2,062
Views
21
CrossRef citations to date
0
Altmetric
Research Paper

Dynamics of 5-carboxylcytosine during hepatic differentiation: Potential general role for active demethylation by DNA repair in lineage specification

, , , , , Jr., , , , , , & show all
Pages 277-286 | Received 07 Oct 2016, Accepted 30 Jan 2017, Published online: 30 Mar 2017

References

  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1):6-21; PMID:11782440; http://dx.doi.org/10.1101/gad.947102
  • Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013; 14(3):204-20; PMID:23400093; http://dx.doi.org/10.1038/nrg3354
  • Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010; 11(9):607-20; PMID:20683471; http://dx.doi.org/10.1038/nrm2950
  • Schübeler D. Function and information content of DNA methylation. Nature 2015; 517(7534):321-6; PMID:25592537; http://dx.doi.org/10.1038/nature14192
  • Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 2009; 10(11):805-11; PMID:19789556; http://dx.doi.org/10.1038/nrg2651
  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324(5929):930-5; PMID:19372391; http://dx.doi.org/10.1126/science.1170116
  • He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011; 333(6047):1303-7; PMID:21817016; http://dx.doi.org/10.1126/science.1210944
  • Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011; 333(6047):1300-3; PMID:21778364; http://dx.doi.org/10.1126/science.1210597
  • Ficz G, Hore TA, Santos F, Lee HJ, Dean W, Arand J, Krueger F, Oxley D, Paul YL, Walter J, et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 2013; 13(3):351-9; PMID:23850245; http://dx.doi.org/10.1016/j.stem.2013.06.004
  • Shen L, Wu H, Diep D, Yamaguchi S, D'Alessio AC, Fung HL, Zhang K, Zhang Y. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 2013; 153(3):692-706; PMID:23602152; http://dx.doi.org/10.1016/j.cell.2013.04.002
  • Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 2011; 286(41):35334-8; PMID:21862836; http://dx.doi.org/10.1074/jbc.C111.284620
  • Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013; 502(7472):472-9; PMID:24153300; http://dx.doi.org/10.1038/nature12750
  • Schuermann D, Weber AR, Schär P. Active DNA demethylation by DNA repair: Facts and uncertainties. DNA Repair (Amst) 2016; 44:92-102; PMID:27247237; http://dx.doi.org/10.1016/j.dnarep.2016.05.013
  • Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H, et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 2013; 153(3):678-91; PMID:23602153; http://dx.doi.org/10.1016/j.cell.2013.04.001
  • Hu X, Zhang L, Mao SQ, Li Z, Chen J, Zhang RR, Wu HP, Gao J, Guo F, Liu W, et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 2014; 14(4):512-22; PMID:24529596; http://dx.doi.org/10.1016/j.stem.2014.01.001
  • Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 2012; 48(6):849-62; PMID:23219530; http://dx.doi.org/10.1016/j.molcel.2012.11.001
  • Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 2013; 339(6118):448-52; PMID:23223451; http://dx.doi.org/10.1126/science.1229277
  • Guo F, Li X, Liang D, Li T, Zhu P, Guo H, Wu X, Wen L, Gu TP, Hu B, et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 2014; 15(4):447-58; PMID:25220291; http://dx.doi.org/10.1016/j.stem.2014.08.003
  • Shen L, Inoue A, He J, Liu Y, Lu F, Zhang Y. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 2014; 15(4):459-70; PMID:25280220; http://dx.doi.org/10.1016/j.stem.2014.09.002
  • Wheldon LM, Abakir A, Ferjentsik Z, Dudnakova T, Strohbuecker S, Christie D, Dai N, Guan S, Foster JM, Corrêa IR, Jr, et al. Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells. Cell Rep 2014; 7(5):1353-61; PMID:24882006; http://dx.doi.org/10.1016/j.celrep.2014.05.003
  • Hannan NR, Segeritz CP, Touboul T, Vallier L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat Protoc 2013; 8(2):430-7; PMID:23424751; http://dx.doi.org/10.1038/nprot.2012.153
