2,153
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1477-1496 | Received 07 Feb 2022, Accepted 10 Apr 2022, Published online: 03 May 2022

References

  • Farin PW, Piedrahita JA, Farin CE. Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology. 2006;65(1):178–191.
  • Rivera RM, Donnelly CG, Patel BN, et al. Abnormal offspring syndrome. Bovine Reprod. 2021: 876–895
  • Chen Z, Robbins KM, Wells KD, et al. Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith-Wiedemann. Epigenetics. 2013;8(6):591–601.
  • Hori N, Nagai M, Hirayama M, et al. Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome. Anim Reprod Sci. 2010;122(3–4):303–312.
  • Lazzari G, Wrenzycki C, Herrmann D, et al. Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod. 2002;67(3):767–775.
  • Behboodi E, Anderson GB, BonDurant RH, et al. Birth of large calves that developed from in vitro-derived bovine embryos. Theriogenology. 1995;44(2):227–232.
  • Farin PW, Farin CE. Transfer of bovine embryos produced in vivo or in vitro: survival and fetal development. Biol Reprod. 1995;52(3):676–682.
  • McEvoy TG, Sinclair KD, Broadbent PJ, et al. Post-natal growth and development of Simmental calves derived from in vivo or in vitro embryos. Reprod Fertil Develop. 1998;10(6):459–464.
  • Farin PW, Crosier AE, Farin CE. Influence of in vitro systems on embryo survival and fetal development in cattle. Theriogenology. 2001;55(1):151–170.
  • Hasler JF, Henderson WB, Hurtgen PJ, et al. Production, freezing and transfer of bovine IVF embryos and subsequent calving results. Theriogenology. 1995;43(1):141–152.
  • van Wagtendonk-de Leeuw AM, Aerts BJ, den Daas JH. Abnormal offspring following in vitro production of bovine preimplantation embryos: a field study. Theriogenology. 1998;49(5):883–894.
  • Sinclair KD, Broadbent PJ, Dolman DF. In vitro produced embryos as a means of achieving pregnancy and improving productivity in beef cows. Anim Sci. 1995;60(1):55–64
  • Kruip TA, Den Daas JHG. In vitro produced and cloned embryos: effects on pregnancy, parturition and offspring. Theriogenology. 1997;47(1):43–52.
  • Fauser BC, Devroey P, Diedrich K, et al. Health outcomes of children born after IVF/ICSI: a review of current expert opinion and literature. Reprod Biomed Online. 2014;28(2):162–182.
  • Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle. Epigenetics. 2014;9(6):803–815.
  • Li Y, Donnelly CG, Rivera RM. Overgrowth syndrome. Vet Clin Food Anim Pract. 2019;35:265–276.
  • Thompson JG, Allen NW, McGowan LT, et al. Effect of delayed supplementation of fetal calf serum to culture medium on bovine embryo development in vitro and following transfer. Theriogenology. 1998;49(6):1239–1249.
  • Coleman L, Back P, Blair H, et al. Sire effects on birth weight, gestation length, and pre-weaning growth of beef-cross-dairy calves: a case study in New Zealand. Dairy. 2021;2(3):385–395.
  • Chen Z, Hagen DE, Ji T, et al. Global misregulation of genes largely uncoupled to DNA methylome epimutations characterizes a congenital overgrowth syndrome. Sci Rep. 2017;7(1):12667.
  • Chen Z, Hagen DE, Elsik CG, et al. Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. Proc Natl Acad Sci U S A. 2015;112(15):4618–4623.
  • Sangalli JR, Chiaratti MR, De Bem THC, et al. Development to term of cloned cattle derived from donor cells treated with valproic acid. PLoS One. 2014;9(6):e101022.
  • Su J, Wang Y, Liu Q, et al. Aberrant mRNA expression and DNA methylation levels of imprinted genes in cloned transgenic calves that died of large offspring syndrome. Livestock Sci. 2011;141(1):24–35.
  • Su H, Li D, Hou X, et al. Molecular structure of bovine Gtl2 gene and DNA methylation status of Dlk1-Gtl2 imprinted domain in cloned bovines. Anim Reprod Sci. 2011;127(1–2):23–30.
