4,356
Views
127
CrossRef citations to date
0
Altmetric
Research Paper

DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk

, , , , , , , , , & show all
Pages 482-488 | Received 22 Oct 2015, Accepted 08 Apr 2016, Published online: 09 Jun 2016

References

  • Ling C, Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 2009; 58(12):2718-25; PMID:19940235; http://dx.doi.org/10.2337/db09-1003
  • Dayeh TA, Olsson AH, Volkov P, Almgren P, Rönn T, Ling C. Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia 2013; 56(5):1036-46; PMID:23462794; http://dx.doi.org/10.1007/s00125-012-2815-7
  • Olsson AH, Volkov P, Bacos K, Dayeh T, Hall E, Nilsson EA, Ladenvall C, Rönn T, Ling C. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet 2014; 10(11):e1004735; PMID:25375650; http://dx.doi.org/10.1371/journal.pgen.1004735
  • Lyssenko V, Almgren P, Anevski D, Perfekt R, Lahti K, Nissén M, Isomaa B, Forsen B, Homström N, Saloranta C, et al. Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes. Diabetes 2005; 54(1):166-74; PMID:15616025; http://dx.doi.org/10.2337/diabetes.54.1.166
  • Lyssenko, V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, Altshuler D, Nilsson P, Groop L. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008; 359(21):2220-32; PMID:19020324; http://dx.doi.org/10.1056/NEJMoa0801869
  • McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med 2010; 363(24):2339-50; PMID:21142536; http://dx.doi.org/10.1056/NEJMra0906948
  • Pfeiffer L, Wahl S, Pilling LC, Reischl E, Sandling JK, Kunze S, Holdt LM, Kretschmer A, Schramm K, Adamski J, et al. DNA methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc Genet 2015; 8(2):334-42; PMID:25583993; http://dx.doi.org/10.1161/CIRCGENETICS.114.000804
  • Chambers JC, Loh M, Lehne B, Drong A, Kriebel J, Motta V, Wahl S, Elliott HR, Rota F, Scott WR, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol 2015; 3:526-34; PMID:26095709
  • Kulkarni H, Kos MZ, Neary J, Dyer TD, Kent JW Jr, Göring HH, Cole SA, Comuzzie AG, Almasy L, Mahaney MC, et al. Novel epigenetic determinants of type 2 diabetes in Mexican-American families. Hum Mol Genet 2015; 24(18):5330-44; PMID:26101197; http://dx.doi.org/10.1093/hmg/ddv232
  • Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346(6):393-403; PMID:11832527; http://dx.doi.org/10.1056/NEJMoa012512
  • Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344(18):1343-50; PMID:11333990; http://dx.doi.org/10.1056/NEJM200105033441801
  • Lyssenko V, Laakso M. Genetic screening for the risk of type 2 diabetes: worthless or valuable? Diabetes Care 2013; 36(Suppl 2):S120-6; PMID:23882036; http://dx.doi.org/10.2337/dcS13-2009
  • Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, Poulsen P, Ribel-Madsen R, Pedersen NL, Almgren P, et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 2014; 63(9):2962-76; PMID:24812430; http://dx.doi.org/10.2337/db13-1459
  • Dayeh T, Volkov P, Salö S, Hall E, Nilsson E, Olsson AH, Kirkpatrick CL, Wollheim CB, Eliasson L, Rönn T1, et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 2014; 10(3):e1004160; PMID:24603685; http://dx.doi.org/10.1371/journal.pgen.1004160
  • Ribel-Madsen R, Fraga MF, Jacobsen S, Bork-Jensen J, Lara E, Calvanese V, Fernandez AF, Friedrichsen M, Vind BF, Højlund K, et al. Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One 2012; 7(12):e51302; PMID:23251491; http://dx.doi.org/10.1371/journal.pone.0051302
  • Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, Yang BT, Lang S, Parikh H, Wessman Y, et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 2012; 61(12):3322-32; PMID:23028138; http://dx.doi.org/10.2337/db11-1653
  • Nilsson E, Matte A, Perfilyev A, de Mello VD, Käkelä P, Pihlajamäki J, Ling C. Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab. 2015 November; 100(11):E1491 -E1501; http://dx.doi.org/10.1210/jc.2015-3204.
  • Matsuo M. ATP-binding cassette proteins involved in glucose and lipid homeostasis. Biosci Biotechnol Biochem 2010; 74(5):899-907; PMID:20460728; http://dx.doi.org/10.1271/bbb.90921
