3,163
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

Epigenetic rewiring of pathways related to odour perception in immune cells exposed to SARS-CoV-2 in vivo and in vitro

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1875-1891 | Received 04 Nov 2021, Accepted 25 May 2022, Published online: 26 Jun 2022

References

  • Atlante S, Mongelli A, Barbi V, et al. The epigenetic implication in coronavirus infection and therapy. Clin Epigenetics. 2020;12(1):156. PMID - 33087172.
  • O’Donoghue SII, Schafferhans A, Sikta N, et al. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Mol Syst Biol. 2021;17(9):e10079.
  • Zhang Y, Guo R, Kim SH, et al. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat Commun. 2021;12(1):1676.
  • Singh KK, Chaubey G, Chen JY, et al. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am J Physiol Cell Physiol. 2020;319(2):C258–C267.
  • Menachery VD, Schäfer A, Burnum-Johnson KE, et al. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. Proc Nat Acad Sci. 2018;115(5). DOI:10.1073/pnas.1706928115
  • Salgado-Albarrán M, Navarro-Delgado EI, Del Moral-Morales A, et al. Comparative transcriptome analysis reveals key epigenetic targets in SARS-CoV-2 infection. NPJ Syst Biol Appl. 2021;7(1):21.
  • Oriol-Tordera B, Berdasco M, Llano A, et al. Methylation regulation of antiviral host factors, interferon stimulated genes (ISGs) and T-cell responses associated with natural HIV control. PLoS Pathog. 2020;16(8):e1008678.
  • Schmidl C, Delacher M, Huehn J, et al. Epigenetic mechanisms regulating T-cell responses. J Allergy Clin Immunol. 2018;142(3):728–743. PMID - 30195378.
  • Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY). 2020;12(10):9959–9981. PMID - 32470948.
  • Martin EM, Fry RC. Environmental influences on the epigenome: exposure-Associated DNA methylation in human populations. Annu Rev Publ Health. 2018;39(1):1–25. PMID - 29328878.
  • Öst A, Lempradl A, Casas E, et al. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell. 2014;159(6):1352–1364.
  • Booth A, Reed AB, Ponzo S, et al. Population risk factors for severe disease and mortality in COVID-19: a global systematic review and meta-analysis. PloS one. 2021;16(3):e0247461.
  • Taylor EH, Marson EJ, Elhadi M, et al. Factors associated with mortality in patients with COVID-19 admitted to intensive care: a systematic review and meta-analysis. Anaesthesia. 2021;76(9):1224–1232.
  • Konwar C, Asiimwe R, Inkster AM, et al. Risk-focused differences in molecular processes implicated in SARS-CoV-2 infection: corollaries in DNA methylation and gene expression. Epigenet Chromatin. 2021;14. DOI:10.1186/s13072-021-00428-1.
  • Qin W, Scicluna BP, van der Poll T. The role of host cell DNA methylation in the immune response to bacterial infection. Front Immunol. 2021;12:696280.
  • Schäfer A, Baric R. Epigenetic landscape during coronavirus infection. Pathogens. 2017;6(1):8.
  • Sen R, Garbati M, Bryant K, et al. Epigenetic mechanisms influencing COVID-191. Genome. 2021;99(999):1–14. PMID - 33395363.
  • Chlamydas S, Papavassiliou AG, Piperi C. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics. 2020;1–8. PMID - 32686577. DOI: 10.1080/15592294.2020.1796896.
  • Das J, Idh N, Pehrson I, et al. A DNA methylome biosignature in alveolar macrophages from TB-exposed individuals predicts exposure to mycobacteria. MedRxiv: Preprint Serv Health Sci. 2021. DOI:10.1101/2021.03.16.21253732
  • Karlsson L, Das J, Nilsson M, et al. A differential DNA methylome signature of pulmonary immune cells from individuals converting to latent tuberculosis infection. MedRxiv: Preprint Serv Health Sci. 2021. DOI:10.1101/2021.03.16.21253729.
  • Pehrson I, Das J, Idh N, et al. DNA methylomes derived from alveolar macrophages display distinct patterns in latent tuberculosis - implication for interferon gamma release assay status determination. 2021. DOI:10.1101/2021.03.16.21253725.
  • Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. Jama. 2020;323(13):1239–1242. PMID - 32091533.
  • Li J, Huang DQ, Zou B, et al. Epidemiology of COVID‐19: a systematic review and meta‐analysis of clinical characteristics, risk factors, and outcomes. J Med Virol. 2021;93(3):1449–1458.
  • Chan Y-H-H, Fong S-W-W, Poh C-M-M, et al. Asymptomatic COVID-19: disease tolerance with efficient anti-viral immunity against SARS-CoV-2. EMBO Mol Med. 2021;13(6). DOI:10.15252/emmm.202114045
  • Ansari AH, Arya R, Arya R, et al. Immune memory in mild COVID-19 patients and unexposed donors reveals persistent T cell responses after SARS-CoV-2 infection. Front Immunol. 2021;12:636768.
  • Jit BP, Jit BP, Qazi S, et al. An immune epigenetic insight to COVID-19 infection. Epigenomics-uk. 2021;13(6):465–480.
  • Verma D, Parasa VR, Raffetseder J, et al. Anti-mycobacterial activity correlates with altered DNA methylation pattern in immune cells from BCG-vaccinated subjects. Sci Rep. 2017;7(1):12305.
