DOI: 10.1016/j.biomaterials.2019.05.001.
  • Borrego-González, S.; Rico-Llanos, G.; Becerra, J.; Díaz-Cuenca, A. n.; Visser, R. Sponge-like Processed D-Periodic Self-Assembled Atelocollagen Supports Bone Formation in Vivo. Mater. Sci. Engin. C 2021, 120, 111679. DOI: 10.1016/j.msec.2020.111679.
  • Xu, N.; Tao, Y.; Wang, X.; Luo, Z. Construction of a Novel Substrate of Unfigured Islands-in-Sea Microfiber Synthetic Leather Based on Waste Collagen. ACS Omega 2021, 6, 26086–26097. DOI: 10.1021/acsomega.1c03061.
  • Sarrigiannidis, S. O.; Rey, J. M.; Dobre, O.; González-García, C.; Dalby, M. J.; Salmeron-Sanchez, M. A Tough Act to Follow: Collagen Hydrogel Modifications to Improve Mechanical and Growth Factor Loading Capabilities. Mater. Today Bio 2021, 10, 100098. DOI: 10.1016/j.mtbio.2021.100098.
  • Wu, L.; Shao, H.; Fang, Z.; Zhao, Y.; Cao, C. Y.; Li, Q. Mechanism and Effects of Polyphenol Derivatives for Modifying Collagen. ACS Biomater. Sci. Eng. 2019, 5, 4272–4284. DOI: 10.1021/acsbiomaterials.9b00593.
  • Zhai, C.; Sullivan, P. A.; Martin, C. L.; Shi, H.; Deravi, L. F.; Yeo, J. Probing the Alignment-Dependent Mechanical Behaviors and Time-Evolutional Aligning Process of Collagen Scaffolds. J. Mater. Chem. B 2022, 10, 7052–7061. DOI: 10.1039/D2TB01360F.
  • Ho, T. C.; Park, J.-S.; Kim, S.-Y.; Lee, H.; Lim, J.-S.; Kim, S.-J.; Choi, M.-H.; Nam, S. Y.; Chun, B.-S. Influences of Molecular Weights on Physicochemical and Biological Properties of Collagen-Alginate Scaffolds. Mar. Drugs 2021, 19, 85. DOI: 10.3390/md19020085.
  • (a) Wang, Y.; Wang, Z.; Dong, Y. Collagen-Based Biomaterials for Tissue Engineering. ACS Biomater Sci Eng 2023, 9, 1132–1150. DOI: 10.1021/acsbiomaterials.2c00730. (b) Zhang, D.; Wu, X.; Chen, J.; Lin, K. The Development of Collagen Based Composite Scaffolds for Bone Regeneration. Bioact. Mater. 2018, 3, 129–138. (c) Qin, D.; Wang, N.; You, X.-G.; Zhang, A.-D.; Chen, X.-G.; Liu, Y. Collagen-Based Biocomposites Inspired by Bone Hierarchical Structures for Advanced Bone Regeneration: Ongoing Research and Perspectives. Biomater. Sci. 2022, 10, 318–353.
  • (a) Gaspar-Pintiliescu, A.; Stanciuc, A.-M.; Craciunescu, O. Natural Composite Dressings Based on Collagen, Gelatin and Plant Bioactive Compounds for Wound Healing: A Review. Int J. Biol. Macromol. 2019, 138, 854–865. DOI: 10.1016/j.ijbiomac.2019.07.155. (b) Sharma, S.; Rai, V. K.; Narang, R. K.; Markandeywar, T. S. Collagen-Based Formulations for Wound Healing: A Literature Review. Life Sci. 2022, 290, 120096. (c) Gajbhiye, S.; Wairkar, S. Collagen Fabricated Delivery Systems for Wound Healing: A New Roadmap. Biomater. Adv. 2022, 142, 213152.
  • (a) Mei, E.; Li, S.; Song, J.; Xing, R.; Li, Z.; Yan, X. Self-Assembling Collagen/Alginate Hybrid Hydrogels for Combinatorial Photothermal and Immuno Tumor Therapy. Colloids Surf, A 2019, 577, 570–575. DOI: 10.1016/j.colsurfa.2019.06.023. (b) Sutrisno, L.; Chen, H.; Yoshitomi, T.; Kawazoe, N.; Yang, Y.; Chen, G. PLGA–Collagen–BPNS Bifunctional Composite Mesh for Photothermal Therapy of Melanoma and Skin Tissue Engineering. J. Mater. Chem. B 2022, 10, 204–213.
  • (a) Indriani, S.; Benjakul, S.; Kishimura, H.; Karnjanapratum, S.; Nalinanon, S. Impact of Extraction Condition on the Yield and Molecular Characteristics of Collagen from Asian Bullfrog (Rana Tigerina) Skin. Lwt 2022, 162, 113439. DOI: 10.1016/j.lwt.2022.113439. (b) Noorzai, S.; Verbeek, C. J. R.; Lay, M. C.; Swan, J. Collagen Extraction from Various Waste Bovine Hide Sources. Waste Biomass Valor 2020, 11, 5687–5698.
