2,729
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Functional study and epigenetic targets analyses of SIRT1 in intramuscular preadipocytes via ChIP-seq and mRNA-seq

, , , , , , , , , & show all
Article: 2135194 | Received 20 Jul 2022, Accepted 04 Oct 2022, Published online: 20 Oct 2022

References

  • Liu Y, Lang Y, Bao G, et al. Comparison and analysis of nutrition characteristics for gannan yak meat and Chinese simmental meat. Chinese Sci Technol Food Ind. 2016;37(15):360–16.
  • Yan Z. Evaluation on composition of amino acid and fatty acid of fresh yak meat. Chinese Qinghai Journal of Animal & Veterinary Sciences. 2015;45(2):20–22.
  • Picard B, Gagaoua M, Aljammas M, et al. Beef tenderness and intramuscular fat proteomic biomarkers: muscle type effect. Peerj. 2018;6(6):e4891.
  • Van LR, Stevens SG, Stalder KJ. The influence of ultimate ph and intramuscular fat content on pork tenderness and tenderization. J.Anim Sci. 2001;79(2):392–397.
  • Chambaz A. Meat quality of angus, simmental, charolais and limousin steers compared at the same intramuscular fat content. Meat Sci. 2003;63(4):491–500.
  • Hopkins DL, Hegarty RS, Walker PJ, et al. Relationship between animal age, intramuscular fat, cooking loss, ph, shear force and eating quality of aged meat from sheep. Aus J Exp Agr. 2006;46(7):879–884.
  • Ashihara A, Gou Y, Imaeda N, et al. Investigation of factors affecting intramuscular fat accumulation in pigs-growth performance, carcass traits, lipid fractions in serum and adipose cell size and number. Nihon Chikusan Gakkaiho. 2008;79(79):227–234.
  • Zhu Z, Gu C, Hu S, et al. Dietary n-carbamylglutamate supplementation enhances myofiber development and intramuscular fat deposition in growing-finishing pigs. Livest Sci. 2020;242(s1):104310.
  • Huang Y, Gao S, Chen J, et al. Maternal butyrate supplementation induces insulin resistance associated with enhanced intramuscular fat deposition in the offspring. Oncotarget. 2016;8(8):13073.
  • Zhou X, Liu Y, Zhang L, et al. Serine-to-glycine ratios in low-protein diets regulate intramuscular fat by affecting lipid metabolism and myofiber type transition in the skeletal muscle of growing-finishing pigs. Anim Nutr. 2021;7(2):384–392.
  • Underwood KR, Tong J, Zhu MJ, et al. Relationship between kinase phosphorylation, muscle fiber typing, and glycogen accumulation in longissimus muscle of beef cattle with high and low intramuscular fat. J Agr Food Chem. 2007;55(23):9698–9703.
  • S W, J J, E P, et al. Identification of genes related to intramuscular fat content of pig using genome-wide association study. Asian Austral J Anim. 2018;31(2):157–162.
  • Hassen AT, Wilson DE, Rouse GH. Estimating heritability of percentage of intramuscular fat and ribeye area measures by scan session in angus bulls and heifers. Beef research report, Iowa State University. 2004.
  • Wang L, Zhou ZY, Zhang T, et al. Irlnc: a novel functional noncoding RNA contributes to intramuscular fat deposition. BMC Genomics. 2021;22(1):95.
  • Cui J, Chen W, Liu J, et al. Study on quantitative expression of PPARγ and ADRP in muscle and its association with intramuscular fat deposition of pig. SpringerPlus. 2016;5(1):1501.
  • Guo Y, Guo X, Deng Y, et al. Effects of different rearing systems on intramuscular fat content, fatty acid composition, and lipid metabolism–related genes expression in breast and thigh muscles of nonghua ducks. Poultry Sci. 2020;99(10):4832–4844.
  • Xiong Y, Xu Q, Lin S, et al. Knockdown of lxrα inhibits goat intramuscular preadipocyte differentiation. Int J Mol Sci. 2018;19(10):3037.
  • Bionaz M, Loor JJ. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics. 2008;9(1):366.
  • Yang X, Liu Q, Li Y, et al. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway. Adipocyte. 2020;9(1):484–494.
  • M Q, Martínez-Grobas E, J F, et al. Hypothalamic Actions of SIRT1 and SIRT6 on energy balance. Int J Mol Sci. 2021;22(3):1430.
  • Yu Q, Dong L, Li Y, et al. SIRT1 and HIF1α signaling in metabolism and immune responses. Cancer Lett. 2018;418:20–26.
  • Bartoli-Leonard F, Wilkinson FL, Schiro A, et al. Loss of SIRT1 in diabetes accelerates DNA damage-induced vascular calcification. Cardiovasc Res. 2021;117(3):836–849.
  • D’Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid Redox Sign. 2018;28(8):711–732.
  • Alves-Fernandes DK, Jasiulionis MG. The Role of SIRT1 on DNA Damage response and epigenetic alterations in cancer. Int J Mol Sci. 2019;20(13):3153.
  • Sathyanarayan A, Mashek MT, Mashek DG. ATGL Promotes Autophagy/Lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Rep. 2017;19(1):1–9.
  • Abdesselem H, Madani A, Hani A, et al. SIRT1 Limits Adipocyte Hyperplasia through c-Myc Inhibition. J Biol Chem. 2016;291(5):2119–2135.
  • Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429(6993):771–776.