  • Rizwan M, Rönnberg B, Cistjakovs M, et al. Serology in the digital age: using long synthetic peptides created from nucleic acid sequences as antigens in microarrays. Microarrays. 2016;5(3):22. PMID - 27600087.
  • Nissen K, Hagbom M, Krambrich J, et al. Presymptomatic viral shedding and infective ability of SARS-CoV-2; a case report. Heliyon. 2021;7(2):e06328.
  • Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–1369.
  • Maksimovic J, Gordon L, Oshlack A. SWAN: subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13(6):R44.
  • Morris TJ, Butcher LM, Feber A, et al. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics. 2014;30(3):428–430.
  • Leek JT, Johnson EW, Parker HS, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–883.
  • Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.
  • van Iterson M, van Zwet EW, Consortium B, et al. Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution. Genome Biol. 2017;18(1):19.
  • Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2.
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613.
  • de Weerd HA, Badam TVS, Martínez-Enguita D, et al. MODifieR: an ensemble R package for inference of disease modules from transcriptomics networks. Bioinformatics. 2020;36(12):3918–3919.
  • Zhou S, Zhang J, Xu J, et al. An epigenome-wide DNA methylation study of patients with COVID-19. Ann Hum Genet. 2021;85:221–234.
  • Balnis J, Madrid A, Hogan KJ, et al. Blood DNA methylation and COVID-19 outcomes. Clin Epigenetics. 2021;13(1):118.
  • de Moura MC, Davalos V, Planas-Serra L, et al. Epigenome-wide association study of COVID-19 severity with respiratory failure. EBioMedicine. 2021;66:103339.
  • Corley MJ, Pang A, Dody K, et al. Genome‐wide DNA methylation profiling of peripheral blood reveals an epigenetic signature associated with severe COVID‐19. J Leukoc Biol. 2021;110:21–26.
  • Konigsberg IR, Barnes B, Campbell M, et al. Host methylation predicts SARS-CoV-2 infection and clinical outcome. Communicat Med. 2021;1(1). DOI:10.1038/s43856-021-00042-y
  • Vallée A, Lecarpentier Y, Vallée J-N-N. Interplay of opposing effects of the WNT/β-Catenin pathway and PPARγ and implications for SARS-CoV2 treatment. Front Immunol. 2021;12:666693.
  • Zheng F, Zhang S, Churas C, et al. HiDeF: identifying persistent structures in multiscale ‘omics data. Genome Biol. 2021;22(1):21.
  • Chan W, Singh S, Keshav T, et al. Mice lacking M1 and M3 muscarinic acetylcholine receptors have impaired odor discrimination and learning. Front Synaptic Neurosci. 2017;9:4.
  • Ross JM, Bendahmane M, Fletcher ML. Olfactory bulb muscarinic acetylcholine type 1 receptors are required for acquisition of olfactory fear learning. Front Behav Neurosci. 2019 July 19;13:164.
  • Blomberg J, Gottfries C-G-G, Elfaitouri A, et al. Infection elicited autoimmunity and myalgic encephalomyelitis/chronic fatigue syndrome: an explanatory model. Front Immunol. 2018;9:229.
  • Skiba MA, Kruse AC. Autoantibodies as endogenous modulators of GPCR signaling. Trends Pharmacol Sci. 2021;42(3):135–150.
  • Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer. 2020;20(8):471–480.
  • Vastrad B, Vastrad C, Tengli A. Identification of potential mRNA panels for severe acute respiratory syndrome coronavirus 2 (COVID-19) diagnosis and treatment using microarray dataset and bioinformatics methods. 3 Biotech. 2020;10(10):422.
  • Wicik Z, Eyileten C, Jakubik D, et al. ACE2 interaction networks in COVID-19: a physiological framework for prediction of outcome in patients with cardiovascular risk factors. J Clin Med. 2020;9(11):3743.
  • Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020;9(1):761–770.
  • Tiwari R, Mishra AR, Gupta A, et al. Structural similarity-based prediction of host factors associated with SARS-CoV-2 infection and pathogenesis. J Biomol Struct Dyn. 2021;1–12. DOI:10.1080/07391102.2021.1874532
  • Mishra A, Chanchal S, Ashraf MZ. Host-viral interactions revealed among shared transcriptomics signatures of ARDS and thrombosis: a clue into COVID-19 pathogenesis. TH Open: Compan J Thrombos Haemostas. 2020;4(4):e403–e412.
  • Ma D, Liu S, Hu L, et al. Single-cell RNA sequencing identify SDCBP in ACE2-positive bronchial epithelial cells negatively correlates with COVID-19 severity. J Cell Mol Med. 2021;25:7001–7012.
  • Kim MY, Shu Y, Carsillo T, et al. hsp70 and a novel axis of type I interferon-dependent antiviral immunity in the measles virus-infected brain. J Virol. 2013;87(2):998–1009.
  • Kim MY, Ma Y, Zhang Y, et al. hsp70-dependent antiviral immunity against cytopathic neuronal infection by vesicular stomatitis virus. J Virol. 2013;87(19):10668–10678.
  • Tampere M, Pettke A, Salata C, et al. Novel broad-spectrum antiviral inhibitors targeting host factors essential for replication of pathogenic RNA viruses. Viruses. 2020;12(12):1423.
  • Kleinnijenhuis J, Quintin J, Preijers F, et al. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012 October 23;109(43):17537–17542.
  • Singhania A, Dubelko P, Kuan R, et al. CD4+CCR6+ T cells dominate the BCG-induced transcriptional signature. Ebiomedicine. 2021;74:103746.