  • (a) Menezes, M. d L. L. R.; Ribeiro, H. L.; Abreu, F. d O. M. d S.; Feitosa, J. P. d A.; Filho, M. d S. M. d S. Optimization of the Collagen Extraction from Nile Tilapia Skin (Oreochromis Niloticus) and Its Hydrogel with Hyaluronic Acid. Colloids Surf B 2020, 189, 110852. DOI: 10.1016/j.colsurfb.2020.110852. (b) Vidal, A. R.; Duarte, L. c P.; Schmidt, M. M.; Cansian, R. r L.; Fernandes, I. A.; de Oliveira Mello, R.; Demiate, I. M.; Dornelles, R. C. P. Extraction and Characterization of Collagen from Sheep Slaughter by-Products. Waste Manag. 2020, 102, 838–846. (c) Govindharaj, M.; Roopavath, U. K.; Rath, S. N. Valorization of Discarded Marine Eel Fish Skin for Collagen Extraction as a 3D Printable Blue Biomaterial for Tissue Engineering. J. Cleaner Prod. 2019, 230, 412–419.
  • (a) Zhang, T.; Yu, Z.; Ma, Y.; Chiou, B.-S.; Liu, F.; Zhong, F. Modulating Physicochemical Properties of Collagen Films by Cross-Linking with Glutaraldehyde at Varied pH Values. Food Hydrocolloids 2022, 124, 107270. DOI: 10.1002/adem.202400415. (b) Kong, W.; Lyu, C.; Liao, H.; Du, Y. Collagen Crosslinking: Effect on Structure, Mechanics and Fibrosis Progression. Biomed. Mater 2021, 16, 062005. (c) Zhu, L.; Xiao, Y.-X.; Zhu, H.-L.; Zuo, L.; Sun, C.; Lei, M.-A.; Zhang, J.-T.; Wei, B.-M.; Qi, C.-B.; Wang, H.-B.; et al. Construction of Collagen/Nanocrystalline Cellulose Based-Hydrogel Scaffolds: Synthesis, Characterization, and Mechanical Properties Evaluation. Adv. Eng. Mater. 2024, 70, 142–148. (d) Ghorbani, M.; Roshangar, L. Construction of Collagen/Nanocrystalline Cellulose based-Hydrogel Scaffolds: Synthesis, Characterization, and Mechanical Properties Evaluation. Inter. J. Polym. Mater. Polym. Biomater. 2021, 70, 142.
  • Grønlien, K. G.; Pedersen, M. E.; Rønning, S. B.; Solberg, N. T.; Tønnesen, H. H. Tuning of 2D Cultured Human Fibroblast Behavior Using Lumichrome Photocrosslinked Collagen Hydrogels. Mater. Today Commun. 2022, 31, 103635. DOI: 10.1016/j.mtcomm.2022.103635.
  • Zhang, J.; Zhao, B.; Chen, S.; Wang, Y.; Zhang, Y.; Wang, Y.; Wei, D.; Zhang, L.; Rong, G.; Weng, Y.; et al. Near-Infrared Light Irradiation Induced Mild Hyperthermia Enhances Glutathione Depletion and DNA Interstrand Cross-Link Formation for Efficient Chemotherapy. ACS Nano 2020, 14, 14831–14845. DOI: 10.1021/acsnano.0c03781.
  • Gulzar, A.; Yıldız, E.; Kaleli, H. N.; Nazeer, M. A.; Zibandeh, N.; Malik, A. N.; Taş, A. Y.; Lazoğlu, I.; Şahin, A.; Kizilel, S. Ruthenium-Induced Corneal Collagen Crosslinking under Visible Light. Acta Biomater. 2022, 147, 198–208. DOI: 10.1016/j.actbio.2022.05.040.
  • (a) Zheng, X.; Chen, Y.; Dan, N.; Li, Z.; Dan, W. Anti-Calcification Potential of Collagen Based Biological Patch Crosslinked by Epoxidized Polysaccharide. Int J. Biol. Macromol. 2022, 209, 1695–1702. DOI: 10.1016/j.ijbiomac.2022.04.117. (b)Wu, Y.; Chen, S.; Luo, P.; Deng, S.; Shan, Z.; Fang, J.; Liu, X.; Xie, J.; Liu, R.; Wu, S.; et al. Optimizing the Bio-Degradability and Biocompatibility of a Biogenic Collagen Membrane through Cross-Linking and Zinc-Doped Hydroxyapatite. Acta Biomater. 2022, 143, 159–172. (c) Redmond, J.; McCarthy, H. O.; Buchanan, P.; Levingstone, T. J.; Dunne, N. J. Development and Characterisation of 3D Collagen-Gelatin Based Scaffolds for Breast Cancer Research. Biomater. Adv. 2022, 142, 213157.
  • Yu, Y.; Xu, S.; Li, S.; Pan, H. Genipin-Cross-Linked Hydrogels Based on Biomaterials for Drug Delivery: A Review. Biomater. Sci. 2021, 9, 1583–1597. DOI: 10.1039/d0bm01403f.
  • (a) Yu, X.; Zhang, H.; Miao, Y.; Xiong, S.; Hu, Y. Recent Strategies of Collagen-based Biomaterials for Cartilage Repair: from Structure Cognition to Function Endowment38. The Collagen Suprafamily: from Biosynthesis to Advanced Biomaterial Development. J. Leather Sci. Engin. 2022, 4, 11. (b) Xie, Y.; Lee, K.; Wang, X.; Yoshitomi, T.; Kawazoe, N.; Yang, Y.; Chen, G. Interconnected Collagen Porous Scaffolds Prepared with Sacrificial PLGA Sponge Templates for Cartilage Tissue Engineering. J. Mater. Chem. B 2021, 9, 8491–8500. DOI: 10.1039/D1TB01559A. (c) Levinson, C.; Cavalli, E.; von Rechenberg, B.; Zenobi-Wong, M.; Darwiche, S. E. Combination of a Collagen Scaffold and an Adhesive Hyaluronan-Based Hydrogel for Cartilage Regeneration: A Proof of Concept in an Ovine Model. Cartilage 2021, 13, 636S–649S.
