1,295
Views
0
CrossRef citations to date
0
Altmetric
Meeting Report

Chromatin and epigenetics in all their states: Meeting report of the first conference on Epigenetic and Chromatin Regulation of Plant Traits - January 14 – 15, 2016 - Strasbourg, France

, , , , , , , & show all
Pages 625-634 | Received 20 Apr 2016, Accepted 27 Apr 2016, Published online: 01 Jul 2016

References

  • Marques A, Ribeiro T, Neumann P, Macas J, Novák P, Schubert V, Pellino M, Fuchs J, Ma W, Kuhlmann M, et al. Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proc Natl Acad Sci 2015; 112:13633-8; PMID:26489653; http://dx.doi.org/10.1073/pnas.1512255112
  • Yelagandula R, Stroud H, Holec S, Zhou K, Feng S, Zhong X, Muthurajan UM, Nie X, Kawashima T, Groth M, et al. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 2014; 158:98-109; PMID:24995981; http://dx.doi.org/10.1016/j.cell.2014.06.006
  • Bourbousse C, Mestiri I, Zabulon G, Bourge M, Formiggini F, Koini MA, Brown SC, Fransz P, Bowler C, Barneche F. Light signaling controls nuclear architecture reorganization during seedling establishment. Proc Natl Acad Sci 2015; 112:E2836-44; PMID:25964332; http://dx.doi.org/10.1073/pnas.1503512112
  • Batzenschlager M, Lermontova I, Schubert V, Fuchs J, Berr A, Koini MA, Houlné G, Herzog E, Rutten T, Alioua A, et al. Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture. Proc Natl Acad Sci U S A 2015; 112:8656-60; PMID:26124146; http://dx.doi.org/10.1073/pnas.1506351112
  • Chabouté M-E, Berr A. GIP contributions to the regulation of centromere at the interface between the nuclear envelope and the nucleoplasm. Front Plant Sci 2016; 7:118; PMID:26904080; http://dx.doi.org/10.3389/fpls.2016.00118
  • Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb JR, Bickmore WA. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 2008; 4:e1000039; PMID:18369458; http://dx.doi.org/10.1371/journal.pgen.1000039
  • Therizols P, Illingworth RS, Courilleau C, Boyle S, Wood AJ, Bickmore WA. Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science 2014; 346:1238-42; PMID:25477464; http://dx.doi.org/10.1126/science.1259587
  • Di Ventura B, Knecht B, Andreas H, Godinez WJ, Fritsche M, Rohr K, Nickel W, Heermann DW, Sourjik V. Chromosome segregation by the Escherichia coli Min system. Mol Syst Biol 2013; 9:686; PMID:24022004; http://dx.doi.org/10.1038/msb.2013.44
  • Finnegan JE, Kovac KA, Jaligot E, Sheldon CC, Peacock WJ, Dennis ES. The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J Cell Mol Biol 2005; 44:420-32; PMID:16236152; http://dx.doi.org/10.1111/j.1365-313X.2005.02541.x
  • Iwasaki M. Chromatin resetting mechanisms preventing trangenerational inheritance of epigenetic states. Front Plant Sci 2015; 6:380; PMID:26074941; http://dx.doi.org/10.3389/fpls.2015.00380
  • Berry S, Hartley M, Olsson TSG, Dean C, Howard M. Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. eLife 2015; 4:e07205; PMID:26074941; http://dx.doi.org/10.7554/eLife.07205
  • Angel A, Song J, Yang H, Questa JI, Dean C, Howard M. Vernalizing cold is registered digitally at FLC. Proc Natl Acad Sci 2015; 112:4146-51; PMID:25775579; http://dx.doi.org/10.1073/pnas.1503100112
  • Zacharaki V, Benhamed M, Poulios S, Latrasse D, Papoutsoglou P, Delarue M, Vlachonasios KE. The Arabidopsis ortholog of the YEATS domain containing protein YAF9a regulates flowering by controlling H4 acetylation levels at the FLC locus. Plant Sci Int J Exp Plant Biol 2012; 196:44-52; PMID:23017898 http://dx.doi.org/10.1016/j.plantsci.2012.07.010
