1,399
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Targeting DNA hypermethylation: Computational modeling of DNA demethylation treatment of acute myeloid leukemia

, , , &
Pages 886-896 | Received 31 Mar 2017, Accepted 25 Jul 2017, Published online: 06 Oct 2017

References

  • Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, van Putten W, Skrabanek L, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 2010;17:13-27. doi:10.1016/j.ccr.2009.11.020. PMID:20060365
  • Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk CM, et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2012;22:271-82. doi:10.1101/gr.117523.110. PMID:21659424
  • Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, Pfaff E, Tonjes M, Sill M, Bender S, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22:425-37. doi:10.1016/j.ccr.2012.08.024. PMID:23079654
  • CGARN. Cancer Genome Atlas Research Network: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059-74. doi:10.1056/NEJMoa1301689. PMID:23634996
  • Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683-92. doi:10.1016/j.cell.2007.01.029. PMID:17320506
  • Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148-59. doi:10.1056/NEJMra072067. PMID:18337604
  • Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 2011;11:726-34. doi:10.1038/nrc3130. PMID:21941284
  • Saiki JH, McCredie KB, Vietti TJ, Hewlett JS, Morrison FS, Costanzi JJ, Stuckey WJ, Whitecar J, Hoogstraten B. 5-azacytidine in acute leukemia. Cancer. 1978;42:2111-4. doi:10.1002/1097-0142(197811)42:5. PMID:82472<2111::AID-CNCR2820420505>3.0.CO;2-I
  • Nervi C, De Marinis E, Codacci-Pisanelli G. Epigenetic treatment of solid tumours: A review of clinical trials. Clin Epigenetics. 2015;7:127. doi:10.1186/s13148-015-0157-2. PMID:26692909
  • Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, Jacob ST. 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol. 2005;25:4727-41. doi:10.1128/MCB.25.11.4727-4741.2005. PMID:15899874
  • Stresemann C, Bokelmann I, Mahlknecht U, Lyko F. Azacytidine causes complex DNA methylation responses in myeloid leukemia. Mol Cancer Ther. 2008;7:2998-3005. doi:10.1158/1535-7163.MCT-08-0411. PMID:18790780
  • Flotho C, Claus R, Batz C, Schneider M, Sandrock I, Ihde S, Plass C, Niemeyer CM, Luebbert M. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009;23:1019-28. doi:10.1038/leu.2008.397. PMID:19194470
  • Kiziltepe T, Hideshima T, Catley L, Raje N, Yasui H, Shiraishi N, Okawa Y, Ikeda H, Vallet S, Pozzi S, et al. 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol Cancer Ther. 2007;6:1718-27. doi:10.1158/1535-7163.MCT-07-0010. PMID:17575103
  • Wodarz D, Boland CR, Goel A, Komarova NL. Methylation kinetics and CpG-island methylator phenotype status in colorectal cancer cell lines. Biol Direct. 2013;8:14. doi:10.1186/1745-6150-8-14. PMID:23758948
  • Cruijsen M, Luebbert M, Wijermans P, Huls G. Clinical results of hypomethylating agents in AML treatment. J Clin Med. 2014;4:1-17. doi:10.3390/jcm4010001. PMID:26237015
  • D'Alessio AC, Szyf M. Epigenetic tête-à-tête: The bilateral relationship between chromatin modifications and DNA methylation. Biochem Cell Biol. 2006;84:463-76. doi:10.1139/o06-090. PMID:16936820
  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693-705. doi:10.1016/j.cell.2007.02.005. PMID:17320507
  • Momparler RL, Cote S, Momparler LF, Idaghdour Y. Epigenetic therapy of acute myeloid leukemia using 5-aza-2′-deoxycytidine (decitabine) in combination with inhibitors of histone methylation and deacetylation. Clin Epigenetics. 2014;6:19. doi:10.1186/1868-7083-6-19. PMID:25313314
  • Przybilla J, Rohlf T, Loeffler M, Galle J. Understanding epigenetic changes in aging stem cells–a computational model approach. Aging Cell. 2014;13:320-8. doi:10.1111/acel.12177. PMID:24428552
  • Hamidouche Z, Rother K, Przybilla J, Krinner A, Clay D, Hopp L, Fabian C, Stolzing A, Binder H, Charbord P, Galle, J. Bistable epigenetic states explain age-dependent decline in mesenchymal stem cell heterogeneity. Stem Cells. 2017 Mar;35(3):694-704. doi:10.1002/stem.2514. Epub 2016 Nov 8. PMID:27734598
  • Cui K, Zang C, Roh T-Y, Schones DE, Childs RW, Peng W, Zhao K. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell. 2009;4:80-93. doi:10.1016/j.stem.2008.11.011. PMID:19128795
  • Przybilla J, Buske P, Binder H, Galle J. Histone modifications control DNA methylation profiles during ageing and tumour expansion. Front Life Sci. 2013;7:31-43. doi:10.1080/21553769.2013.854279.