  • Kruit JK, Wijesekara N, Westwell-Roper C, Vanmierlo T, de Haan W, Bhattacharjee A, Tang R, Wellington CL, LütJohann D, Johnson JD, et al. Loss of both ABCA1 and ABCG1 results in increased disturbances in islet sterol homeostasis, inflammation, and impaired beta-cell function. Diabetes 2012; 61(3):659-64; PMID:22315310; http://dx.doi.org/10.2337/db11-1341
  • Hidalgo B, Irvin MR, Sha J, Zhi D, Aslibekyan S, Absher D, Tiwari HK, Kabagambe EK, Ordovas JM, Arnett DK. Epigenome-wide association study of fasting measures of glucose, insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and Diet Network study. Diabetes 2014; 63(2):801-7; PMID:24170695; http://dx.doi.org/10.2337/db13-1100
  • Ding J, Reynolds LM, Zeller T, Müller C, Lohman K, Nicklas BJ, Kritchevsky SB, Huang Z, de la Fuente A, Soranzo N, et al. Alterations of a cellular cholesterol metabolism network are a molecular feature of obesity-related type 2 diabetes and cardiovascular disease. Diabetes 2015; 64(10):3464-74; PMID:26153245; http://dx.doi.org/10.2337/db14-1314
  • Fadista J, Vikman P, Laakso EO, Mollet IG, Esguerra JL, Taneera J, Storm P, Osmark P, Ladenvall C, Prasad RB, et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A 2014; 111(38):13924-9; PMID:25201977; http://dx.doi.org/10.1073/pnas.1402665111
  • Serre D, Gurd S, Ge B, Sladek R, Sinnett D, Harmsen E, Bibikova M, Chudin E, Barker DL, Dickinson T, et al. Differential allelic expression in the human genome: a robust approach to identify genetic and epigenetic cis-acting mechanisms regulating gene expression. PLoS Genet 2008; 4(2):e1000006; PMID:18454203; http://dx.doi.org/10.1371/journal.pgen.1000006
  • Schou J, Tybjærg-Hansen A, Møller HJ, Nordestgaard BG, Frikke-Schmidt R. ABC transporter genes and risk of type 2 diabetes: a study of 40,000 individuals from the general population. Diabetes Care 2012; 35(12):2600-6; PMID:NOT_FOUND; http://dx.doi.org/10.2337/dc12-0082
  • Millan JL. The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int 2013; 93(4):299-306; PMID:23183786; http://dx.doi.org/10.1007/s00223-012-9672-8
  • Bobryshev YV, Orekhov AN, Sobenin I, Chistiakov DA. Role of bone-type tissue-nonspecific alkaline phosphatase and PHOSPO1 in vascular calcification. Curr Pharm Des 2014; 20(37):5821-8; PMID:24533943; http://dx.doi.org/10.2174/1381612820666140212193011
  • Houston B, Stewart AJ, Farquharson C. PHOSPHO1-A novel phosphatase specifically expressed at sites of mineralisation in bone and cartilage. Bone 2004; 34(4):629-37; PMID:15050893; http://dx.doi.org/10.1016/j.bone.2003.12.023
  • Vattikuti R, Towler DA. Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab 2004; 286(5):E686-96; PMID:15102615; http://dx.doi.org/10.1152/ajpendo.00552.2003
  • Ronn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, Jørgensen SW, Brøns C, Jansson PA, Eriksson KF, et al. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet 2015; 24(13):3792-813; PMID:25861810
  • Bernal AJ, Jirtle RL. Epigenomic disruption: the effects of early developmental exposures. Birth Defects Res A Clin Mol Teratol 2010; 88(10):938-44; PMID:20568270; http://dx.doi.org/10.1002/bdra.20685
  • How Kit A, Nielsen HM, Tost J. DNA methylation based biomarkers: practical considerations and applications. Biochimie 2012; 94(11):2314-37; PMID:22847185; http://dx.doi.org/10.1016/j.biochi.2012.07.014
  • Groop L, Forsblom C, Lehtovirta M, Tuomi T, Karanko S, Nissén M, Ehrnström BO, Forsén B, Isomaa B, Snickars B, et al. Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes 1996; 45(11):1585-93; PMID:8866565; http://dx.doi.org/10.2337/diab.45.11.1585
  • Bork-Jensen J, Scheele C, Christophersen DV, Nilsson E, Friedrichsen M, Fernandez-Twinn DS, Grunnet LG, Litman T, Holmstrøm K, Vind B, et al. Glucose tolerance is associated with differential expression of microRNAs in skeletal muscle: results from studies of twins with and without type 2 diabetes. Diabetologia 2015; 58(2):363-73; PMID:25403480; http://dx.doi.org/10.1007/s00125-014-3434-2