  • Y M, N H, A.y M, et al. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. Sci Rep. 2021;11(1):8177.
  • Wang H, Zhong J, Zhang C, et al. The whole-transcriptome landscape of muscle and adipose tissues reveals the ceRNA regulation network related to intramuscular fat deposition in yak. BMC Genomics. 2020;21(1):347.
  • Jeong J, Kwon EG, Im SK, et al. Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers. J Anim Sci. 2012;90(6):2044–2053.
  • Xu Q, Li Y, Lin S, et al. KLF4 inhibits the differentiation of goat intramuscular preadipocytes through targeting c/ebpβ directly. Front Genet. 2021;12:663759.
  • He Q, Luo J, Wu J, et al. FoxO1 knockdown promotes fatty acid synthesis via modulating SREBP1 activities in the dairy goat mammary epithelial cells. J Agric Food Chem. 2020;68(43):12067–12078.
  • Gaulton KJ, Nammo T, Pasquali L, et al. A map of open chromatin in human pancreatic islets. Nat Genet. 2010;42(3):255–259.
  • Guillemette B, Drogaris P, Lin HH, et al. H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet. 2011;7(3):e1001354.
  • K R, Judes G, Idrissou M, et al. SIRT1-dependent epigenetic regulation of H3 and H4 histone acetylation in human breast cancer. Oncotarget. 2018;9(55):30661–30678.
  • Pillarisetti S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases. Recent Pat Cardiovasc Drug Discov. 2008;3(3):156–164.
  • F L, H L, X J, et al. Adipose-specific knockdown of Sirt1 results in obesity and insulin resistance by promoting exosomes release. Cell Cycle. 2019;18(17):2067–2082.
  • Qiang L, Lin HV, Kim-Muller JY, et al. Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation. Cell Metab. 2011;14(6):758–767.
  • Hou X, Xu S, Maitland-Toolan KA, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 2008;283(29):20015–20026.
  • Ponugoti B, Kim DH, Xiao Z, et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 2010;285(44):33959–33970.
  • Ferguson D, Shao N, Heller E, et al. SIRT1-FOXO3a regulate cocaine actions in the nucleus accumbens. J Neurosci. 2015 18;35(7):3100–3111.
  • Digaleh H, Kiaei M, Khodagholi F. Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy. Cell Mol Life Sci. 2013;70(24):4681–4694.
  • L L, Y L, J W, et al. Mitophagy receptor FUNDC1 is regulated by PGC-1α/NRF1 to fine tune mitochondrial homeostasis. EMBO Rep. 2021;22(3):e50629.
  • Xue P, Hou Y, Zuo Z, et al. Long isoforms of NRF1 negatively regulate adipogenesis via suppression of PPARγ expression. Redox Biol. 2020;30:101414.
  • Bléher M, Meshko B, Cacciapuoti I, et al. Egr1 loss-of-function promotes beige adipocyte differentiation and activation specifically in inguinal subcutaneous white adipose tissue. Sci Rep. 2020;10(1):15842.
  • Mohtar O, Ozdemir C, Roy D, et al. Egr1 mediates the effect of insulin on leptin transcription in adipocytes. J Biol Chem. 2019;294(15):5784–5789.
  • Milet C, Bléher M, Allbright K, et al. Egr1 deficiency induces browning of inguinal subcutaneous white adipose tissue in mice. Sci Rep. 2017;7(1):16153.
  • Jiang J, Liu Z, Ge C, et al. NK3 homeobox 1 (NKX3.1) up-regulates forkhead box O1 expression in hepatocellular carcinoma and thereby suppresses tumor proliferation and invasion. J Biol Chem. 2017;292(47):19146–19159.
  • Ioannilli L, Ciccarone F, Ciriolo MR. Adipose tissue and FoxO1: bridging physiology and mechanisms. Cells. 2020;9(4):849.
  • M W, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature. 2016;529(7586):326–335.
  • Sun Y, Liu WZ, Liu T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35(6):600–604.
  • N L, M S, Atilla-Gokcumen GE. The Role of p38 MAPK in Triacylglycerol Accumulation during Apoptosis. Proteomics. 2019;19(13):e1900160.
  • D P, B.h P, Davis KE, et al. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes. J Biol Chem. 2002;277(48):46226–46232.
  • Hong J, Mei C, Raza S, et al. SIRT5 inhibits bovine preadipocyte differentiation and lipid deposition by activating AMPK and repressing MAPK signal pathways. Genomics. 2020;112(2):1065–1076.
  • Bost F, Aouadi M, Caron L, et al. The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes. 2005;54(2):402–411.
  • Xiao Y, Liu H, Yu J, et al. MAPK1/3 regulate hepatic lipid metabolism via ATG7-dependent autophagy. Autophagy. 2016;12(3):592–593.
  • Goszczynski DE, Mazzucco JP, Ripoli MV, et al. Genetic characterisation of PPARG, CEBPA and RXRA, and their influence on meat quality traits in cattle. J Anim Sci Technol. 2016;58:14.
  • Furuhashi M, Ura N, Murakami H, et al. Fenofibrate improves insulin sensitivity in connection with intramuscular lipid content, muscle fatty acid-binding protein, and beta-oxidation in skeletal muscle. J Endocrinol. 2002;174(2):321–329.
  • R.a C, Lee DP. Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res. 2004;43(2):134–176.