  • Przybilla J, Rohlf T, Galle J. Towards a mechanistic understanding of epigenetic dynamics. In: Teschendorff AE, editors. Computational and statistical epigenomics.. Springer; 2015. p. 141-60.
  • Vermeulen M, Mulder KW, Denissov S, Pijnappel WW, van Schaik FM, Varier RA, Baltissen MP, Stunnenberg HG, Mann M, Timmers HT. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell. 2007;131:58-69. doi:10.1016/j.cell.2007.08.016. PMID:17884155
  • Buratowski S, Kim T. The role of cotranscriptional histone methylations. Cold Spring Harb Symp Quant Biol. 2010;75:95-102. doi:10.1101/sqb.2010.75.036. PMID:21447819
  • Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, Skotte J, Wutz A, Porse B, Jensen ON, et al. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res. 2010;38:4958-69. doi:10.1093/nar/gkq244. PMID:20385584
  • Jermann P, Hoerner L, Burger L, Schubeler D. Short sequences can efficiently recruit histone H3 lysine 27 trimethylation in the absence of enhancer activity and DNA methylation. Proc Natl Acad Sci U S A. 2014;111:E3415-21. doi:10.1073/pnas.1400672111. PMID:25092339
  • Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, Kerr AR, Deaton A, Andrews R, James KD, et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature. 2010;464:1082-6. doi:10.1038/nature08924. PMID:20393567
  • Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature. 2007;448:714-7. doi:10.1038/nature05987. PMID:17687327
  • Rush M, Appanah R, Lee S, Lam LL, Goyal P, Lorincz MC. Targeting of EZH2 to a defined genomic site is sufficient for recruitment of Dnmt3a but not de novo DNA methylation. Epigenetics. 2009;4:404-14. doi:10.4161/epi.4.6.9392. PMID:19717977
  • Binder H, Steiner L, Przybilla J, Rohlf T, Prohaska S, Galle J. Transcriptional regulation by histone modifications: Towards a theory of chromatin re-organization during stem cell differentiation. Phys Biol. 2013;10:026006. doi:10.1088/1478-3975/10/2/026006. PMID:23481318
  • Schnerch D, Yalcintepe J, Schmidts A, Becker H, Follo M, Engelhardt M, Wasch R. Cell cycle control in acute myeloid leukemia. Am J Cancer Res. 2012;2:508-28. PMID:22957304
  • Im AP, Sehgal AR, Carroll MP, Smith BD, Tefferi A, Johnson DE, Boyiadzis M. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: Associations with prognosis and potential treatment strategies. Leukemia. 2014;28:1774-83. doi:10.1038/leu.2014.124. PMID:24699305
  • Huang G, Zhao X, Wang L, Elf S, Xu H, Sashida G, Zhang Y, Liu Y, Lee J, Menendez S, et al. The ability of MLL to bind RUNX1 and methylate H3K4 at PU.1 regulatory regions is impaired by MDS/AML-associated RUNX1/AML1 mutations. Blood. 2011;118:6544-52. doi:10.1182/blood-2010-11-317909. PMID:22012064
  • Prasad P, Ronnerblad M, Arner E, Itoh M, Kawaji H, Lassmann T, Daub CO, Forrest AR, Lennartsson A, Ekwall K. High-throughput transcription profiling identifies putative epigenetic regulators of hematopoiesis. Blood. 2014;123:e46-57. doi:10.1182/blood-2013-02-483537. PMID:24671951
  • Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L, Xie H, Orkin SH, Armstrong SA. Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc Natl Acad Sci U S A. 2012;109:5028-33. doi:10.1073/pnas.1202258109. PMID:22396593
  • Preisler HD, Raza A, Gopal V, Ahmad S, Bokhari J. Distribution of cell cycle times amongst the leukemia cells within individual patients with acute myelogenous leukemia. Leuk Res. 1995;19:693-8. doi:10.1016/0145-2126(95)98846-P. PMID:7500644
  • Weirich S, Kudithipudi S, Jeltsch A. Somatic cancer mutations in the MLL1 histone methyltransferase modulate its enzymatic activity and dependence on the WDR5/RBBP5/ASH2L complex. Mol Oncol. 2017;11:373-87. doi:10.1002/1878-0261.12041. PMID:28182322
  • Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, Patel J, Dillon R, Vijay P, Brown AL, et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 2016;22:792-9. doi:10.1038/nm.4125. PMID:27322744
  • Jiang X, Lim CZ, Li Z, Lee PL, Yatim SM, Guan P, Li J, Zhou J, Pan J, Chng WJ, et al. Functional characterization of D9, a novel deazaneplanocin A (DZNep) Analog, in targeting acute myeloid leukemia (AML). PLoS One. 2015;10:e0122983. doi:10.1371/journal.pone.0122983. PMID:25928216
