1,888
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Analysis of global DNA methylation and epigenetic modifiers (DNMTs and HDACs) in human foetal endothelium exposed to gestational and type 2 diabetes

&
Article: 2201714 | Received 16 Nov 2022, Accepted 07 Apr 2023, Published online: 17 Apr 2023

References

  • American Diabetes, Association. Standards of medical care in diabetes. Diabetes Care. 2014;37(Supplement 1):S14–9. doi: 10.2337/dc14-S014.
  • Robert A, Asirvatham MAAD, Braham R, et al. Type 2 diabetes mellitus in Saudi Arabia: major challenges and possible solutions. Curr Diabetes Rev. 2017;13(1):59–64.
  • Al-Rubeaan K, Al-Manaa HA, Khoja TA, et al. A community-based survey for different abnormal glucose metabolism among pregnant women in a random household study (Saudi-Dm). BMJ Open. 2014;4(8):e005906.
  • Wahabi H, Fayed A, Esmaeil S, et al. Prevalence and complications of pregestational and gestational diabetes in Saudi Women: analysis from Riyadh mother and baby cohort study (rahma). BioMed Res Int. 2017;2017:6878263.
  • Carpenter MW. Gestational diabetes, pregnancy hypertension, and late vascular disease. Diabetes Care. 2007;30(2):S246–50.
  • Dabelea D, Knowler WC, Pettitt DJ. Effect of diabetes in pregnancy on offspring: follow-up research in the pima Indians. J Matern-Fetal Neonatal Med. 2000;9(1):83–88.
  • Franks PW, Hanson RL, Knowler WC, et al. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362(6):485–493.
  • Clausen TD, Mathiesen ER, Hansen T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care. 2008;31(2):340–346.
  • Shiau S, Wang L, Liu H, et al. PrenataL gestational diabetes mellitus exposure and accelerated offspring DNA methylation age in early childhood. Epigenetics. 2021;16(2):186–195.
  • Dalfrà MG, Burlina S, Giovanna Del Vescovo G, et al. Genetics and epigenetics: new insight on gestational diabetes mellitus. Front Endocrinol. 2020;11:602477.
  • El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205(10):2409.
  • Brasacchio D, Okabe J, Tikellis C, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes. 2009;58(5):1229–1236.
  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.
  • Reddy MA, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res. 2011;90(3):cvr024.
  • Martin-Nunez M, Rubio-Martín ERM, Cabrera-Mulero R, et al. Type 2 diabetes mellitus in relation to global line-1 DNA methylation in peripheral blood: a cohort study. Epigenetics. 2014;9(10):1322–1328.
  • Hong X, Wu Z, Cao W, et al. Longitudinal association of DNA methylation with type 2 diabetes and glycemic traits: a 5-year cross-lagged twin study. Diabetes. 2022;71(12):2804–2817.
  • Napoli C, Benincasa G, Schiano C, et al. Differential epigenetic factors in the prediction of cardiovascular risk in diabetic patients. Eur Heart J Cardiovasc Pharmacother. 2020;6(4):239–247.
  • Benincasa G, Franzese M, Schiano C, et al. DNA methylation profiling of Cd04(+)/Cd08(+) T cells reveals pathogenic mechanisms in increasing hyperglycemia: piramide pilot study. Ann Med Surg (Lond). 2020;60:218–226.
  • Prattichizzo F, Giuliani A, Ceka A, et al. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin Epigenetics. 2015;7(1):1–12.
  • Jiang YZ, Manduchi E, Stoeckert CJ, et al. Arterial endothelial methylome: differential DNA methylation in athero-susceptible disturbed flow regions in vivo. BMC Genomics. 2015;16(1):1–15.
  • Kuroda A, Rauch TA, Todorov I, et al. Insulin gene expression is regulated by DNA methylation. PLoS ONE. 2009;4(9):e6953.
  • Reichetzeder C, Putra SD, Pfab T, et al. Increased global placental DNA methylation levels are associated with gestational diabetes. Clin Epigenetics. 2016;8(1):82.