  • López-González L, Mouriz A, Narro-Diego L, Bustos R, Martínez-Zapater JM, Jarillo JA, Piñeiro M. Chromatin-dependent repression of the arabidopsis floral integrator genes involves plant specific PHD-Containing proteins. Plant Cell Online 2014; 26:3922-38; PMID:25281686 http://dx.doi.org/10.1105/tpc.114.130781
  • Moreau F, Thévenon E, Blanvillain R, Lopez-Vidriero I, Franco-Zorrilla JM, Dumas R, Parcy F, Morel P, Trehin C, Carles CC. The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis. Dev Camb Engl 2016; 143:1108-19; 26903506 http://dx.doi.org/10.1242/dev.127365
  • Engelhorn J, Moreau F, Fletcher JC, Carles CC. ULTRAPETALA1 and LEAFY pathways function independently in specifying identity and determinacy at the Arabidopsis floral meristem. Ann Bot 2014; 114:1497-505; PMID:25288633; http://dx.doi.org/10.1093/aob/mcu185
  • Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM. Genome-Wide Analysis of Gene Expression during Early Arabidopsis Flower Development. PLoS Genet 2006; 2:e117; PMID:16789830; http://dx.doi.org/10.1371/journal.pgen.0020117
  • Teyssier E, Bernacchia G, Maury S, Kit AH, Stammitti-Bert L, Rolin D, Gallusci P. Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta 2008; 228:391-9; PMID:18488247; http://dx.doi.org/10.1007/s00425-008-0743-z
  • Liu R, How-Kit A, Stammitti L, Teyssier E, Rolin D, Mortain-Bertrand A, Halle S, Liu M, Kong J, Wu C, et al. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc Natl Acad Sci 2015; 112:10804-9; PMID:26261318; http://dx.doi.org/10.1073/pnas.1503362112
  • Telias A, Lin-Wang K, Stevenson DE, Cooney JM, Hellens RP, Allan AC, Hoover EE, Bradeen JM. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol 2011; 11:93; PMID:21599973; http://dx.doi.org/10.1186/1471-2229-11-93
  • Wang Z, Meng D, Wang A, Li T, Jiang S, Cong P, Li T. The Methylation of the PcMYB10 Promoter Is Associated with Green-Skinned Sport in Max Red Bartlett Pear. PLANT Physiol 2013; 162:885-96; PMID:23629835; http://dx.doi.org/10.1104/pp.113.214700
  • Koch MA, Kiefer M. Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species—Capsella rubella, Arabidopsis lyrata subsp. petraea, and A. thaliana. Am J Bot 2005; 92:761-7; PMID:21652456; http://dx.doi.org/10.3732/ajb.92.4.761
  • Balasubramanian S, Sureshkumar S, Lempe J, Weigel D. Potent Induction of Arabidopsis thaliana Flowering by Elevated Growth Temperature. PLoS Genet 2006; 2:e106; PMID:16839183; http://dx.doi.org/10.1371/journal.pgen.0020106
  • Pose D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RGH, Schmid M. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 2013; 503:414-7; PMID:24067612; http://dx.doi.org/10.1038/nature12633
  • Airoldi CA, McKay M, Davies B. MAF2 Is Regulated by Temperature-Dependent Splicing and Represses Flowering at Low Temperatures in Parallel with FLM. PLoS ONE 2015; 10:e0126516; PMID:25955034; http://dx.doi.org/10.1371/journal.pone.0126516
  • Liu B, Berr A, Chang C, Liu C, Shen W-H, Ruan Y. Interplay of the histone methyltransferases SDG8 and SDG26 in the regulation of transcription and plant flowering and development. Biochim Biophys Acta 2016; 1859:581-90; PMID:26854085; http://dx.doi.org/10.1016/j.bbagrm.2016.02.003
