540
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Residential green space in association with the methylation status in a CpG site within the promoter region of the placental serotonin receptor HTR2A

ORCID Icon, , , , , , , , , , , , , & show all
Pages 1863-1874 | Received 10 Jan 2022, Accepted 03 Jun 2022, Published online: 19 Jun 2022

References

  • Dadvand P, Tischer C, Estarlich M, et al. Lifelong residential exposure to green space and attention: a population-based prospective study. Environ Health Perspect. 2017;125(9):097016.
  • Dockx Y, Bijnens EM, Luyten L, et al. Early life exposure to residential green space impacts cognitive functioning in children aged 4 to 6 years. Vol. 161. ; 2022. p. 107094.
  • Bijnens EM, Derom C, Thiery E, et al. Residential green space and child intelligence and behavior across urban, suburban, and rural areas in Belgium: a longitudinal birth cohort study of twins. PLoS Med. 2020;17(8):e1003213.
  • Barker DJ. Developmental origins of adult health and disease. J Epidemiol Community Health. 2004;58(2):114–115.
  • Barker D, Thornburg K. Placental programming of chronic diseases, cancer and lifespan: a review. Placenta. 2013;34(10):841–845.
  • O’Connor TG, Miller RK, Salafia C. Placental studies for child development. Child Dev Perspect. 2019;13(3):193–198
  • O’Donnell KJ, Glover V, Lahti J, et al. Maternal prenatal anxiety and child COMT genotype predict working memory and symptoms of ADHD. PloS one. 2017;12(6):e0177506. PloS one
  • Gilmore JH, Knickmeyer RC, Gao W. Imaging structural and functional brain development in early childhood. Nat Rev Neurosci. 2018;19(3):123–137.
  • Nelson CA, Gabard-Durnam LJ. Early adversity and critical periods: neurodevelopmental consequences of violating the expectable environment. Trends Neurosci. 2020;43(3):133–143.
  • Lee K-S, Choi Y-J, Cho J-W, et al. Children’s greenness exposure and IQ-associated DNA Methylation: a prospective cohort study. Int J Environ Res Public Health. 2021;18(14):7429.
  • Xu R, Li S, Li S, et al. Residential surrounding greenness and DNA methylation: an epigenome-wide association study. Vol. 154. ; 2021. p. 106556.
  • Dwi Putra SE, Reichetzeder C, Hasan AA, et al. Being born large for gestational age is associated with increased global placental DNA methylation. Sci Rep. 2020;10(1):927.
  • Li Y, et al. Differential placental methylation in preeclampsia, preterm and term pregnancies. Vol. 93. ; 2020. p. 56–63.
  • Bahado-Singh RO, Vishweswaraiah S, Aydas B, et al. Placental DNA methylation changes and the early prediction of autism in full-term newborns. PLOS ONE. 2021;16(7):e0253340.
  • Everson TM, Vives-Usano M, Seyve E, et al. Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth. Nat Commun. 2021;12(1):5095.
  • Saenen ND, Vrijens K, Janssen BG, et al. Lower placental leptin promoter methylation in association with fine particulate matter air pollution during pregnancy and placental nitrosative stress at birth in the ENVIR ON AGE cohort. Environ Health Perspect. 2017;125(2):262–268.
  • Tsamou M, Vrijens K, Madhloum N, et al. Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach. Epigenetics. 2018;13(2):135–146.
  • Griffiths SK, Campbell JP. Placental structure, function and drug transfer. Continuing Educ Anaesth Crit Care Pain. 2014;15(2):84–89.
  • Bonnin A, Goeden N, Chen K, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472(7343):347–350.
  • Bonnin A, Levitt P. Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Vol. 197. 2011.1–7
  • Rosenfeld CS. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development†. Biol Reprod. 2020;102(3):532–538.
  • Kliman HJ, Quaratella SB, Setaro AC, et al. Pathway of maternal serotonin to the human embryo and fetus. Endocrinology. 2018;159(4):1609–1629.
  • Oufkir T, Vaillancourt C. Phosphorylation of JAK2 by serotonin 5-HT (2A) receptor activates both STAT3 and ERK1/2 pathways and increases growth of JEG-3 human placental choriocarcinoma cell. Placenta. 2011;32(12):1033–1040.