  • (a) Yi, Y.; Zhang, Y.; Mansel, B.; Wang, Y-n.; Prabakar, S.; Shi, B. Effect of Dialdehyde Carboxymethyl Cellulose Cross-Linking on the Porous Structure of the Collagen Matrix. Biomacromolecules 2022, 23, 1723–1732. DOI: 10.1021/acs.biomac.1c01641. (b) Dasgupta, A.; Sori, N.; Petrova, S.; Maghdouri-White, Y.; Thayer, N.; Kemper, N.; Polk, S.; Leathers, D.; Coughenour, K.; Dascoli, J.; et al. Comprehensive Collagen Crosslinking Comparison of Microfluidic Wet-Extruded Microfibers for Bioactive Surgical Suture Development. Acta Biomater. 2021, 128, 186–200.
  • Zhang, J.; Sui, P.; Yang, W.; Shirshin, E. A.; Zheng, M.; Wei, B.; Xu, C.; Wang, H. Site-Specific Modification of N-Terminal α-Amino Groups of Succinylated Collagen. Int J. Biol. Macromol . 2023, 225, 310–317. DOI: 10.1016/j.ijbiomac.2022.11.035.
  • (a) S. Tunsrichon, K. Chainok, V. Promarak, P. Nalaoh, S. Youngme, J. Boonmak, Inorg Chem, Simultaneous Occurrence of Vapochromism and Vapoluminescence in Formaldehyde-Responsive Amino-Functionalized Copper(I) Polymorphic Coordination Polymers. 2022, 61, 11734, 11745; DOI: 10.1021/acs.inorgchem.2c01421. (b) Qiao, X.; Su, B.; Liu, C.; Song, Q.; Luo, D.; Mo, G.; Wang, T. Adv. Mater. 2018, 30, 1702275.
  • Sorushanova, A.; Delgado, L. M.; Wu, Z.; Shologu, N.; Kshirsagar, A.; Raghunath, R.; Mullen, A. M.; Bayon, Y.; Pandit, A.; Raghunath, M. The Collagen Suprafamily: from Biosynthesis to Advanced Biomaterial Development. Adv. Mater. 2019, 31, 1801651.
  • (a) Zhang, D.; Liu, L.; Jin, S.; Tota, E.; Li, Z.; Piao, X.; Zhang, X.; Fu, X.-D.; Devaraj, N. K. Site-Specific and Enzymatic Cross-Linking of sgRNA Enables Wavelength-Selectable Photoactivated Control of CRISPR Gene Editing. J. Am. Chem. Soc. 2022, 144, 4487–4495. DOI: 10.1021/jacs.1c12166. (b) Kim, M.; Kim, H.; Lee, Y-s.; Lee, S.; Kim, S.-E.; Lee, U.-J.; Jung, S.; Park, C.-G.; Hong, J.; Doh, J.; et al. Novel Enzymatic Cross-Linking–based Hydrogel Nanofilm Caging System on Pancreatic β Cell Spheroid for Long-Term Blood Glucose Regulation. Sci. Adv. 2021, 7, eabf7832.
  • Maller, O.; Drain, A. P.; Barrett, A. S.; Borgquist, S.; Ruffell, B.; Zakharevich, I.; Pham, T. T.; Gruosso, T.; Kuasne, H.; Lakins, J. N.; et al. Tumour-Associated Macrophages Drive Stromal Cell-Dependent Collagen Crosslinking and Stiffening to Promote Breast Cancer Aggression. Nat Mater. 2021, 20, 548–559. DOI: 10.1038/s41563-020-00849-5.
  • (a) Sun, L.; Li, B.; Song, W.; Zhang, K.; Fan, Y.; Hou, H. Comprehensive Assessment of Nile Tilapia Skin Collagen Sponges as Hemostatic Dressings. Materials Science and Engineering: C 2020, 109, 110532. DOI: 10.1016/j.msec.2019.110532. (b) Zeng, Y.; Zhou, M.; Chen, L.; Fang, H.; Liu, S.; Zhou, C.; Sun, J.; Wang, Z. Alendronate Loaded Graphene Oxide Functionalized Collagen Sponge for the Dual Effects of Osteogenesis and anti-Osteoclastogenesis in Osteoporotic Rats. Bioact. Mater. 2020, 5, 859–870. (c) He, Y.; Wang, J.; Si, Y.; Wang, X.; Deng, H.; Sheng, Z.; Li, Y.; Liu, J.; Zhao, J. A Novel Gene Recombinant Collagen Hemostatic Sponge with Excellent Biocompatibility and Hemostatic Effect. Int. J. Biol. Macromol. 2021, 178, 296–305. (d) Lin, X.; Feng, Y.; He, Y.; Ding, S.; Liu, M. Engineering Design of Asymmetric Halloysite/Chitosan/Collagen Sponge with Hydrophobic Coating for High-Performance Hemostasis Dressing. Int. J. Biol. Macromol. 2023, 237, 124148.