  • Zhu W, Shen Y, Liu J, et al. Epigenetic alternations of microRNAs and DNA methylation contribute to gestational diabetes mellitus. J Cell Mol Med. 2020;24(23):13899–13912.
  • Martín-Núñez M, Gracia ERM, Cabrera-Mulero R, et al. Type 2 diabetes mellitus in relation to global line-1 DNA methylation in peripheral blood: a cohort study. Epigenetics. 2014;9(10):1322–1328.
  • Handelsman Y, Mechanick J, Blonde L, et al. American association of clinical endocrinologists medical guidelines for clinical practice for developing a diabetes mellitus comprehensive care plan. Endocr Pract. 2011;17(2):287–302.
  • Weinert LS. International Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy: comment to the International Association of Diabetes and Pregnancy Study Groups Consensus Panel. Diabetes Care. 2010;33(7):e97–e.
  • Eccles KA, Sowden H, Porter KE, et al. Simvastatin alters human endothelial cell adhesion molecule expression and inhibits leukocyte adhesion under flow. Atherosclerosis. 2008;200(1):69–79.
  • Sultan S. Aberrant expression of proatherogenic cytokines and growth factors in human umbilical vein endothelial cells from newborns of type 2 diabetic women. SAGE Open Med. 2021;9:20503121211026832.
  • Pfaffl MW. Relative expression software tool (Rest(c)) for group-wise comparison and statistical analysis of relative expression results in real-time Pcr. Nucleic Acids Res. 2002;30(9):36e.
  • Peng HY, Hua-Ping L, Ming-Qing L. High glucose induces dysfunction of human umbilical vein endothelial cells by upregulating Mir-137 in gestational diabetes mellitus. Microvascular Res. 2018;118:118.
  • Blue EK, DiGiuseppe R, Derr-Yellin E, et al. Gestational diabetes induces alterations in the function of neonatal endothelial colony-forming cells. Pediat Res. 2014;75(2):266–272.
  • Ambra R, Manca S, Palumbo MC, et al. Transcriptome analysis of human primary endothelial cells (HUVEC) from umbilical cords of gestational diabetic mothers reveals candidate sites for an epigenetic modulation of specific gene expression. Genomics. 2014;103(5–6):337–348.
  • Sommese L, Zullo A, Paolo Mancini F, et al. Clinical relevance of epigenetics in the onset and management of type 2 diabetes mellitus. Epigenetics. 2017;12(6):401–415.
  • Perrone L, Matrone C, Singh LP. Epigenetic modifications and potential new treatment targets in diabetic retinopathy. J Ophthalmol. 2014;2014:1–10.
  • Gautier JF, Porcher R, Abi Khalil C, et al. Kidney dysfunction in adult offspring exposed in utero to type 1 diabetes is associated with alterations in genome-wide DNA methylation. PLoS ONE. 2015;10(8):e0134654.
  • Alam F, Islam A, Hua Gan S, et al. DNA methylation: an epigenetic insight into type 2 diabetes mellitus. Curr Pharm Des. 2016;22(28):4398–4419.
  • Simmons RA. Programming of DNA methylation in type 2 diabetes. Diabetologia. 2013;56(5):947–948.
  • Nilsson E, Anders Jansson P, Perfilyev A, et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. 2014;63(9):2962–2976.
  • Maghbooli Z, Larijani B, Emamgholipour S, et al. Aberrant DNA methylation patterns in diabetic nephropathy. J Diabetes Metab Disord. 2014;13:1–8.
  • Chan Y, Fish JE, D’Abreo C, et al. The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J Biol Chem. 2004;279(33):35087–35100.
  • Chen ZX, Riggs AD. DNA methylation and demethylation in mammals. J Biol Chem. 2011;286(21):18347–18353.
  • Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–476.
  • Zhu Z, Chen X, Xiao Y, et al. GestationaL diabetes mellitus alters DNA methylation profiles in pancreas of the offspring mice. J Diabetes Complications. 2019;33(1):15–22.
  • Park JH, Stoffers DA, Nicholls RD, et al. Development Of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Investig. 2008;118(6):2316–2324.
