4,209
Views
99
CrossRef citations to date
0
Altmetric
Research Paper

HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes

, , , , , & show all
Pages 418-430 | Received 09 Jan 2015, Accepted 24 Feb 2015, Published online: 05 May 2015

References

  • Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 1999; 341: 1276-83; PMID:10528039; http://dx.doi.org/10.1056/NEJM199910213411706
  • Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128: 191–227; PMID:20438756; http://dx.doi.org/10.1016/j.pharmthera.2010.04.005
  • Bozkurt B, Mann DL, Deswal A. Biomarkers of inflammation in heart failure. Heart failure reviews 2010; 15: 331–41; PMID:19363700; http://dx.doi.org/10.1007/s10741-009-9140-3
  • Imamura S, Matsuoka R, Hiratsuka E, Kimura M, Nakanishi T, Nishikawa T, Furutani Y, Takao A. Adaptational changes of MHC gene expression and isozyme transition in cardiac overloading. Am J Physiol 1991; 260: H73–9; PMID:1825154
  • Mayer Y, Czosnek H, Zeelon PE, Yaffe D, Nudel U. Expression of the genes coding for the skeletal muscle and cardiac actions in the heart. Nucleic Acids Res 1984; 12: 1087–100; PMID:6546444; http://dx.doi.org/10.1093/nar/12.2.1087
  • McKinsey TA, Olson EN. Cardiac histone acetylation–therapeutic opportunities abound. Trends Genet 2004; 20: 206–13; PMID:15041175; http://dx.doi.org/10.1016/j.tig.2004.02.002
  • McKinsey TA, Olson EN. Dual roles of histone deacetylases in the control of cardiac growth. Novart Found Symp 2004; 259: 132–41; discussion 41-5, 63-9; PMID:15171251; http://dx.doi.org/10.1002/0470862637.ch9
  • McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 2005; 115: 538–46; PMID:15765135; http://dx.doi.org/10.1172/JCI24144
  • McKinsey TA, Zhang CL, Olson EN. Signaling chromatin to make muscle. Curr Opin Cell Biol 2002; 14: 763–72; PMID:12473352; http://dx.doi.org/10.1016/S0955-0674(02)00389-7
  • Olson EN, Backs J, McKinsey TA. Control of cardiac hypertrophy and heart failure by histone acetylation/deacetylation. Novart Found Symp 2006; 274: 3–12; discussion 3-9, 152-5, 272-6; PMID:17019803; http://dx.doi.org/10.1002/0470029331.ch2
  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389: 251–60; PMID:9305837; http://dx.doi.org/10.1038/38444
  • Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293: 1074–80; PMID:11498575; http://dx.doi.org/10.1126/science.1063127
  • Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 2005; 122: 517–27; PMID:16122420; http://dx.doi.org/10.1016/j.cell.2005.06.026
  • Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 2008; 40: 897–903; PMID:18552846; http://dx.doi.org/10.1038/ng.154
  • Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA, et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A 2004; 101: 7357–62.
  • Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 2002a; 110: 479–88; http://dx.doi.org/10.1016/S0092-8674(02)00861-9
  • Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 2007; 13: 324–31; PMID:17322895; http://dx.doi.org/10.1038/nm1552
  • McKinsey TA. The biology and therapeutic implications of HDACs in the heart. Handbook Exp Pharmacol 2011; 206: 57–78; PMID:21879446; http://dx.doi.org/10.1007/978-3-642-21631-2_4
  • Papait R, Cattaneo P, Kunderfranco P, Greco C, Carullo P, Guffanti A, Vigano V, Stirparo GG, Latronico MV, Hasenfuss G, et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A 2013; 110: 20164–9; PMID:24284169; http://dx.doi.org/10.1073/pnas.1315155110
  • Sayed D, He M, Yang Z, Lin L, Abdellatif M. Transcriptional regulation patterns revealed by high resolution chromatin immunoprecipitation during cardiac hypertrophy. J Biol Chem 2013; 288: 2546–58; PMID:23229551; http://dx.doi.org/10.1074/jbc.M112.429449
  • Thaler F, Minucci S. Next generation histone deacetylase inhibitors: the answer to the search for optimized epigenetic therapies? Expert Opin Drug Disc 2011; 6: 393–404; PMID:22646017; http://dx.doi.org/10.1517/17460441.2011.557660
  • Antos CL, McKinsey TA, Dreitz M, Hollingsworth LM, Zhang CL, Schreiber K, Rindt H, Gorczynski RJ, Olson EN. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem 2003; 278: 28930–7; PMID:12761226; http://dx.doi.org/10.1074/jbc.M303113200
  • Gallo P, Latronico MV, Grimaldi S, Borgia F, Todaro M, Jones P, Gallinari P, De Francesco R, Ciliberto G, Steinkuhler C, et al. Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiov Res 2008; 80: 416–24; PMID:18697792; http://dx.doi.org/10.1093/cvr/cvn215
  • Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z, Ahn Y, Jeong MH, Bang YJ, Kim N, et al. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 2006; 113: 51–9; PMID:16380549; http://dx.doi.org/10.1161/CIRCULATIONAHA.105.559724
  • Halsall J, Gupta V, O'Neill LP, Turner BM, Nightingale KP. Genes are often sheltered from the global histone hyperacetylation induced by HDAC inhibitors. PloS One 2012; 7: e33453; PMID:22479401; http://dx.doi.org/10.1371/journal.pone.0033453
  • Rada-Iglesias A, Enroth S, Ameur A, Koch CM, Clelland GK, Respuela-Alonso P, Wilcox S, Dovey OM, Ellis PD, Langford CF, et al. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes. Genome Res 2007; 17: 708–19; PMID:17567991; http://dx.doi.org/10.1101/gr.5540007
  • Rafehi H, Balcerczyk A, Lunke S, Kaspi A, Ziemann M, Kn H, Okabe J, Khurana I, Ooi J, Khan AW, et al. Vascular histone deacetylation by pharmacological HDAC inhibition. Genome Res 2014; 24: 1271–84; PMID:24732587; http://dx.doi.org/10.1101/gr.168781.113
  • Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales CR, Kong Y, Rothermel BA, Gillette TG, Hill JA. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci U S A 2011; 108: 4123–8; PMID:21367693; http://dx.doi.org/10.1073/pnas.1015081108
  • Cardinale JP, Sriramula S, Pariaut R, Guggilam A, Mariappan N, Elks CM, Francis J. HDAC inhibition attenuates inflammatory, hypertrophic, and hypertensive responses in spontaneously hypertensive rats. Hypertension 2010; 56: 437–44; PMID:20679181; http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.154567
  • Iyer A, Fenning A, Lim J, Le GT, Reid RC, Halili MA, Fairlie DP, Brown L. Antifibrotic activity of an inhibitor of histone deacetylases in DOCA-salt hypertensive rats. Brit J Pharmacol 2010; 159: 1408–17; PMID:20180942; http://dx.doi.org/10.1111/j.1476-5381.2010.00637.x
  • Du XJ, Fang L, Gao XM, Kiriazis H, Feng X, Hotchkin E, Finch AM, Chaulet H, Graham RM. Genetic enhancement of ventricular contractility protects against pressure-overload-induced cardiac dysfunction. J Mol Cell Cardiol 2004; 37: 979–87; PMID:15522275; http://dx.doi.org/10.1016/j.yjmcc.2004.07.010
  • Nakao K, Minobe W, Roden R, Bristow MR, Leinwand LA. Myosin heavy chain gene expression in human heart failure. J Clin Invest 1997; 100: 2362–70; PMID:9410916; http://dx.doi.org/10.1172/JCI119776
  • Tardiff JC, Hewett TE, Factor SM, Vikstrom KL, Robbins J, Leinwand LA. Expression of the beta (slow)-isoform of MHC in the adult mouse heart causes dominant-negative functional effects. Am J Physiol Heart Circ Physiol 2000; 278: H412–9; PMID:10666070
  • Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet: TIG 2008; 24: 133–41; PMID:18262675; http://dx.doi.org/10.1016/j.tig.2007.12.007
  • Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 2009; 10: 669–80; PMID:19736561; http://dx.doi.org/10.1038/nrg2641
  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007; 39: 311–8; PMID:17277777; http://dx.doi.org/10.1038/ng1966
  • Lee CK, Shibata Y, Rao B, Strahl BD, Lieb JD. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 2004; 36: 900–5; PMID:15247917; http://dx.doi.org/10.1038/ng1400
  • Sekinger EA, Moqtaderi Z, Struhl K. Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 2005; 18: 735–48; PMID:15949447; http://dx.doi.org/10.1016/j.molcel.2005.05.003
  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9: R137
  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res 2002; 12: 996–1006; PMID:12045153; http://dx.doi.org/10.1101/gr.229102
  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005; 102: 15545–50; PMID:16199517; http://dx.doi.org/10.1073/pnas.0506580102
  • Raney BJ, Cline MS, Rosenbloom KR, Dreszer TR, Learned K, Barber GP, Meyer LR, Sloan CA, Malladi VS, Roskin KM, et al. ENCODE whole-genome data in the UCSC genome browser (2011 update). Nucleic Acids Res 2011; 39: D871–5; PMID:21037257; http://dx.doi.org/10.1093/nar/gkq1017
  • Bozkurt B, Torre-Amione G, Warren MS, Whitmore J, Soran OZ, Feldman AM, Mann DL. Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation 2001; 103: 1044–7; PMID:11222463; http://dx.doi.org/10.1161/01.CIR.103.8.1044
  • Deswal A, Bozkurt B, Seta Y, Parilti-Eiswirth S, Hayes FA, Blosch C, Mann DL. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, Etanercept) in patients with advanced heart failure. Circulation 1999; 99: 3224–6; PMID:10385494; http://dx.doi.org/10.1161/01.CIR.99.25.3224
