1,799
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Associations of green and blue space exposure in pregnancy with epigenetic gestational age acceleration

ORCID Icon, , , , , , & ORCID Icon show all
Article: 2165321 | Received 13 Aug 2022, Accepted 30 Dec 2022, Published online: 11 Jan 2023

References

  • Al-Kindi SG, Brook RD, Biswal S, et al. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat Rev Cardiol. 2020;17(10):656–11.
  • Landrigan PJ, Fuller R, Acosta NJR, et al. The Lancet Commission on pollution and health. Lancet. 2018;391(10119):462–512.
  • Gascon M, Triguero-Mas M, Martinez D, et al. Residential green spaces and mortality: a systematic review. Environ Int. 2016;86:60–67.
  • Nieuwenhuijsen MJ. Influence of urban and transport planning and the city environment on cardiovascular disease. Nat Rev Cardiol. 2018;15(7):432–438.
  • Geneshka M, Coventry P, Cruz J, et al. Relationship between Green and Blue Spaces with Mental and Physical Health: a Systematic Review of Longitudinal Observational Studies. Int J Environ Res Public Health. 2021;18(17):9010.
  • McDougall CW, Quilliam RS, Hanley N, et al. Freshwater blue space and population health: an emerging research agenda. Sci Total Environ. 2020;737:140196.
  • Wright RO. Environment, susceptibility windows, development, and child health. Curr Opin Pediatr. 2017;29(2):211–217.
  • Barouki R, Gluckman PD, Grandjean P, et al. Developmental origins of non-communicable disease: implications for research and public health. Environ Health. 2012;11(1):42.
  • Hu CY, Yang XJ, Gui SY, et al. Residential greenness and birth outcomes: a systematic review and meta-analysis of observational studies. Environ Res. 2021;193:110599.
  • Nieuwenhuijsen MJ, Agier L, Basagana X, et al. Influence of the Urban Exposome on Birth Weight. Environ Health Perspect. 2019;127(4):47007.
  • Kingsley SL, Eliot MN, Whitsel EA, et al. Maternal residential proximity to major roadways, birth weight, and placental DNA methylation. Environ Int. 2016;92-93:43–49.
  • Akaraci S, Feng X, Suesse T, et al. A Systematic Review and Meta-Analysis of Associations between Green and Blue Spaces and Birth Outcomes. Int J Environ Res Public Health. 2020;17(8):2949.
  • Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–367.
  • Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.
  • Pelegi-Siso D, de Prado P, Ronkainen J, et al. methylclock: a Bioconductor package to estimate DNA methylation age. Bioinformatics. 2021;37(12):1759–1760.
  • Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371–384.
  • Bohlin J, Haberg SE, Magnus P, et al. Prediction of gestational age based on genome-wide differentially methylated regions. Genome Biol. 2016;17(1):207.
  • Knight AK, Craig JM, Theda C, et al. An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol. 2016;17(1):206.
  • Suarez A, Lahti J, Czamara D, et al. The Epigenetic Clock at Birth: associations With Maternal Antenatal Depression and Child Psychiatric Problems. J Am Acad Child Adolesc Psychiatry. 2018;57(5):321–8 e2.
  • Dieckmann L, Lahti-Pulkkinen M, Kvist T, et al. Characteristics of epigenetic aging across gestational and perinatal tissues. Clin Epigenetics. 2021;13(1):97.
  • Girchenko P, Lahti J, Czamara D, et al. Associations between maternal risk factors of adverse pregnancy and birth outcomes and the offspring epigenetic clock of gestational age at birth. Clin Epigenetics. 2017;9(1):49.
  • Khouja JN, Simpkin AJ, O’Keeffe LM, et al. Epigenetic gestational age acceleration: a prospective cohort study investigating associations with familial, sociodemographic and birth characteristics. Clin Epigenetics. 2018;10(1):86.
  • Chen L, Wagner CL, Dong Y, et al. Effects of Maternal Vitamin D3 Supplementation on Offspring Epigenetic Clock of Gestational Age at Birth: a Post-hoc Analysis of a Randomized Controlled Trial. Epigenetics. 2020;15(8):830–840.
  • Monasso GS, Kupers LK, Jaddoe VWV, et al. Associations of circulating folate, vitamin B12 and homocysteine concentrations in early pregnancy and cord blood with epigenetic gestational age: the Generation R Study. Clin Epigenetics. 2021;13(1):95.
  • Monasso GS, Voortman T, Felix JF. Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic gestational age at birth. Epigenetics. 2022 Nov;17(11):1562–1572.
  • de Prado-Bert P, Ruiz-Arenas C, Vives-Usano M, et al. The early-life exposome and epigenetic age acceleration in children. Environ Int. 2021;155:106683.
  • Kooijman MN, Kruithof CJ, van Duijn CM, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243–1264.
  • Jaddoe VWV, Felix JF, Andersen AN, et al. The LifeCycle Project-EU Child Cohort Network: a federated analysis infrastructure and harmonized data of more than 250,000 children and parents. Eur J Epidemiol. 2020;35(7):709–724.
  • European Environment Agency. Urban Atlas. Available from: https://www.eea.europa.eu/data-and-maps/data/urban-atlas.
  • Regional Office for Europe. Urban green spaces: a brief for action. Copenhagen, Denmark: WHO; 2017.
  • Lehne B, Drong AW, Loh M, et al. A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biol. 2015;16(1):37.
  • Gaillard R, Steegers EA, de Jongste JC, et al. Tracking of fetal growth characteristics during different trimesters and the risks of adverse birth outcomes. Int J Epidemiol. 2014;43(4):1140–1153.
  • National Institute for Public Health and the Environment. Sociaaleconomisce status. 2002 [cited 2021 Dec 23]. Available from: https://www.volksgezondheidenzorg.info/onderwerp/sociaaleconomische-status/regionaal-internationaal/regionaal#!node-sociaaleconomische-status.
  • Gervin K, Salas LA, Bakulski KM, et al. Systematic evaluation and validation of reference and library selection methods for deconvolution of cord blood DNA methylation data. Clin Epigenetics. 2019;11(1):125.
  • Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338(jun29 1):b2393.
  • Jeong A, Eze IC, Vienneau D, et al. Residential greenness-related DNA methylation changes. Environ Int. 2022;158:106945.
  • Xu R, Li S, Li S, et al. Residential surrounding greenness and DNA methylation: an epigenome-wide association study. Environ Int. 2021;154:106556.
  • Miri M, de Prado-Bert P, Alahabadi A, et al. Association of greenspace exposure with telomere length in preschool children. Environ Pollut. 2020;266(Pt 1):115228.
  • Joubert BR, Felix JF, Yousefi P, et al. DNA Methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98(4):680–696.
  • Holland I, DeVille NV, Browning M, et al. Measuring nature contact: a narrative review. Int J Environ Res Public Health. 2021;18(8):4092.
  • Nichani V, Dirks K, Burns B, et al. Green space and pregnancy outcomes: evidence from Growing Up in New Zealand. Health Place. 2017;46:21–28.