  • (a) Wang, X.; Zhao, D.; Li, Y.; Zhou, X.; Hui, Z.; Lei, X.; Qiu, L.; Bai, Y.; Wang, C.; Xia, J.; et al. Collagen Hydrogel with Multiple Antimicrobial Mechanisms as anti-Bacterial Wound Dressing. Int J. Biol Macromol 2023, 232, 123413. DOI: 10.1016/j.ijbiomac.2023.123413. (b) Kim, H.; Han, S. H.; Kook, Y.-M.; Lee, K.-M.; Jin, Y.-Z.; Koh, W.-G.; Lee, J. H.; Lee, K. A Novel 3D Indirect co-Culture System Based on a Collagen Hydrogel Scaffold for Enhancing the Osteogenesis of Stem Cells. J. Mater. Chem. B 2020, 8, 9481–9491. (c)Yang, Y.; Fan, Y.; Zhang, H.; Zhang, Q.; Zhao, Y.; Xiao, Z.; Liu, W.; Chen, B.; Gao, L.; Sun, Z.; et al. Small Molecules Combined with Collagen Hydrogel Direct Neurogenesis and Migration of Neural Stem Cells after Spinal Cord Injury. Biomaterials 2021, 269, 120479.
  • (a) Lin, Z.; Wu, T.; Wang, W.; Li, B.; Wang, M.; Chen, L.; Xia, H.; Zhang, T. Biofunctions of Antimicrobial Peptide-Conjugated Alginate/Hyaluronic Acid/Collagen Wound Dressings Promote Wound Healing of a Mixed-Bacteria-Infected Wound. Int. J. Biol. Macromol. 2019, 140, 330–342. DOI: 10.1016/j.ijbiomac.2019.08.087. (b) Ge, L.; Xu, Y.; Li, X.; Yuan, L.; Tan, H.; Li, D.; Mu, C. Fabrication of Antibacterial Collagen-Based Composite Wound Dressing. ACS Sustainable Chem. Eng. 2018, 6, 9153–9166. (c) Sun, L.; Li, L.; Wang, Y.; Li, M.; Xu, S.; Zhang, C. A Collagen-Based bi-Layered Composite Dressing for Accelerated Wound Healing. J. Tissue Viability. 2022, 31, 180–189.
  • (a) Ling, Q.; Fan, X.; Ling, M.; Liu, J.; Zhao, L.; Gu, H. Collagen-Based Organohydrogel Strain Sensor with Self-Healing and Adhesive Properties for Detecting Human Motion. ACS Appl. Mater. Interfaces 2023, 15, 12350–12362. DOI: 10.1021/acsami.2c21566. (b) Hu, X.-B.; Qin, Y.; Fan, W.-T.; Liu, Y.-L.; Huang, W.-H. A Three-Dimensional Electrochemical Biosensor Integrated with Hydrogel Enables Real-Time Monitoring of Cells under Their In Vivo-like Microenvironment. Anal. Chem. 2021, 93, 7917–7924.
  • (a) H. Lv, N. Gao, Q. Zhou, Y. Wang, G. Ling, P. Zhang, Cellulose Nanocrystal Reinforced Collagen-Based Nanocomposite Hydrogel with Self-Healing and Stress-Relaxation Properties for Cell Delivery. Adv. Healthcare Mate. 2023, 21,2400–2408. (b) Zhang, S.; Huang, D.; Lin, H.; Xiao, Y.; Zhang, X. Biomacromolecules 2020, 21, 2400. DOI: 10.1021/acs.biomac.0c00345.
  • (a) Mi, Y.; Zhong, L.; Lu, S.; Hu, P.; Pan, Y.; Ma, X.; Yan, B.; Wei, Z.; Yang, G. Quercetin Promotes Cutaneous Wound Healing in Mice through Wnt/β-Catenin Signaling Pathway. J. Ethnopharmacol. 2022, 290, 115066. DOI: 10.1016/j.jep.2022.115066. (b) Xi, L.; Wang, L.; Zhang, M.; He, C.; Yang, X.; Pang, Y.; Chen, H.; Cheng, F. TNF-R1 Cellular Nanovesicles Loaded on the Thermosensitive F-127 Hydrogel Enhance the Repair of Scalded Skin. ACS Biomater. Sci. Engin. 2023,
  • (a) de Melo Pereira, D.; Davison, N.; Habibović, P. Human Osteoclast Formation and Resorptive Function on Biomineralized Collagen. Bioact. Mater. 2022, 8, 241–252. DOI: 10.1016/j.bioactmat.2021.06.036. (b) Yang, X.; Li, Y.; He, W.; Huang, Q.; Zhang, R.; Feng, Q. Hydroxyapatite/Collagen Coating on PLGA Electrospun Fibers for Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. J. Biomedical. Mater. Res. 2018, 106, 2863–2870.