  • Sonier B, Lavigne C, Arseneault M, et al. Expression of the 5-HT2A serotoninergic receptor in human placenta and choriocarcinoma cells: mitogenic implications of serotonin. Placenta. 2005;26(6):484–490.
  • Reynolds RM, Pesonen A-K, O’Reilly JR, et al. Maternal depressive symptoms throughout pregnancy are associated with increased placental glucocorticoid sensitivity. Psychol Med. 2015;45(10):2023–2030.
  • Ranzil S, Walker D, Borg A, et al. The relationship between the placental serotonin pathway and fetal growth restriction. Vol. 161. ; 2019. p. 80–87.
  • Paquette AG, Lesseur C, Armstrong DA, et al. Placental HTR2A methylation is associated with infant neurobehavioral outcomes. Epigenetics. 2013;8(8):796–801.
  • Janssen BG, Madhloum N, Gyselaers W, et al. Cohort profile: the ENVIRonmental influence ON early AGEing (ENVIRONAGE): a birth cohort study. Int J Epidemiol. 2017;46(5):1386–1387.
  • Falkenberg VR, Gurbaxani BM, Unger ER, et al. Functional genomics of serotonin receptor 2A (HTR2A): interaction of polymorphism, methylation, expression and disease association. Neuromolecular Med. 2011;13(1):66–76.
  • Phan L, Jin Y, Zhang H, et al. ALFA: Allele Frequency Aggregator. 2020 2020 Oct Oct. 2020 Oct. 2020 Oct Oct 10]; Available from: www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/.
  • Een cijfermatig zicht op het gebruik van de ruimte in Limburg - A numerical view on the use of space in Limburg. ; 2020.
  • Janssen S, Dumont G, Fierens F, et al. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos Environ. 2008;42(20):4884–4903.
  • Lefebvre W, Vercauteren J, Schrooten L, et al. Validation of the MIMOSA-Aurora-IFDM model chain for policy support: modeling concentrations of elemental carbon in Flanders. Atmos Environ. 2011;45(37):6705–6713.
  • Lefebvre W, Degrawe B, Beckx C, et al. Presentation and evaluation of an integrated model chain to respond to traffic-and health-related policy questions. Environ Modell Software. 2013;40:160–170.
  • Maiheu B, et al. Identifying the best available large-scale concentration maps for air quality in Belgium. Mechelen Belgium: Flemish Institute for Technological Research (VITO; 2013.
  • Bové H, Bongaerts E, Slenders E, et al. Ambient black carbon particles reach the fetal side of human placenta. Nat Commun. 2019;10(1):3866.
  • R Development Core Team. R: a langugage and environment for statistical computing. Vienna Austria: R Foundation for Statistical Computing; 2019.
  • Lester BM, Marsit CJ. Epigenetic mechanisms in the placenta related to infant neurodevelopment. Epigenomics. 2018;10(3):321–333.
  • Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci. 2003;4(12):1002–1012.
  • Hadden C, Fahmi T, Cooper A, et al. Serotonin transporter protects the placental cells against apoptosis in caspase 3-independent pathway. J Cell Physiol. 2017;232(12):3520–3529.
  • Viau M, Lafond J, Vaillancourt C. Expression of placental serotonin transporter and 5-HT 2A receptor in normal and gestational diabetes mellitus pregnancies. Reprod Biomed Online. 2009;19(2):207–215.
  • Browning M, Lee K. Within what distance does “Greenness” best predict physical health? A systematic review of articles with GIS buffer analyses across the lifespan. Int J Environ Res Public Health. 2017;14(7):675.
  • Su JG, Dadvand P, Nieuwenhuijsen M, et al. Associations of green space metrics with health and behavior outcomes at different buffer sizes and remote sensing sensor resolutions. Vol. 126. ; 2019. p. 162–170.
  • Nieuwenhuijsen MJ. Green Infrastructure and Health. Annu Rev Public Health. 2021;42(1):317–328.
  • Markevych I, Schoierer J, Hartig T, et al. Exploring pathways linking greenspace to health: theoretical and methodological guidance. Vol. 158. ; 2017. p. 301–317.
