1,189
Views
9
CrossRef citations to date
0
Altmetric
Research Paper

Maternal atopy and offspring epigenome-wide methylation signature

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 629-641 | Received 21 Apr 2020, Accepted 10 Aug 2020, Published online: 09 Sep 2020

References

  • Haahtela T. A biodiversity hypothesis. Allergy [Internet]. 2019 [cited 2020 Mar 17];74:1445–1456. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30835837
  • Rothers J, Stern DA, Lohman IC, et al. Maternal cytokine profiles during pregnancy predict asthma in children of mothers without asthma. Am J Respir Cell Mol Biol [Internet]. 2018 [cited 2018 Dec 28];59:592–600. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29863910
  • Moffatt C. Maternal effects in atopic disease. Clin Exp Allergy [Internet]. 1998 [cited 2019 Oct 4];28:56–61.
  • Gunawardhana LP, Baines KJ, Mattes J, et al. Differential DNA methylation profiles of infants exposed to maternal asthma during pregnancy. Pediatr Pulmonol. 2014;49:852–862.
  • Karvonen A, Lampi J, Keski-Nisula L, et al. Farm environment during pregnancy and childhood and polysensitization at the age of 31 – prospective birth cohort study in Finland. J Investig Allergol Clin Immunol. 2019;31. DOI:10.18176/jiaci.0455
  • Depner M, Ege MJ, Genuneit J, et al. Atopic sensitization in the first year of life. J Allergy Clin Immunol [Internet]. 2013 [cited 2017 Mar 16];131:781–788.e9. Available from: http://www.jacionline.org/article/S0091-6749(12)01975-6/pdf
  • Grieger JA, Clifton VL, Tuck AR, et al. In utero programming of allergic susceptibility. Int Arch Allergy Immunol. 2016;169:80–92.
  • Danielewicz H, Myszczyszyn G, Dębińska A, et al. Diet in pregnancy—more than food. Eur J Pediatr. 2017;176: 1573-1579.
  • Saad MI, Abdelkhalek TM, Haiba MM, et al. Maternal obesity and malnourishment exacerbate perinatal oxidative stress resulting in diabetogenic programming in F1 offspring. J Endocrinol Invest [Internet]. 2016 [cited 2017 Mar 11];39:643–655. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26667119
  • DeVries A, Vercelli D. Epigenetics in allergic diseases. Curr Opin Pediatr [Internet]. 2015 [cited 2019 Oct 4];27:719–723. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00008480-201512000-00012
  • Everson TM, Lyons G, Zhang H, et al. DNA methylation loci associated with atopy and high serum IgE: A genome-wide application of recursive random forest feature selection. Genome Med. 2015;7: 89.
  • Chen W, Wang T, Pino-Yanes M, et al. An epigenome-wide association study of total serum IgE in hispanic children. J Allergy Clin Immunol. 2017;140:571–577.
  • Forno E, Wang T, Qi C, et al. DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. Lancet Respir Med [Internet]. 2019 [cited 2019 Oct 23];7:336–346. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30584054
  • Ivorra C, Fraga MF, Bayón GF, et al. DNA methylation patterns in newborns exposed to tobacco in utero. J Transl Med. 2015;13:25.
  • Hjort L, Martino D, Grunnet LG, et al. Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children. JCI Insight. 2018;3: e122572.
  • Dilli D, Doğan NN, MŞ İ, et al. MaFOS-GDM trial: maternal fish oil supplementation in women with gestational diabetes and cord blood DNA methylation at insulin like growth factor-1 (IGF-1) gene. Clin Nutr ESPEN. 2018;23:73–78.
  • Cho HJ, Sheen YH, Kang MJ, et al. Prenatal 25-hydroxyvitamin D deficiency affects development of atopic dermatitis via DNA methylation. J Allergy Clin Immunol. 2019;143:1215–1218.
  • Amarasekera M, Martino D, Ashley S, et al. Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57-imprinting regulator in humans. Faseb J. 2014;28:4068–4076.
  • Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics [Internet]. 2014 [cited 2019 Jul 22];30:1431–1439. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btu029
  • Müller F, Scherer M, Assenov Y, et al. RnBeads 2.0: comprehensive analysis of DNA methylation data. Genome Biol [Internet]. 2019 [cited 2020 Jun 26];20:55. Available from:: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1664-9
  • Gaunt TR, Shihab HA, Hemani G, et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biol. 2016;17:61.