  • (a) Nabavi, M. H.; Salehi, M.; Ehterami, A.; Bastami, F.; Semyari, H.; Tehranchi, M.; Nabavi, M. A.; Semyari, H. A Collagen-Based Hydrogel Containing Tacrolimus for Bone Tissue Engineering. Drug Deliv. Transl. Res. 2020, 10, 108–121. DOI: 10.1007/s13346-019-00666-7. (b) Geng, Y.; Duan, H.; Xu, L.; Witman, N.; Yan, B.; Yu, Z.; Wang, H.; Tan, Y.; Lin, L.; Li, D.; et al. BMP-2 and VEGF-A modRNAs in Collagen Scaffold Synergistically Drive Bone Repair through Osteogenic and Angiogenic Pathways. Commun. Biol. 2021, 4, 82. (c) Lee, D. K.; Ki, M.-R.; Kim, E. H.; Park, C.-J.; Ryu, J. J.; Jang, H. S.; Pack, S. P.; Jo, Y. K.; Jun, S. H. Biomater. Res. 2021, 25, 1.
  • Zhao, X.; Li, X.; Xie, X.; Lei, J.; Ge, L.; Yuan, L.; Li, D.; Mu, C. Controlling the Pore Structure of Collagen Sponge by Adjusting the Cross-Linking Degree for Construction of Heterogeneous Double-Layer Bone Barrier Membranes. ACS Appl. Bio. Mater. 2020, 3, 2058–2067. DOI: 10.1021/acsabm.9b01175.
  • (a) Liang, H.; Yin, J.; Man, K.; Yang, X. B.; Calciolari, E.; Donos, N.; Russell, S. J.; Wood, D. J.; Tronci, G. A Long-Lasting Guided Bone Regeneration Membrane from Sequentially Functionalised Photoactive Atelocollagen. Acta Biomater. 2022, 140, 190–205. DOI: 10.1016/j.actbio.2021.12.004. (b) Garcia, C. F.; Marangon, C. A.; Massimino, L. C.; Klingbeil, M. F. G.; Martins, V. C. A.; de Guzzi Plepis, A. M. Development of Collagen/Nanohydroxyapatite Scaffolds Containing Plant Extract Intended for Bone Regeneration. Mater. Sci. Engin. C 2021, 123, 111955.
  • (a) Luo, J.; Shi, X.; Lin, Y.; Yuan, Y.; Kural, M. H.; Wang, J.; Ellis, M. W.; Anderson, C. W.; Zhang, S.-M.; Riaz, M.; et al. Efficient Differentiation of Human Induced Pluripotent Stem Cells into Endothelial Cells under Xenogeneic-Free Conditions for Vascular Tissue Engineering. Acta Biomater. 2021, 119, 184–196. DOI: 10.1016/j.actbio.2020.11.007. (b) Li, H.; Yu, B.; Yang, P.; Zhan, J.; Fan, X.; Chen, P.; Liao, X.; Ou, C.; Cai, Y.; Chen, M. Injectable AuNP-HA Matrix with Localized Stiffness Enhances the Formation of Gap Junction in Engrafted Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Promotes Cardiac Repair. Biomaterials 2021, 279, 121231.
  • (a) Gresham, R. C.; Bahney, C. S.; Leach, J. K. Growth Factor Delivery Using Extracellular Matrix-Mimicking Substrates for Musculoskeletal Tissue Engineering and Repair. Bioact. Mater. 2021, 6, 1945–1956. DOI: 10.1016/j.bioactmat.2020.12.012. (b) Joshi, A.; Xu, Z.; Ikegami, Y.; Yoshida, K.; Sakai, Y.; Joshi, A.; Kaur, T.; Nakao, Y.; Yamashita, Y-i.; Baba, H.; et al. Exploiting Synergistic Effect of Externally Loaded bFGF and Endogenous Growth Factors for Accelerated Wound Healing Using Heparin Functionalized PCL/Gelatin co-Spun Nanofibrous Patches. Chem. Engin. J. 2021, 404, 126518.
  • (a) Xing, F.; Chi, Z.; Yang, R.; Xu, D.; Cui, J.; Huang, Y.; Zhou, C.; Liu, C. Chitin-Hydroxyapatite-Collagen Composite Scaffolds for Bone Regeneration. Int J. Biol. Macromol. 2021, 184, 170–180. DOI: 10.1016/j.ijbiomac.2021.05.019. (b) Zhong, Z.; Wu, X.; Wang, Y.; Li, M.; Li, Y.; Liu, X.; Zhang, X.; Lan, Z.; Wang, J.; Du, Y.; Zhang, S. Zn/Sr Dual Ions-Collagen co-Assembly Hydroxyapatite Enhances Bone Regeneration through Procedural Osteo-Immunomodulation and Osteogenesis. Bioact. Mater. 2022, 10, 195–206.
  • (a) Chen, W.; Sun, Y.; Gu, X.; Cai, J.; Liu, X.; Zhang, X.; Chen, J.; Hao, Y.; Chen, S. Conditioned Medium of Human Bone Marrow-Derived Stem Cells Promotes Tendon-Bone Healing of the Rotator Cuff in a Rat Model. Biomaterials 2021, 271, 120714. DOI: 10.1016/j.biomaterials.2021.120714. (b) Yang, J.; Liang, J.; Zhu, Y.; Hu, M.; Deng, L.; Cui, W.; Xu, X. Fullerol-Hydrogel Microfluidic Spheres for in Situ Redox Regulation of Stem Cell Fate and Refractory Bone Healing. Bioact. Mater. 2021, 6, 4801–4815.
  • Xia, B.; Deng, Y.; Lv, Y.; Chen, G. Stem Cell Recruitment Based on Scaffold Features for Bone Tissue Engineering. Biomater Sci 2021, 9, 1189–1203. DOI: 10.1039/d0bm01591a.