  • Pepin ME, Schiano C, Miceli M, et al. The human aortic endothelium undergoes dose-dependent DNA methylation in response to transient hyperglycemia. Exp Cell Res. 2021;400(2):112485.
  • Howe CG, Cox B, Fore R, et al. Maternal gestational diabetes mellitus and newborn DNA methylation: findings from the pregnancy and childhood epigenetics consortium. Diabetes Care. 2020;43(1):98–105.
  • Smith SS, Kaplan BE, Sowers LC, et al. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. 1992;89(10):4744–4748.
  • Kar S, Deb M, Sengupta D, et al. An insight into the various regulatory mechanisms modulating human DNA methyltransferase 1 stability and function. Epigenetics. 2012;7(9):994–1007.
  • Liu Y, Tian X, Liu S, et al. DNA hypermethylation: a novel mechanism of creg gene suppression and atherosclerogenic endothelial dysfunction. Redox Biol. 2020;32:101444.
  • Mordwinkin NM, Ouzounian JG, Yedigarova L, et al. Alteration oF endothelial function markers in women with gestational diabetes and their fetuses. J Matern-Fetal Neonatal Med. 2013;26(5):507–512.
  • Sultan SA, Liu W, Peng Y, et al. The role of maternal gestational diabetes in inducing fetal endothelial dysfunction. J Cell Physiol. 2015;230(11):2695–2705.
  • Sultan S. The effect of maternal type 2 diabetes on fetal endothelial gene expression and function. Acta Diabetol. 2018;56(1):1–13.
  • Pinzón-Cortés JA, Perna-Chaux A, Steven Rojas-Villamizar N, et al. Effect of diabetes status and hyperglycemia on global DNA methylation and hydroxymethylation. Endocr Connect. 2017;6(8):708–725.
  • Vertino PM, Yen RW, Gao J, et al. De Novo methylation of cpg island sequences in human fibroblasts overexpressing DNA (Cytosine-5-)-methyltransferase. Mol Cell Biol. 1996;16(8):4555–4565.
  • Khalil H, Tazi M, Caution K, et al. Aging is associated with hypermethylation of autophagy genes in macrophages. Epigenetics. 2016;11(5):381–388.
  • Lagger G, O’Carroll D, Rembold M, et al. Essential function of histone deacetylase 1 in proliferation control and cdk inhibitor repression. Embo J. 2002;21(11):2672–2681.
  • Hyndman KA, Ho DH, Sega MF, et al. Histone deacetylase 1 reduces no production in endothelial cells via lysine deacetylation of no synthase 3. Am J Physiol Heart Circ Physiol. 2014;307(5):H803–9.
  • Thakur V, Alcoreza N, Cazares J, et al. Changes in stress-mediated markers in a human cardiomyocyte cell line under hyperglycemia. Int J Mol Sci. 2021;22(19). DOI:10.3390/ijms221910802
  • Studies ECFIG. A genomewide scan for type 1–diabetes susceptibility in Scandinavian families: identification of new loci with evidence of interactions. Am J Hum Genet. 2001;69(6):1301–1313.
  • Xiang K, Wang Y, Zheng T, et al. Genome-wide search for type 2 diabetes/impaired glucose homeostasis susceptibility genes in the Chinese: significant linkage to chromosome 6q21-Q23 and chromosome 1q21-Q24. Diabetes. 2004;53(1):228–234.
  • Yoon S, Hyeon Eom G. HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med J. 2016;52(1):1.
  • Hou Q, Hu K, Liu X, et al. HADC regulates the diabetic vascular endothelial dysfunction by targetting MnSOD. Biosci Rep. 2018;38(5). DOI:10.1042/BSR20181042
  • Reddy MA, Tak Park J, Natarajan R. Epigenetic modifications in the pathogenesis of diabetic nephropathy. Semin Nephrol. 2013;33(4):341–353.
  • Yan W, Strawn E, Basir Z, et al. Aberrant expression of deoxyribonucleic acid methyltransferases Dnmt1, Dnmt3a, and Dnmt3b in women with endometriosis. Fertil Sterility. 2007;87(1):24–32.