  • Danso M, Boiten W, van Drongelen V, et al. Altered expression of epidermal lipid bio-synthesis enzymes in atopic dermatitis skin is accompanied by changes in stratum corneum lipid composition. J Dermatol Sci [Internet]. 2017 [cited 2019 Sep 30];88:57–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28571749
  • Rodriguez-Perez N, Schiavi E, Frei R, et al. Altered fatty acid metabolism and reduced stearoyl-coenzyme a desaturase activity in asthma. Allergy. 2017 [cited 2019 Sep 30];72:1744–1752. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28397284
  • Tai T-S, Pai S-Y, Ho I-C. Itm2a, a target gene of GATA-3, plays a minimal role in regulating the development and function of T cells. PLoS One. 2014 [cited 2019 Sep 30];9:e96535.
  • Nicodemus-Johnson J, Myers RA, Sakabe NJ, et al. DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight [Internet]. 2016 [cited 2019 Oct 23];1:e90151. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27942592
  • Al-Haj L, Khabar KSAA. The intracellular pyrimidine 5′-nucleotidase NT5C3A is a negative epigenetic factor in interferon and cytokine signaling. Sci Signal [Internet]. 2018 [cited 2019 Sep 30];11:eaal2434. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29463777
  • Lutz SM, Cho MH, Young K, et al. A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry. BMC Genet [Internet]. 2015 [cited 2019 Nov 9];16:138. Available from: http://www.biomedcentral.com/1471-2156/16/138
  • Rothenberg ME, Spergel JM, Sherrill JD, et al. Common variants at 5q22 associate with pediatric eosinophilic esophagitis. Nat Genet [Internet]. 2010 [cited 2019 Nov 9];42:289–291. Available from: http://www.nature.com/articles/ng.547
  • Kim S, Back SK, Na HS, et al. Capsaicin induces atopic dermatitis-like manifestations through dysregulation of proteolytic system and alteration of filaggrin processing in rats. Exp Dermatol [Internet]. 2018 [cited 2019 Sep 30];27:332–339.
  • Cardenas A, Sordillo JE, Rifas-Shiman SL, et al. The nasal methylome as a biomarker of asthma and airway inflammation in children. Nat Commun [Internet]. 2019 [cited 2019 Oct 23];10:3095. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31300640
  • Tian W, Du Y, Ma Y, et al. miR663a‑TTC22V1 axis inhibits colon cancer metastasis. Oncol Rep [Internet]. 2019 [cited 2019 Oct 25];41:1718–1728. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30664167
  • Naranbhai V, Fletcher HA, Tanner R, et al. Distinct transcriptional and anti-mycobacterial profiles of peripheral blood monocytes dependent on the ratio of monocytes: lymphocytes. EBioMedicine [Internet]. 2015 [cited 2019 Sep 30];2:1619–1626. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352396415301444
  • Everson TM, Zhang H, Lockett GA, et al. Epigenome-wide association study of asthma and wheeze characterizes loci within HK1. Allergy, Asthma Clin Immunol [Internet]. 2019 [cited 2019 Sep 30];15:43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31367216
  • Martino D, Joo JE, Sexton-Oates A, et al. Epigenome-wide association study reveals longitudinally stable DNA methylation differences in CD4+ T cells from children with IgE-mediated food allergy. Epigenetics [Internet]. 2014 [cited 2019 Oct 23];9:998–1006. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24762976
  • den Dekker HT, Burrows K, Felix JF, et al. Newborn DNA-methylation, childhood lung function, and the risks of asthma and COPD across the life course. Eur Respir J [Internet]. 2019 [cited 2019 Sep 30];53:1801795. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30765504
  • Quraishi BM, Zhang H, Everson TM, et al. Identifying CpG sites associated with eczema via random forest screening of epigenome-scale DNA methylation. Clin Epigenetics [Internet]. 2015;7:68. Available from: http://www.clinicalepigeneticsjournal.com/content/7/1/68%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/26199674%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4508804
  • North ML, Jones MJ, MacIsaac JL, et al. Blood and nasal epigenetics correlate with allergic rhinitis symptom development in the environmental exposure unit. Allergy Eur J Allergy Clin Immunol [Internet]. 2018 [cited 2019 Oct 21];73:196–205.
  • Serafin DS, Allyn B, Sassano MF, et al. Chemerin-activated functions of CMKLR1 are regulated by G protein-coupled receptor kinase 6 (GRK6) and β-arrestin 2 in inflammatory macrophages. Mol Immunol [Internet]. 2019 [cited 2019 Sep 30];106:12–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30576947
  • Dellon ES, Selitsky SR, Genta RM, et al. Gene expression-phenotype associations in adults with eosinophilic esophagitis. Dig Liver Dis [Internet]. 2018 [cited 2019 Nov 10];50:804–811. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29628359
  • Baron U, Floess S, Wieczorek G, et al. DNA demethylation in the humanFOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur J Immunol [Internet]. 2007 [cited 2019 Sep 30];37:2378–2389.