  • (a) Heo, B.; Fiola, M.; Yang, J. H.; Koh, A. A Low-Cost, Composite collagen-PDMS Material for Extended Fluid Retention in the Skin-Interfaced Microfluidic Devices. Colloid Interface Sci. Commun. 2020, 38, 100301. DOI: 10.1016/j.colcom.2020.100301. (b) Domingo-Lopez, D. A.; Lattanzi, G.; Schreiber, L. H. J.; Wallace, E. J.; Wylie, R.; O'Sullivan, J.; Dolan, E. B.; Duffy, G. P. Medical Devices, Smart Drug Delivery, Wearables and Technology for the Treatment of Diabetes Mellitus. Adv. Drug Deliv. Rev. 2022, 185, 114280.
  • (a) Gu, J-t.; Jiao, K.; Li, J.; Yan, J-f.; Wang, K-y.; Wang, F.; Liu, Y.; Tay, F. R.; Chen, J-h.; Niu, L-n Polyphosphate-Crosslinked Collagen Scaffolds for Hemostasis and Alveolar Bone Regeneration after Tooth Extraction. Bioact Mater 2022, 15, 68–81. DOI: 10.1016/j.bioactmat.2021.12.019. (b) Long, G.; Liu, D.; He, X.; Shen, Y.; Zhao, Y.; Hou, X.; Chen, B.; OuYang, W.; Dai, J.; Li, X. A Dual Functional Collagen Scaffold Coordinates Angiogenesis and Inflammation for Diabetic Wound Healing. Biomater. Sci. 2020, 8, 6337–6349. (c) Kisling, A.; Lust, R. M.; Katwa, L. C. What is the Role of Peptide Fragments of Collagen I and IV in Health and Disease? Life Sci. 2019, 228, 30–34.(d) Yang, Y.; Zhang, Y.; Min, Y.; Chen, J. Preparation of Methacrylated Hyaluronate/Methacrylated Collagen Sponges with Rapid Shape Recovery and Orderly Channel for Fast Blood Absorption as Hemostatic Dressing. Int. J. Biol. Macromol. 2022, 222, 30–40.
  • (a) Sparks, H. D.; Sigaeva, T.; Tarraf, S.; Mandla, S.; Pope, H.; Hee, O.; Di Martino, E. S.; Biernaskie, J.; Radisic, M.; Scott, W. M. Biomechanics of Wound Healing in an Equine Limb Model: Effect of Location and Treatment with a Peptide-Modified Collagen-Chitosan Hydrogel. ACS Biomater Sci Eng 2020, 7, 265–278. DOI: 10.1021/acsbiomaterials.0c01431. (b) Wang, Y.; Chen, L.; Ren, D.-Y.; Feng, Z.-X.; Zhang, L.-Y.; Zhong, Y.-F.; Jin, M.-Y.; Xu, F.-W.; Feng, C.-Y.; Du, Y.-Z.; Tan, W.-Q. Mussel-Inspired Collagen-Hyaluronic Acid Composite Scaffold with Excellent Antioxidant Properties and Sustained Release of a Growth Factor for Enhancing Diabetic Wound Healing. Materials Today Bio 2022, 15, 100320.
  • Kalirajan, C.; Palanisamy, T. Bioengineered Hybrid Collagen Scaffold Tethered with Silver-Catechin Nanocomposite Modulates Angiogenesis and TGF-β Toward Scarless Healing in Chronic Deep Second Degree Infected Burns61b. Bioinspired Nanofibrous Glycopeptide Hydrogel Dressing for Accelerating Wound Healing: A Cytokine-Free, M2-Type Macrophage Polarization Approach. Adv. Healthcare Mater. 2020, 9, 2000247.
  • Hauck, S.; Zager, P.; Halfter, N.; Wandel, E.; Torregrossa, M.; Kakpenova, A.; Rother, S.; Ordieres, M.; Räthel, S.; Berg, A.; et al. Collagen/Hyaluronan Based Hydrogels Releasing Sulfated Hyaluronan Improve Dermal Wound Healing in Diabetic Mice via Reducing Inflammatory Macrophage Activity. Bioact Mater 2021, 6, 4342–4359. DOI: 10.1016/j.bioactmat.2021.04.026.
  • (a) Wang, K.; Dong, R.; Tang, J.; Li, H.; Dang, J.; Zhang, Z.; Yu, Z.; Guo, B.; Yi, C. Exosomes Laden Self-Healing Injectable Hydrogel Enhances Diabetic Wound Healing via Regulating Macrophage Polarization to Accelerate Angiogenesis. Chem. Engin. J. 2022, 430, 132664. DOI: 10.1016/j.cej.2021.132664. (b) Feng, Z.; Su, Q.; Zhang, C.; Huang, P.; Song, H.; Dong, A.; Kong, D.; Wang, W. Bioinspired Nanofibrous Glycopeptide Hydrogel Dressing for Accelerating Wound Healing: A Cytokine-Free, M2-Type Macrophage Polarization Approach. Adv. Funct. Mater. 2020, 30, 2006454. (c) Wu, J.; Zhu, J.; Wu, Q.; An, Y.; Wang, K.; Xuan, T.; Zhang, J.; Song, W.; He, H.; Song, L.; et al. Mussel-Inspired Surface Immobilization of Heparin on Magnetic Nanoparticles for Enhanced Wound Repair via Sustained Release of a Growth Factor and M2 Macrophage Polarization. ACS Appl. Mater. Interfaces. 2021, 13, 2230–2244.