  • Li Y, Hagen DE, Ji T, et al. Altered microRNA expression profiles in large offspring syndrome and Beckwith-Wiedemann syndrome. Epigenetics. 2019;14(9) ;850–876.
  • Li Y, Boadu F, Highsmith M, et al. Allele-specific aberration of imprinted domain chromosome architecture associates with large offspring syndrome. iScience. 2022; In press.
  • Mussa A, Molinatto C, Cerrato F, et al. Assisted reproductive techniques and risk of beckwith-wiedemann syndrome. Pediatrics. 2017;140(1).
  • Mussa A, Russo S, De Crescenzo A, et al. Prevalence of Beckwith–Wiedemann syndrome in north west of Italy. Am J Med Genet Part A. 2013;161:2481–2486.
  • Brioude F, Kalish JM, Mussa A, et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018;14(4):229–249.
  • Krzyzewska IM, Alders M, Maas SM, et al. Genome-wide methylation profiling of Beckwith-Wiedemann syndrome patients without molecular confirmation after routine diagnostics. Clin Epigenetics. 2019;11(11):53.
  • Rovina D, La Vecchia M, Cortesi A, et al. Profound alterations of the chromatin architecture at chromosome 11p15. 5 in cells from Beckwith-Wiedemann and Silver-Russell syndromes patients. Sci Rep. 2020;10:1–19.
  • Naveh NSS, Deegan DF, Huhn J, et al. The role of CTCF in the organization of the centromeric 11p15 imprinted domain interactome. Nucleic Acids Res. 2021;49(11):6315–6330.
  • Tee L, Lim DH, Dias RP, et al. Epimutation profiling in Beckwith-Wiedemann syndrome: relationship with assisted reproductive technology. Clin Epigenetics. 2013;5(1):1–10.
  • Tenorio J, Romanelli V, Martin‐Trujillo A, et al. Clinical and molecular analyses of Beckwith–Wiedemann syndrome: comparison between spontaneous conception and assisted reproduction techniques. Am J Med Genet Part A. 2016;170(10):2740–2749.
  • Rossignol S, Steunou V, Chalas C, et al. The epigenetic imprinting defect of patients with Beckwith—Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J Med Genet. 2006;43(12):902–907.
  • Cooper WN, Luharia A, Evans GA, et al. Molecular subtypes and phenotypic expression of Beckwith–Wiedemann syndrome. Eur J Hum Genet. 2005;13(9):1025.
  • Mussa A, Russo S, De Crescenzo A, et al. (Epi) genotype–phenotype correlations in Beckwith–Wiedemann syndrome. Eur J Hum Genet. 2016;24(2):183.
  • Li T, Zhou X, Wang X, et al. Identification and characterization of human snoRNA core promoters. Genomics. 2010;96(1):50–56.
  • Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8(3):389–399.
  • Plank JL, Dean A. Enhancer function: mechanistic and genome-wide insights come together. Mol Cell. 2014;55(1):5–14.
  • Irizarry RA, Ladd-Acosta C, Wen B, et al. Genome-wide methylation analysis of human colon cancer reveals similar hypo-and hypermethylation at conserved tissue-specific CpG Island shores. Nat Genet. 2009;41(2):178.
  • Vincent A, Omura N, Hong S-M, et al. Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin Cancer Res. 2011;17(13):4341–4354.
  • Jjingo D, Conley AB, Soojin VY, et al. On the presence and role of human gene-body DNA methylation. Oncotarget. 2012;3(4):462.
  • Canovas S, Ivanova E, Romar R, et al. DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids. Elife. 2017;6:e23670.
  • Renner M, Wolf T, Meyer H, et al. Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas. Genome Biol. 2013;14(12):1–26.
  • Daino K, Nishimura M, Imaoka T, et al. Epigenetic dysregulation of key developmental genes in radiation‐induced rat mammary carcinomas. Int J Cancer. 2018;143(2):343–354.
  • Christoffels VM, Grieskamp T, Norden J, et al. Tbx18 and the fate of epicardial progenitors. Nature. 2009;458(7240):E8–9.
  • Haraguchi R, Kitazawa R, Kitazawa S. Epigenetic regulation of Tbx18 gene expression during endochondral bone formation. Cell Tissue Res. 2015;359(2):503–512.