  • Martino D, Dang T, Sexton-Oates A, et al. Blood DNA methylation biomarkers predict clinical reactivity in food-sensitized infants. J Allergy Clin Immunol [Internet]. 2015;135:1319–1328e12.
  • Paensuwan P, Ngoenkam J, Khamsri B, et al. Evidence for inducible recruitment of Wiskott-Aldrich syndrome protein to T cell receptor-CD3 complex in Jurkat T cells. Asian Pacific J Allergy Immunol [Internet]. 2015 [cited 2019 Sep 30];33:189–195. Available from: http://apjai.digitaljournals.org/index.php/apjai/article/download/1878/1219
  • Chang J-C, Kuo H-C, Hsu T-Y, et al. Different genetic associations of the IgE production among fetus, infancy and childhood. PLoS One. 2013 [cited 2019 Sep 30];8:e70362. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23936416
  • Wang Y, Mei Y, Bao S, et al. Vasoactive intestinal polypeptide enhances oral tolerance by regulating both cellular and humoral immune responses. Clin Exp Immunol [Internet]. 2007 [cited 2019 Sep 30];148:178–187. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17349016
  • Kim D-H, Park I-H, Cho J-S, et al. Alterations of vasoactive intestinal polypeptide receptors in allergic rhinitis. Am J Rhinol Allergy [Internet]. 2011 [cited 2019 Sep 30];25:e44–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21711977
  • Sundar IK, Yin Q, Baier BS, et al. DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD. Clin Epigenetics [Internet]. 2017 [cited 2019 Nov 9];9:38. Available from:: http://www.ncbi.nlm.nih.gov/pubmed/28416970
  • Langie SAS, Szarc Vel Szic K, Declerck K, et al. Whole-genome saliva and blood DNA methylation profiling in individuals with a respiratory allergy. PLoS One. 2016 [cited 2019 Oct 23];11:e0151109. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26999364
  • Peng C, Van Meel ER, Cardenas A, et al. Epigenome-wide association study reveals methylation pathways associated with childhood allergic sensitization. Epigenetics [Internet]. 2019 [cited 2019 Oct 21];14:445–466. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30876376
  • Lee MK, Hong Y, Kim S-Y, et al. Epigenome-wide association study of chronic obstructive pulmonary disease and lung function in Koreans. Epigenomics [Internet]. 2017 [cited 2019 Nov 6];9:971–984. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28621160
  • Devries A, Vercelli D. The neonatal methylome as a gatekeeper in the trajectory to childhood asthma. Epigenomics. 2017;9:585–593.
  • Imboden M, Wielscher M, Rezwan FI, et al. Epigenome-wide association study of lung function level and its change. Eur Respir J [Internet]. 2019 [cited 2019 Sep 30];54:1900457. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31073081
  • Coquery CM, Erickson LD. Regulatory roles of the tumor necrosis factor receptor BCMA. Crit Rev Immunol [Internet]. 2012 [cited 2020 Mar 21];32:287–305. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23237506
  • Langie SAS, Szic KS, Declerck K, et al. Whole-Genome saliva and blood DNA methylation profiling in individuals with a respiratory allergy. PLoS One. 2016;11. DOI:10.1371/journal.pone.0151109
  • Pino-Yanes M, Corrales A, Cumplido J, et al. Assessing the validity of asthma associations for eight candidate genes and age at diagnosis effects. PLoS One. 2013;8: e73157.
  • Devries A, Wlasiuk G, Miller SJ, et al. Epigenome-wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers. J Allergy Clin Immunol [Internet]. 2016 [cited 2018 May 4]. Available from: https://spiral.imperial.ac.uk:8443/bitstream/10044/1/43732/2/1-s2.0-S0091674916324599-main.pdf
  • Primakoff P, Myles DG. The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet. 2000;16:83–87.
  • Holgate ST, Davies DE, Rorke S, et al. ADAM 33 and its association with airway remodeling and hyperresponsiveness in asthma. Clin Rev Allergy Immunol. 2004;27:23–34.
  • Vizcaino MA, Tabbarah AZ, Asnaghi L, et al. ADAM3A copy number gains occur in a subset of conjunctival squamous cell carcinoma and its high grade precursors. Hum Pathol [Internet]. 2019;94:92–97.