  • Hannan NR, Fordham RP, Syed YA, Moignard V, Berry A, Bautista R, Hanley NA, Jensen KB, Vallier L. Generation of multipotent foregut stem cells from human pluripotent stem cells. Stem Cell Reports 2013; 1(4):293-306; PMID:24319665; http://dx.doi.org/10.1016/j.stemcr.2013.09.003
  • Abakir A, Wheldon L, Johnson AD, Laurent P, Ruzov A. Detection of modified forms of cytosine using sensitive immunohistochemistry. J Vis Exp. 2016 Aug 16;(114); PMID:27585398; http://dx.doi.org/10.3791/54416
  • Dawlaty MM, Breiling A, Le T, Barrasa MI, Raddatz G, Gao Q, Powell BE, Cheng AW, Faull KF, Lyko F, Jaenisch R. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell 2014; 29(1):102-11; PMID:24735881; http://dx.doi.org/10.1016/j.devcel.2014.03.003
  • Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY, Yen CA, Ye Z, Mao SQ, Wang BA, et al. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol Cell 2014; 56(2):286-97; PMID:25263596; http://dx.doi.org/10.1016/j.molcel.2014.08.026
  • Lu F, Liu Y, Jiang L, Yamaguchi S, Zhang Y. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev 2014; 28(19):2103-19; PMID:25223896; http://dx.doi.org/10.1101/gad.248005.114
  • Cortázar D, Kunz C, Selfridge J, Lettieri T, Saito Y, MacDougall E, Wirz A, Schuermann D, Jacobs AL, Siegrist F, et al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 2011; 470(7334):419-23; PMID:21278727; http://dx.doi.org/10.1038/nature09672
  • Zhang LJ, Liu SY, Zhu YN, Gao Y, Chen J, Yuan B, Jiang H, Dai LS, Zhang JB. Thymine DNA glycosylase gene knockdown can affect the differentiation of pig preadipocytes. Cell Physiol Biochem 2016; 39(3):975-84; PMID:27513857; http://dx.doi.org/10.1159/000447805
  • Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A, Le Coz M, Devarajan K, Wessels A, Soprano D, Abramowitz LK, et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011; 146(1):67-79; PMID:21722948; http://dx.doi.org/10.1016/j.cell.2011.06.020
  • Jacobs AL, Schär P. DNA glycosylases: in DNA repair and beyond. Chromosoma 2012; 121(1):1-20; PMID:22048164; http://dx.doi.org/10.1007/s00412-011-0347-4
  • Schiesser S, Hackner B, Pfaffeneder T, Müller M, Hagemeier C, Truss M, Carell T. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew Chem Int Ed Engl 2012; 51(26):6516-20; PMID:22644704; http://dx.doi.org/10.1002/anie.201202583
  • Tamanaha E, Guan S, Marks K, Saleh L. Distributive Processing by the Iron(II)/α-Ketoglutarate-dependent catalytic domains of the TET enzymes is consistent with epigenetic roles for oxidized 5-methylcytosine bases. J Am Chem Soc 2016; 138(30):9345-8; PMID:27362828; http://dx.doi.org/10.1021/jacs.6b03243
  • Bachman M, Uribe-Lewis S, Yang X, Williams M, Murrell A, Balasubramanian S. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem 2014; 6(12):1049-55; PMID:25411882; http://dx.doi.org/10.1038/nchem.2064
  • Bachman M, Uribe-Lewis S, Yang X, Burgess HE, Iurlaro M, Reik W, Murrell A, Balasubramanian S. 5-Formylcytosine can be a stable DNA modification in mammals. Nat Chem Biol 2015; 11(8):555-7; PMID:26098680; http://dx.doi.org/10.1038/nchembio.1848
  • Iurlaro M, McInroy GR, Burgess HE, Dean W, Raiber EA, Bachman M, Beraldi D, Balasubramanian S, Reik W. In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine. Genome Biol 2016; 17(1):141; PMID:27356509; http://dx.doi.org/10.1186/s13059-016-1001-5
  • Song J, Pfeifer GP. Are there specific readers of oxidized 5-methylcytosine bases? Bioessays 2016; 38(10):1038-47; PMID:27480808; http://dx.doi.org/10.1002/bies.201600126
  • Hashimoto H, Pais JE, Zhang X, Saleh L, Fu ZQ, Dai N, Corrêa IR, Jr, Zheng Y, Cheng X. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Nature 2014; 506(7488):391-5; PMID:24390346; http://dx.doi.org/10.1038/nature12905