  • Zhao, X.; Li, S.; Du, X.; Li, W.; Wang, Q.; He, D.; Yuan, J. Natural Polymer-Derived Photocurable Bioadhesive Hydrogels for Sutureless Keratoplasty. Bioact. Mater. 2022, 8, 196–209. DOI: 10.1016/j.bioactmat.2021.07.001.
  • Li, L.; Lu, C.; Wang, L.; Chen, M.; White, J.; Hao, X.; McLean, K. M.; Chen, H.; Hughes, T. C. Gelatin-Based Photocurable Hydrogels for Corneal Wound Repair. ACS Appl. Mater. Interfaces 2018, 10, 13283–13292. DOI: 10.1021/acsami.7b17054.
  • Shukla, S.; Mittal, S. K.; Foulsham, W.; Elbasiony, E.; Singhania, D.; Sahu, S. K.; Chauhan, S. K. Therapeutic Efficacy of Different Routes of Mesenchymal Stem Cell Administration in Corneal Injury. Ocul. Surf. 2019, 17, 729–736. DOI: 10.1016/j.jtos.2019.07.005.
  • Mobaraki, M.; Abbasi, R.; Omidian Vandchali, S.; Ghaffari, M.; Moztarzadeh, F.; Mozafari, M. Corneal Repair and Regeneration: Current Concepts and Future Directions. Front. Bioeng. Biotechnol 2019, 7, 135. DOI: 10.3389/fbioe.2019.00135.
  • Rosenquist, J.; Folkesson, M.; Höglund, L.; Pupkaite, J.; Hilborn, J.; Samanta, A. An Injectable, Shape-Retaining Collagen Hydrogel Cross-Linked Using Thiol-Maleimide Click Chemistry for Sealing Corneal Perforations. ACS Appl. Mater. Interfaces 2023, 15, 34407–34418. DOI: 10.1021/acsami.3c03963.
  • (a) F. Chen, P. Le, G. M. Fernandes-Cunha, S. C. Heilshorn, D. Myung, Bio-Orthogonally Crosslinked Hyaluronate-Collagen Hydrogel for Suture-Free Corneal Defect Repair. Biomaterials 2020, 255, 120176; DOI: 10.1016/j.biomaterials.2020.120176. (b) Lei, M.; Zhang, S.; Zhou, H.; Wan, H.; Lu, Y.; Lin, S.; Sun, J.; Qu, X.; Liu, C. ACS Nano 2022, 16, 10632.
  • Qin, L.; Gao, H.; Xiong, S.; Jia, Y.; Ren, L. Preparation of Collagen/Cellulose Nanocrystals Composite Films and Their Potential Applications in Corneal Repair. J. Mater. Sci. Mater. Med. 2020, 31, 1.
  • Zhao, X.; Song, W.; Chen, Y.; Liu, S.; Ren, L. Collagen-Based Materials Combined with microRNA for Repairing Cornea Wounds and Inhibiting Scar Formation. Biomater. Sci. 2019, 7, 51–62. DOI: 10.1039/c8bm01054d.
  • Yu, N.; Liu, J.; Huang, Y.-R.; Sun, X.-M.; Xu, Y.-N.; Peng, Y.-H.; Song, W.-J.; Ren, L. Construction and In Vitro Evaluation of Collagen/Bioactive Glass Composite Membranes as a Corneal Implant. ACS Appl. Polym. Mater. 2023, 5, 4716–4728. DOI: 10.1021/acsapm.3c00294.
  • (a) Yang, X.; Sun, X.; Liu, J.; Huang, Y.; Peng, Y.; Xu, Y.; Ren, L. Photo-Crosslinked GelMA/Collagen Membrane Loaded with Lysozyme as an Antibacterial Corneal Implant. Int. J. Biol. Macromol. 2021, 191, 1006–1016. DOI: 10.1016/j.ijbiomac.2021.09.144. (b) Chen, F.; Le, P.; Lai, K.; Fernandes-Cunha, G. M.; Myung, D. Simultaneous Interpenetrating Polymer Network of Collagen and Hyaluronic Acid as an In Situ -Forming Corneal Defect Filler. Chem. Mater. 2020, 32, 5208–5216.
  • (a) Chang, M.-C.; Kuo, Y.-J.; Hung, K.-H.; Peng, C.-L.; Chen, K.-Y.; Yeh, L.-K. Liposomal Dexamethasone–Moxifloxacin Nanoparticle Combinations with Collagen/Gelatin/Alginate Hydrogel for Corneal Infection Treatment and Wound Healing. Biomed. Mater. 2020, 15, 055022. DOI: 10.1088/1748-605X/ab9510. (b) Chen, Y.; Song, W.; Zhao, X.; Han, Q.; Ren, L. An Antibacterial Collagen Membrane Crosslinked by the Inclusion Complex of β-Cyclodextrin Dialdehyde and Ofloxacin for Bacterial Keratitis. RSC Adv. 2018, 8, 18153–18162.
  • Liu, C.; Mejia, D. L.; Chiang, B.; Luker, K. E.; Luker, G. D. Hybrid Collagen Alginate Hydrogel as a Platform for 3D Tumor Spheroid Invasion. Acta Biomater. 2018, 75, 213–225. DOI: 10.1016/j.actbio.2018.06.003.