  • Chen Z, Gao W, Pu L, et al. PRDM8 exhibits antitumor activities toward hepatocellular carcinoma by targeting NAP1L1. Hepatology. 2018;68(3):994–1009.
  • Daelemans C, Ritchie ME, Smits G, et al. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta. BMC Genet. 2010;11(1):1–20.
  • Bina M. Discovering candidate imprinted genes and imprinting control regions in the human genome. BMC Genomics. 2020;21(1):1–16.
  • Schulz R, McCole RB, Woodfine K, et al. Transcript-and tissue-specific imprinting of a tumour suppressor gene. Hum Mol Genet. 2009;18(1):118–127.
  • Yao J, Duan L, Fan M, et al. Overexpression of BLCAP induces S phase arrest and apoptosis independent of p53 and NF-κB in human tongue carcinoma. Mol Cell Biochem. 2007;297(1–2):81–92.
  • Nass N, Walter S, Jechorek D, et al. High neuronatin (NNAT) expression is associated with poor outcome in breast cancer. Virchows Arch. 2017;471(1):23–30.
  • Hubertus J, Zitzmann F, Trippel F, et al. Selective methylation of CpGs at regulatory binding sites controls NNAT expression in Wilms tumors. PLoS One. 2013;8(6):e67605.
  • Sleutels F, Zwart R, Barlow DP. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature. 2002;415(6873):810–813.
  • Schertzer MD, Braceros KC, Starmer J, et al. lncRNA-induced spread of polycomb controlled by genome architecture, RNA abundance, and CpG Island DNA. Mol Cell. 2019;75(3):523–537. e10.
  • Young LE, Fernandes K, McEvoy TG, et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet. 2001;27(2):153.
  • Smith LC, Therrien J, Filion F, et al. Epigenetic consequences of artificial reproductive technologies to the bovine imprinted genes SNRPN, H19/IGF2, and IGF2R. Front Genet. 2015;6:58.
  • Sigruener A, Wolfrum C, Boettcher A, et al. Lipidomic and metabolic changes in the P4-type ATPase ATP10D deficient C57BL/6J wild type mice upon rescue of ATP10D function. PLoS One. 2017;12(5):e0178368.
  • Rosen BD, Bickhart DM, Schnabel RD, et al. De novo assembly of the cattle reference genome with single-molecule sequencing. Gigascience. 2020;9(3):giaa021.
  • Ortega MS, Moraes JG, Patterson DJ, et al. Influences of sire conception rate on pregnancy establishment in dairy cattle. Biol Reprod. 2018;99(6):1244–1254.
  • Lopes JS, Alcázar-Triviño E, Soriano-Úbeda C, et al. Reproductive outcomes and endocrine profile in artificially inseminated versus embryo transferred cows. Animals. 2020;10(8):1359.
  • Bushnell B. BBMap. Accessed 24/5/2021. https://sourceforge.net/projects/bbmap/
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120.
  • Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. bioinformatics. 2011;27(11):1571–1572.
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079.
  • Broad Institute. Picard toolkit. Broad Institute, GitHub Repository. Accessed 24/5/2021. http://broadinstitute.github.io/picard/
  • Hayes BJ, Daetwyler HD. 1000 bull genomes project to map simple and complex genetic traits in cattle: applications and outcomes. Annu Rev Anim Biosci. 2019;7(1):89–102.
  • Liu Y, Siegmund KD, Laird PW, et al. Bis-SNP: combined DNA methylation and SNP calling for Bisulfite-seq data. Genome Biol. 2012;13(7):R61.
  • Gao S, Zou D, Mao L, et al. BS-SNPer: SNP calling in bisulfite-seq data. Bioinformatics. 2015;31(24):4006–4008.
  • Ji T. A Bayesian hidden Markov model for detecting differentially methylated regions. Biometrics. 2019;75(2):663–673.
  • O’Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–45.
  • Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006.
  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842.
  • Wickham H. ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3(2):180–185.
  • Lund U, Agostinelli C, Agostinelli MC. Package ‘circular.’ Repos CRAN. 2017.
  • Phanstiel DH, Boyle AP, Araya CL, et al. Sushi R: flexible, quantitative and integrative genomic visualizations for publication-quality multi-panel figures. Bioinformatics. 2014;30(30):2808–2810.