  • Kumar SV, Wigge PA. H2A.Z-Containing Nucleosomes Mediate the Thermosensory Response in Arabidopsis. Cell 2010; 140:136-47; PMID:20079334; http://dx.doi.org/10.1016/j.cell.2009.11.006
  • Probst AV, Mittelsten Scheid O. Stress-induced structural changes in plant chromatin. Curr Opin Plant Biol 2015; 27:8-16; PMID:26042538; http://dx.doi.org/10.1016/j.pbi.2015.05.011
  • Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Scheid OM. Epigenetic Regulation of Repetitive Elements Is Attenuated by Prolonged Heat Stress in Arabidopsis. Plant Cell 2010; 22:3118-29; PMID:20876829; http://dx.doi.org/10.1105/tpc.110.078493
  • Zemach A, Kim MY, Hsieh P-H, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 2013; 153:193-205; PMID:23540698; http://dx.doi.org/10.1016/j.cell.2013.02.033
  • Rutowicz K, Puzio M, Halibart-Puzio J, Lirski M, Kroteń MA, Kotliński M, Kniżewski L, Lange B, Muszewska A, Śniegowska-Świerk K, et al. A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in Arabidopsis. Plant Physiol 2015; 169:2080-101; PMID:26351307; http://dx.doi.org/10.1104/pp.15.00493
  • Verkest A, Byzova M, Martens C, Willems P, Verwulgen T, Slabbinck B, Rombaut D, Van de Velde J, Vandepoele K, Standaert E, et al. Selection for improved energy use efficiency and drought tolerance in canola results in distinct transcriptome and epigenome changes. Plant Physiol 2015; 168:1338-50; PMID:26082400; http://dx.doi.org/10.1104/pp.15.00155
  • Costas C, de la Paz Sanchez M, Stroud H, Yu Y, Oliveros JC, Feng S, Benguria A, López-Vidriero I, Zhang X, Solano R, et al. Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks. Nat Struct Mol Biol 2011; 18:395-400; PMID:21297636; http://dx.doi.org/10.1038/nsmb.1988
  • Karnani N, Taylor CM, Malhotra A, Dutta A. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol Biol Cell 2010; 21:393-404; PMID:19955211; http://dx.doi.org/10.1091/mbc.E09-08-0707
  • Sequeira-Mendes J, Díaz-Uriarte R, Apedaile A, Huntley D, Brockdorff N, Gómez M. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet 2009; 5:e1000446; PMID:19360092; http://dx.doi.org/10.1371/journal.pgen.1000446
  • Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 2011; 30:1928-38; PMID:21487388; http://dx.doi.org/10.1038/emboj.2011.103
  • Sequeira-Mendes J, Aragüez I, Peiró R, Mendez-Giraldez R, Zhang X, Jacobsen SE, Bastolla U, Gutierrez C. The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States. Plant Cell 2014; 26:2351-66; PMID:24934173; http://dx.doi.org/10.1105/tpc.114.124578
  • Swoboda P, Gal S, Hohn B, Puchta H. Intrachromosomal homologous recombination in whole plants. EMBO J 1994; 13:484; PMID:8313893; http://dx.doi.org/10.1046/j.1365-313x.1995.7020203.x
  • Gao J, Zhu Y, Zhou W, Molinier J, Dong A, Shen W-H. NAP1 family histone chaperones are required for somatic homologous recombination in arabidopsis. Plant Cell 2012; 24:1437-47; PMID:22534127; http://dx.doi.org/10.1105/tpc.112.096792
  • Zhang C, Cao L, Rong L, An Z, Zhou W, Ma J, Shen W-H, Zhu Y, Dong A. The chromatin-remodeling factor AtINO80 plays crucial roles in genome stability maintenance and in plant development. Plant J 2015; 82:655-68; PMID:25832737; http://dx.doi.org/10.1111/tpj.12840
  • Willing E-M, Rawat V, Mandáková T, Maumus F, James GV, Nordström KJV, Becker C, Warthmann N, Chica C, Szarzynska B, et al. Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nat Plants 2015; 1:14023; PMID:27246759; http://dx.doi.org/10.1038/nplants.2014.23
  • Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE. Genome-wide Hi-C analyses in Wild-Type and mutants reveal High-Resolution chromatin interactions in arabidopsis. Mol Cell 2014; 55:694-707; PMID:25132175; http://dx.doi.org/10.1016/j.molcel.2014.07.008
  • Wang C, Liu C, Roqueiro D, Grimm D, Schwab R, Becker C, Lanz C, Weigel D. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res 2015; 25:246-56; PMID:25367294; http://dx.doi.org/10.1101/gr.170332.113
  • Arner E, Daub CO, Vitting-Seerup K, Andersson R, Lilje B, Drabløs F, Lennartsson A, Rönnerblad M, Hrydziuszko O, Vitezic M, et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 2015; 347:1010-4; PMID:25678556; http://dx.doi.org/10.1126/science.1259418
  • Chepelev I, Wei G, Wangsa D, Tang Q, Zhao K. Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization. Cell Res 2012; 22:490-503; PMID:22270183; http://dx.doi.org/10.1038/cr.2012.15
  • Gross DS, Garrard WT. Nuclease Hypersensitive Sites in Chromatin. Annu Rev Biochem 1988; 57:159-97; PMID:3052270; http://dx.doi.org/10.1146/annurev.bi.57.070188.001111
  • Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci 2010; 107:21931-6; PMID:21106759; http://dx.doi.org/10.1073/pnas.1016071107
  • Zhu Y, Sun L, Chen Z, Whitaker JW, Wang T, Wang W. Predicting enhancer transcription and activity from chromatin modifications. Nucleic Acids Res 2013; 41:10032-43; PMID:24038352; http://dx.doi.org/10.1093/nar/gkt826
  • Stam M, Mittelsten Scheid O. Paramutation: an encounter leaving a lasting impression. Trends Plant Sci 2005; 10:283-90; PMID:15949762; http://dx.doi.org/10.1016/j.tplants.2005.04.009
  • Hövel I, Pearson NA, Stam M. Cis-acting determinants of paramutation. Semin Cell Dev Biol 2015; 44:22-32; PMID:26321497; http://dx.doi.org/10.1016/j.semcdb.2015.08.012
  • Matzke MA, Kanno T, Matzke AJM. RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. Annu Rev Plant Biol 2015; 66:243-67; PMID:25494460; http://dx.doi.org/10.1146/annurev-arplant-043014-114633
  • Blevins T, Pontvianne F, Cocklin R, Podicheti R, Chandrasekhara C, Yerneni S, Braun C, Lee B, Rusch D, Mockaitis K, et al. A Two-Step Process for Epigenetic Inheritance in Arabidopsis. Mol Cell 2014; 54:30-42; PMID:24657166; http://dx.doi.org/10.1016/j.molcel.2014.02.019
  • Hauben M, Haesendonckx B, Standaert E, Van Der Kelen K, Azmi A, Akpo H, Van Breusegem F, Guisez Y, Bots M, Lambert B, et al. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc Natl Acad Sci 2009; 106:20109-14; PMID:19897729; http://dx.doi.org/10.1073/pnas.0908755106
  • De Block M, Van Lijsebettens M. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity. Curr Opin Plant Biol 2011; 14:275-82; PMID:21411363; http://dx.doi.org/10.1016/j.pbi.2011.02.007
  • Mirouze M, Vitte C. Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes. J Exp Bot 2014; 65:2801-12; PMID:24744427; http://dx.doi.org/10.1093/jxb/eru120
  • de Paula CMP, Souza Sobrinho F, Techio VH. Chromosomal distribution of H3K4me2, H3K9me2 and 5-methylcytosine: variations associated with polyploidy and hybridization in Brachiaria (Poaceae). Plant Cell Rep 2016; 35:1-11; PMID:27015682; http://dx.doi.org/10.1007/s00299-016-1969-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.