  • (a) Gao, Y.; Zhou, J.; Li, J. Discoidin Domain Receptors Orchestrate Cancer Progression: A Focus on Cancer Therapies. Cancer Sci. 2021, 112, 962–969. (b) Ferns, G. A.; Shabanian, S.; Abadi, M. S. S.; Farhat, A.; Arjmand, M.-H.; Gastrointestinal Tumors 2021, 8, 177. DOI: 10.1111/cas.14789.
  • Xu, S.; Xu, H.; Wang, W.; Li, S.; Li, H.; Li, T.; Zhang, W.; Yu, X.; Liu, L. The role of collagen in cancer: from bench to bedside. J. Transl. Med. 2019, 17, 1.
  • (a) Liu, Y.; Liu, X.; Wu, M.; Ji, P.; Lv, H.; Deng, L. A Collagen Film with Micro-Rough Surface Can Promote the Corneal Epithelization Process for Corneal Repair. Int. J. Biol. Macromol. 2019, 121, 233–238. DOI: 10.1016/j.ijbiomac.2018.10.026. (b) Li, H.-C.; Sun, X.-M.; Huang, Y.-R.; Peng, Y.-H.; Liu, J.; Ren, L. Synthetic Crosslinker Based on Amino–Yne Click to Enhance the Suture Tension of Collagen-Based Corneal Repair Materials. ACS Appl. Polym. Mater. 2022, 4, 4495–4507.
  • (a) McLaughlin, S.; McNeill, B.; Podrebarac, J.; Hosoyama, K.; Sedlakova, V.; Cron, G.; Smyth, D.; Seymour, R.; Goel, K.; Liang, W.; et al. Injectable Human Recombinant Collagen Matrices Limit Adverse Remodeling and Improve Cardiac Function after Myocardial Infarction. Nat. Commun. 2019, 10, 4866. DOI: 10.1038/s41467-019-12748-8. (b) Yang, L.; Wu, H.; Lu, L.; He, Q.; Xi, B.; Yu, H.; Luo, R.; Wang, Y.; Zhang, X. A Tailored Extracellular Matrix (ECM) - Mimetic Coating for Cardiovascular Stents by Stepwise Assembly of Hyaluronic Acid and Recombinant Human Type III Collagen. Biomaterials 2021, 276, 121055.
  • (a) Akhtar, A.; Andleeb, A.; Waris, T. S.; Bazzar, M.; Moradi, A.-R.; Awan, N. R.; Yar, M. Neurodegenerative Diseases and Effective Drug Delivery: A Review of Challenges and Novel Therapeutics. J. Controlled Release 2021, 330, 1152–1167. DOI: 10.1016/j.jconrel.2020.11.021. (b) Si, J.; Yang, Y.; Xing, X.; Yang, F.; Shan, P. Controlled Degradable Chitosan/Collagen Composite Scaffolds for Application in Nerve Tissue Regeneration. Polym. Degrad. Stab. 2019, 166, 73–85.
  • Li, W. H.; Ye, B. C.; Yang, J.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D.; Li, Y. A Single‐Atom Cobalt Catalyst for the Fluorination of Acyl Chlorides at Parts‐Per‐Million Catalyst Loading. Angew. Chem. Int. Ed. 2022, 61, e202209749.
  • Keefe, A. D.; Pai, S.; Ellington, A. Aptamers as Therapeutics. Nat. Rev. Drug Discov. 2010, 9, 537–550. DOI: 10.1038/nrd3141.
  • Wu, A. M.; Senter, P. D. Arming Antibodies: Prospects and Challenges for Immunoconjugates. Nat. Biotechnol. 2005, 23, 1137–1146. DOI: 10.1038/nbt1141.
  • Bai, Z.; Wang, X.; Huang, M.; Zheng, M.; Yue, O.; Hao, D.; Wang, Y.; Zou, X.; Cui, B.; Xie, L.; et al. Versatile Nano–Micro Collagen Fiber-Based Wearable Electronics for Health Monitoring and Thermal Management. J. Mater. Chem. A 2023, 11, 726–741. DOI: 10.1039/D2TA08263B.
  • (a) Wang, X.; Yue, O.; Liu, X.; Hou, M.; Zheng, M. A Novel Bio-Inspired Multi-Functional Collagen Aggregate Based Flexible Sensor with Multi-Layer and Internal 3D Network Structure. Chem. Engin. J. 2020, 392, 123672. DOI: 10.1016/j.cej.2019.123672. (b) Ma, J.; Pan, Z.; Zhang, W.; Fan, Q.; Li, W.; Liang, H. High-Sensitivity Microchannel-Structured Collagen Fiber-Based Sensors with Antibacterial and Hydrophobic Properties. ACS Sustain. Chem. Eng. 2022, 10, 16814–16824.
  • Bozkurt, Y.; Karayel, E. 3D Printing Technology; Methods, Biomedical Applications, Future Opportunities and Trends. J. Mater. Res. Technol. 2021, 14, 1430–1450. DOI: 10.1016/j.jmrt.2021.07.050.
  • Chu, T.; Park, S.; Fu, K. 3D Printing‐Enabled Advanced Electrode Architecture Design. Carbon Energy 2021, 3, 424–439. DOI: 10.1002/cey2.114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.