  • Huang M, Chen Y, Han D, et al. Role of the zinc finger and SCAN domain-containing transcription factors in cancer. Am J Cancer Res. 2019;9:816–836.
  • Qian Y, Mao Z, Shi Y, et al. Comprehensive analysis of miRNA-mRNA-lncRNA networks in non-smoking and smoking patients with chronic obstructive pulmonary disease. Cell Physiol Biochem [Internet]. 2018 [cited 2019 Oct 5];50:1140–1153. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30355907
  • Haertle L, El Hajj N, Dittrich M, et al. Epigenetic signatures of gestational diabetes mellitus on cord blood methylation. Clin Epigenetics [Internet]. 2017 [cited 2018 Apr 28];9:28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28360945
  • Hrolfsdottir L, Schalkwijk CG, Birgisdottir BE, et al. Maternal diet, gestational weight gain, and inflammatory markers during pregnancy. Obesity [Internet]. 2016 [cited 2017 Sep 5];24:2133–2139. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27581164
  • Lee H, Hernandez-Vargas H, Biessy C, et al. Modulation of epigenetic states and infant immune system by dietary supplementation with (Omega)-3 polyunsaturated fatty acid during pregnancy in an intervention study. Eur J Cancer [Internet]. 2012;48:S137–8. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed10&NEWS=N&AN=70820354
  • Kaushal A, Zhang H, Karmaus WJJ, et al. Comparison of different cell type correction methods for genome-scale epigenetics studies. BMC Bioinformatics. 2017;18:1–12.
  • Houseman EA, Kile ML, Christiani DC, et al. Reference-free deconvolution of DNA methylation data and mediation by cell composition effects. BMC Bioinformatics [Internet]. 2016 [cited 2019 Jul 22];17:259. Available from: http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1140-4
  • McCarthy JM, Capullari T, Thompson Z, et al. Umbilical cord nucleated red blood cell counts: normal values and the effect of labor. J Perinatol. 2006;26:89–92.
  • Assenov Y, Müller F, Lutsik P, et al. Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods [Internet]. 2014 [cited 2020 Apr 1];11:1138–1140. Available from: http://www.nature.com/doifinder/10.1038/nmeth.3115%5Cnpapers3://publication/doi/10.1038/nmeth.3115
  • Kerkhof M, Schouten JP, De Monchy JGR. The association of sensitization to inhalant allergens with allergy symptoms: the influence of bronchial hyperresponsiveness and blood eosinophil count. Clin Exp Allergy. 2000;30:1387–1394.
  • Bousquet J, Anto JM, Bachert C, et al. Factors responsible for differences between asymptomatic subjects and patients presenting an IgE sensitization to allergens. A GA2LEN project. Allergy [Internet]. 2006 [cited 2020 Mar 24];61:671–680.
  • Zidarn M, Robič M, Krivec A, et al. Clinical and immunological differences between asymptomatic HDM-sensitized and HDM-allergic rhinitis patients. Clin Exp Allergy. 2019;49:808–818.
  • Ciprandi G, Buscaglia S, Pesce G, et al. Minimal persistent inflammation is present at mucosal level in patients with asymptomatic rhinitis and mite allergy. J Allergy Clin Immunol [Internet]. 1995 [cited 2020 Jan 25];96:971–979. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0091674995702350
  • OECD(2019). Education at a glance 2019. OECD indicators 2019. Paris: OECD Publishing; p. 1–8.
  • Jeżewska- Zychowicz M, Gawęcki J, Wądołowska L, et al. Kwestionariusz do badania poglądów i zwyczajów żywieniowych dla osób w wieku od 16 do 65 lat, wersja 1.2 –kwestionariusz do samodzielnego wypełnienia przez respondenta. Rozdz. 2. Wyd Kom Nauk O Żywieniu Człowieka Pol Akad Nauk [Internet]. 2018:21–33. Available from: http://www.knozc.pan.pl/
  • Müller F, Scherer M, Assenov Y, et al. RnBeads 2.0: comprehensive analysis of DNA methylation data. Genome Biol. 2019;20:55.
  • Teschendorff AE, Marabita F, Lechner M, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29:189–196.
  • Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLOS Genet. 2007;3:1–12.
  • Wang J, Vasaikar S, Shi Z, et al. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45:W130–7.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
  • Mi H, Muruganujan A, Huang X, et al. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc. 2019;14:703–721.
  • Li M, Zou D, Li Z, et al. EWAS Atlas: a curated knowledgebase of epigenome-wide association studies. Nucleic Acids Res [Internet]. 2019 [cited 2019 Oct 25];47:D983–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30364969

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.