  • Dzhambov AM, Markevych I, Tilov B, et al. Lower noise annoyance associated with GIS-derived greenspace: pathways through perceived greenspace and residential noise. Int J Environ Res Public Health. 2018;15(7):1533.
  • Schwaab J, Meier R, Mussetti G, et al. The role of urban trees in reducing land surface temperatures in European cities. Nat Commun. 2021;12(1):6763.
  • Abraham E, Rousseaux S, Agier L, et al. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. Environ Int. 2018;118:334–347.
  • Kingsley SL, Eliot MN, Whitsel EA, et al. Maternal residential proximity to major roadways, birth weight, and placental DNA methylation. Environ Int. 2016;92-93:43–49.
  • Almanza E, Jerrett M, Dunton G, et al. A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data. Health Place. 2012;18(1):46–54.
  • Ward JS, Duncan JS, Jarden A, et al. The impact of children’s exposure to greenspace on physical activity, cognitive development, emotional wellbeing, and ability to appraise risk. Health Place. 2016;40:44–50.
  • Kondo MC, Fluehr J, McKeon T, et al. Urban green space and its impact on human health. Int J Environ Res Public Health. 2018;15(3):445.
  • Monk C, Feng T, Lee S, et al. Distress during pregnancy: epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. Am J Psychiatry. 2016;173(7):705–713.
  • Rasmussen L, Knorr S, Antoniussen CS, et al. The impact of lifestyle, diet and physical activity on epigenetic changes in the offspring—A systematic review. Nutrients. 2021;13(8):2821.
  • Kertes DA, Kamin HS, Hughes DA, et al. Prenatal maternal stress predicts methylation of genes regulating the hypothalamic-Pituitary-Adrenocortical system in mothers and newborns in the democratic Republic of Congo. Child Dev. 2016;87(1):61–72.
  • Janssen AB, Kertes DA, McNamara GI, et al. A role for the placenta in programming maternal mood and childhood behavioural disorders. J Neuroendocrinol. 2016; 28: 28.
  • Yeager R, Riggs DW, DeJarnett N, et al. Association between residential greenness and cardiovascular disease risk. J Am Heart Assoc. 2018;7(24):e009117.
  • De Petris S, Squillacioti G, Bono R, et al. Geomatics and epidemiology: associating oxidative stress and greenness in urban areas. Environ Res. 2021;197:110999.
  • Squillacioti G, Carsin AE, Borgogno-Mondino E, et al. Greenness and physical activity as possible oxidative stress modulators in children. Eur J Public Health. 2020;30(Supplement_5). 10.1093/eurpub/ckaa165.090.
  • Squillacioti GBV, V B, F G, et al. Greenness effect on oxidative stress and respiratory flows in children. Environ Epidemiol. 2019; 3: 35–36.
  • Scarpato R, Testi S, Colosimo V, et al. Role of oxidative stress, genome damage and DNA methylation as determinants of pathological conditions in the newborn: an overview from conception to early neonatal stage. Mutat Res/Rev Mutat Res. 2019;783:108295.
  • Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017;360(1):201–205.
  • Herman F, Westfall S, Brathwaite J, et al. Suppression of presymptomatic oxidative stress and inflammation in neurodegeneration by grape-derived polyphenols. Front Pharmacol. 2018;9:867.
  • Ponsonby AL, Symeonides C, Saffery R, et al. Prenatal phthalate exposure, oxidative stress-related genetic vulnerability and early life neurodevelopment: a birth cohort study. Vol. 80. ; 2020. p. 20–28.
  • Dejeux E, El abdalaoui H, Gut IG, et al. Identification and quantification of differentially methylated loci by the pyrosequencing technology. Methods Mol Biol. 2009;507:189–205.
  • Tost J, Gut IG. Analysis of gene-specific DNA methylation patterns by pyrosequencing technology. Methods Mol Biol. 2007;373:89–102.
  • Astell-Burt T, Feng X. Association of urban green space with mental health and general health among adults in Australia. JAMA Network Open. 2019;2(7):e198209–e198209.
  • Nguyen PY, Astell-Burt T, Rahimi-Ardabili H, et al. Green space quality and health: a systematic review. Int J Environ Res Public Health. 2021;18(21):11028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.