  • McKinsey TA. Targeting inflammation in heart failure with histone deacetylase inhibitors. Mol Med 2011; 17: 434–41; PMID:21267510; http://dx.doi.org/10.2119/molmed.2011.00022
  • Chang L, Kiriazis H, Gao XM, Du XJ, El-Osta A. Cardiac genes show contextual SWI/SNF interactions with distinguishable gene activities. Epigenetics: Off Jo DNA Methylation Soc 2011; 6: 760–8; PMID:21586902; http://dx.doi.org/10.4161/epi.6.6.16007
  • Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 2010; 466: 62–7; PMID:20596014; http://dx.doi.org/10.1038/nature09130
  • Haddad F, Qin AX, Bodell PW, Zhang LY, Guo H, Giger JM, Baldwin KM. Regulation of antisense RNA expression during cardiac MHC gene switching in response to pressure overload. Am J Physiol Heart Circ Physiol 2006; 290: H2351–61; PMID:16415074; http://dx.doi.org/10.1152/ajpheart.01111.2005
  • Mathiyalagan P, Okabe J, Chang L, Su Y, Du XJ, El-Osta A. The primary microRNA-208b interacts with Polycomb-group protein, Ezh2, to regulate gene expression in the heart. Nucleic Acids Res 2014; 42: 790–803; PMID:24137001; http://dx.doi.org/10.1093/nar/gkt896
  • Hamid T, Guo SZ, Kingery JR, Xiang X, Dawn B, Prabhu SD. Cardiomyocyte NF-kappaB p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure. Cardiovasc Res 2011; 89: 129–38; PMID:20797985; http://dx.doi.org/10.1093/cvr/cvq274
  • Zelarayan L, Renger A, Noack C, Zafiriou MP, Gehrke C, van der Nagel R, Dietz R, de Windt L, Bergmann MW. NF-kappaB activation is required for adaptive cardiac hypertrophy. Cardiovasc Res 2009; 84: 416–24; PMID:19620128; http://dx.doi.org/10.1093/cvr/cvp237
  • Gupta S, Young D, Maitra RK, Gupta A, Popovic ZB, Yong SL, Mahajan A, Wang Q, Sen S. Prevention of cardiac hypertrophy and heart failure by silencing of NF-κB. J Mol Biol. 2008; 375:637–49; doi:10.1016/j.jmb.2007.10.006
  • Hamid T, Guo SZ, Kingery JR, Xiang X, Dawn B, Prabhu SD. Cardiomyocyte NF-κB p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure. Cardiovasc Res. 2011; 89:129–38; doi:10.1093/cvr/cvq274
  • Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res. 2011; 108:1122–32; doi:10.1161/CIRCRESAHA.110.226928
  • Zhang LX, Zhao Y, Cheng G, Guo TL, Chin YE, Liu PY, Zhao TC. Targeted deletion of NF-kappaB p50 diminishes the cardioprotection of histone deacetylase inhibition. Am J Physiol Heart Circ Physiol 2010; 298: H2154–63; PMID:20382965; http://dx.doi.org/10.1152/ajpheart.01015.2009
  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325: 834–40; PMID:19608861; http://dx.doi.org/10.1126/science.1175371
  • Marks PA. The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin Invest Drugs 2010; 19: 1049–66; PMID:20687783; http://dx.doi.org/10.1517/13543784.2010.510514
  • Kook H, Lepore JJ, Gitler AD, Lu MM, Wing-Man Yung W, Mackay J, Zhou R, Ferrari V, Gruber P, Epstein JA. Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest 2003; 112: 863–71; PMID:12975471; http://dx.doi.org/10.1172/JCI19137
  • Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN, Hill JA. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 2006; 113: 2579–88; PMID:16735673; http://dx.doi.org/10.1161/CIRCULATIONAHA.106.625467
  • McKinsey TA. Isoform-selective HDAC inhibitors: closing in on translational medicine for the heart. J Mol Cell Cardiol 2011; 51: 491–6; PMID:21108947; http://dx.doi.org/10.1016/j.yjmcc.2010.11.009
  • Nightingale KP, O'Neill LP, Turner BM. Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 2006; 16: 125–36; PMID:16503131; http://dx.doi.org/10.1016/j.gde.2006.02.015
  • Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol 2003; 15: 172–83; PMID:12648673; http://dx.doi.org/10.1016/S0955-0674(03)00013-9
  • Nightingale KP, Gendreizig S, White DA, Bradbury C, Hollfelder F, Turner BM. Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J Biol Chem 2007; 282: 4408–16; PMID:17166833; http://dx.doi.org/10.1074/jbc.M606773200
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–60; PMID:19451168; http://dx.doi.org/10.1093/bioinformatics/btp324
  • Kuhn RM, Haussler D, Kent WJ. The UCSC genome browser and associated tools. Briefings Bioinformatics 2012; 14: 144–61; PMID:22908213
  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26: 841–2; PMID:20110278; http://dx.doi.org/10.1093/bioinformatics/btq033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.