  • Fiskus W, Sharma S, Shah B, Portier BP, Devaraj SG, Liu K, Iyer SP, Bearss D, Bhalla KN. Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia. 2014;28:2155-64. doi:10.1038/leu.2014.119. PMID:24699304
  • Ramos MP, Wijetunga NA, McLellan AS, Suzuki M, Greally JM. DNA demethylation by 5-aza-2′-deoxycytidine is imprinted, targeted to euchromatin, and has limited transcriptional consequences. Epigenetics Chromatin. 2015;8:11. doi:10.1186/s13072-015-0004-x. PMID:25806086
  • Li LH, Olin EJ, Buskirk HH, Reineke LM. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res. 1970;30:2760-9. PMID:5487063
  • Prebet T, Sun Z, Figueroa ME, Ketterling R, Melnick A, Greenberg PL, Herman J, Juckett M, Smith MR, Malick L, et al. Prolonged administration of azacitidine with or without entinostat for myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia-related changes: Results of the US Leukemia Intergroup trial E1905. J Clin Oncol. 2014;32:1242-8. doi:10.1200/JCO.2013.50.3102. PMID:24663049
  • Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S, Liu S, Havelange V, Becker H, Schaaf L, et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci U S A. 2010;107:7473-8. doi:10.1073/pnas.1002650107. PMID:20368434
  • Grishina O, Schmoor C, Dohner K, Hackanson B, Lubrich B, May AM, Cieslik C, Mueller MJ, Luebbert M. DECIDER: Prospective randomized multicenter phase II trial of low-dose decitabine (DAC) administered alone or in combination with the histone deacetylase inhibitor valproic acid (VPA) and all-trans retinoic acid (ATRA) in patients >60 years with acute myeloid leukemia who are ineligible for induction chemotherapy. BMC Cancer. 2015;15:430. doi:10.1186/s12885-015-1432-5.. PMID:26008690
  • Loffler-Wirth H, Kalcher M, Binder H. oposSOM: R-package for high-dimensional portraying of genome-wide expression landscapes on bioconductor. Bioinformatics. 2015;31:3225-7. doi:10.1093/bioinformatics/btv342. PMID:26063839
  • Schoofs T, Berdel WE, Muller-Tidow C. Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia. 2014;28:1-14. doi:10.1038/leu.2013.242. PMID:23958917
  • Oittinen M, Popp A, Kurppa K, Lindfors K, Mäki M, Kaikkonen MU, Viiri K. Polycomb Repressive Complex 2 Enacts Wnt Signaling in Intestinal Homeostasis and Contributes to the Instigation of Stemness in Diseases Entailing Epithelial Hyperplasia or Neoplasia. Stem Cells. 2017 Feb;32(2):445–457. doi:10.1002/stem.2479. Epub 2016 Sep 13
  • Uy GL, Duncavage EJ, Chang GS, Jacoby MA, Miller CA, Shao J, Heath S, Elliott K, Reineck T, Fulton RS, Fronick CC, O'Laughlin M, Ganel L, Abboud CN, Cashen AF, DiPersio JF, Wilson RK, Link DC, Welch JS, Ley TJ, Graubert TA, Westervelt P, Walter MJ. Dynamic changes in the clonal structure of MDS and AML in response to epigenetic therapy. Leukemia. 2017 Apr;31(4):872–881. doi:10.1038/leu.2016.282. Epub 2016 Oct 14. PMID:27740633
  • Licht JD. DNA methylation inhibitors in cancer therapy: The immunity dimension. Cell. 2015;162:938-9. doi:10.1016/j.cell.2015.08.005. PMID:26317460
  • Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162:974-86. doi:10.1016/j.cell.2015.07.011. PMID:26317466
  • Spencer DH, Russler-Germain DA, Ketkar S, Helton NM, Lamprecht TL, Fulton RS, Fronick CC, O'Laughlin M, Heath SE, Shinawi M, et al. CpG island hypermethylation mediated by DNMT3A is a consequence of AML progression. Cell. 2017;168:801-16 e13. doi:10.1016/j.cell.2017.01.021. PMID:28215704
  • Drolle H, Wagner M, Vasold J, Kutt A, Deniffel C, Sotlar K, Sironi S, Herold T, Rieger C, Fiegl M. Hypoxia regulates proliferation of acute myeloid leukemia and sensitivity against chemotherapy. Leuk Res. 2015;39:779-85. doi:10.1016/j.leukres.2015.04.019. PMID:25982178
  • Roeder I, Horn M, Glauche I, Hochhaus A, Mueller MC, Loeffler M. Dynamic modeling of imatinib-treated chronic myeloid leukemia: Functional insights and clinical implications. Nat Med. 2006;12:1181-4. doi:10.1038/nm1487. PMID:17013383
  • Horn M, Glauche I, Muller MC, Hehlmann R, Hochhaus A, Loeffler M, Roeder I. Model-based decision rules reduce the risk of molecular relapse after cessation of tyrosine kinase inhibitor therapy in chronic myeloid leukemia. Blood. 2013;121:378-84. doi:10.1182/blood-2012-07-441956. PMID:23175686

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.