3,244
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

DNA methylation at birth and fine motor ability in childhood: an epigenome-wide association study with replication

, , , , , , , , , , , & show all
Article: 2207253 | Received 28 Oct 2022, Accepted 19 Apr 2023, Published online: 04 May 2023

References

  • Seo SM. The effect of fine motor skills on handwriting legibility in preschool age children. J Phys Ther Sci. 2018;30(2):324–13.
  • Emck C, Bosscher R, Beek P, et al. Gross motor performance and self-perceived motor competence in children with emotional, behavioural, and pervasive developmental disorders: a review. Dev Med Child Neurol. 2009;51(7):501–517.
  • Martin R, Tigera C, Denckla MB, et al. Factor structure of paediatric timed motor examination and its relationship with IQ. Dev Med Child Neurol. 2010;52(8):e188–194.
  • Alamiri B, Nelson C, Fitzmaurice GM, et al. Neurological soft signs and cognitive performance in early childhood. Dev Psychol. 2018;54(11):2043–2052.
  • Piek JP, Dawson L, Smith LM, et al. The role of early fine and gross motor development on later motor and cognitive ability. Hum Mov Sci. 2008;27(5):668–681.
  • Bloch MH, Sukhodolsky DG, Dombrowski PA, et al. Poor fine-motor and visuospatial skills predict persistence of pediatric-onset obsessive-compulsive disorder into adulthood. J Child Psychol Psychiatr. 2011;52(9):974–983. DOI:10.1111/j.1469-7610.2010.02366.x
  • Piaget J. The development of time concepts in the child. Proc Annu Meet Am Psychopathol Assoc. 1954-1955;34–44. discussion, 45-55.
  • Mohring W, Frick A. Touching up mental rotation: effects of manual experience on 6-month-old infants’ mental object rotation. Child Dev. 2013;84(5):1554–1565.
  • Hubel KA, Yund EW, Herron TJ, et al. Computerized measures of finger tapping: reliability, malingering and traumatic brain injury. J Clin Exp Neuropsychol. 2013;35(7):745–758.
  • Rabin LA, Barr WB, Burton LA. Assessment practices of clinical neuropsychologists in the United States and Canada: a survey of INS, NAN, and APA Division 40 members. Arch Clin Neuropsychol. 2005;20(1):33–65.
  • Damme KSF, Schiffman J, Ellman LM, et al. Sensorimotor and activity psychosis-risk (SMAP-R) scale: an exploration of scale structure with replication and validation. Schizophr Bull. 2021;47(2):332–343.
  • Behere A, Shahani L, Noggle CA, et al. Motor functioning in autistic spectrum disorders: a preliminary analysis. J Neuropsychiatry Clin Neurosci. 2012;24(1):87–94.
  • Mostofsky SH, Rimrodt SL, Schafer JGB, et al. Atypical motor and sensory cortex activation in attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study of simple sequential finger tapping. Biological Psychiatry. 2006;59(1):48–56. DOI:10.1016/j.biopsych.2005.06.011
  • Valera EM, Spencer RMC, Zeffiro TA, et al. Neural substrates of impaired sensorimotor timing in adult attention-deficit/hyperactivity disorder. Biological Psychiatry. 2010;68(4):359–367. DOI:10.1016/j.biopsych.2010.05.012
  • Travers BG, Bigler ED, Duffield TC, et al. Longitudinal development of manual motor ability in autism spectrum disorder from childhood to mid-adulthood relates to adaptive daily living skills. Dev Sci. 2017;20(4):e12401. DOI:10.1111/desc.12401
  • Liou WC, Chan L, Hong CT, et al. Hand fine motor skill disability correlates with dementia severity. Arch Gerontol Geriatr. 2020;90:104168.
  • Plomin R, Haworth CMA, Davis OSP. Common disorders are quantitative traits. Nat Rev Genet. 2009;10(12):872–878.
  • Lundström S, Chang Z, Råstam M, et al. Autism spectrum disorders and autisticlike traits: similar etiology in the extreme end and the normal variation. Arch Gen Psychiat. 2012;69(1):46–52. DOI:10.1001/archgenpsychiatry.2011.144
  • Larsson H, Anckarsater H, Råstam M, et al. Childhood attention‐deficit hyperactivity disorder as an extreme of a continuous trait: a quantitative genetic study of 8,500 twin pairs. J Child Psychol Psyc. 2012;53(1):73–80.
  • Bernard JA, Mittal VA. Updating the research domain criteria: the utility of a motor dimension. Psychol Med. 2015;45(13):2685–2689.
  • Mittal VA, Wakschlag LS. Research domain criteria (RDoC) grows up: strengthening neurodevelopment investigation within the RDoC framework. J Affect Disord. 2017;216:30–35.
  • Francks C, Fisher SE, Marlow AJ, et al. Familial and genetic effects on motor coordination, laterality, and reading-related cognition. Am J Psychiatry. 2003;160(11):1970–1977. DOI:10.1176/appi.ajp.160.11.1970
  • Williams LRT, Gross JB. Heritability of motor skill. Acta geneticae medicae et gemellologiae: twin research. 1980;29(2):127–136.
  • Mountford HS, Hill A, Barnett AL, et al. Genome-wide association study of motor coordination. Front Hum Neurosci. 2021;15:669902.
  • Doney R, Lucas BR, Jones T, et al. Fine motor skills in children with prenatal alcohol exposure or fetal alcohol spectrum disorder. J Dev Behav Pediatr. 2014;35(9):598–609.
  • Darling AL, Rayman MP, Steer CD, et al. Association between maternal vitamin D status in pregnancy and neurodevelopmental outcomes in childhood: results from the avon longitudinal study of parents and children (ALSPAC). Br J Nutr. 2017;117(12):1682–1692.
  • Crous-Bou M, Gascon M, Gispert JD, et al. Impact of urban environmental exposures on cognitive performance and brain structure of healthy individuals at risk for Alzheimer’s dementia. Environ Int. 2020;138:105546.
  • Trasti N, Vik T, Jacobsen G, et al. Smoking in pregnancy and children’s mental and motor development at age 1 and 5 years. Early Hum Dev. 1999;55(2):137–147.
  • Golding J, Emmett P, Iles-Caven Y, et al. A review of environmental contributions to childhood motor skills. J Child Neurol. 2014;29(11):1531–1547.
  • Sammallahti S, Tiemeier H, Louwen S, et al. Fetal–placental blood flow and neurodevelopment in childhood: population‐based neuroimaging study. Ultrasound Obstet Gynecol. 2021;58(2):245–253. DOI:10.1002/uog.22185
  • Barker ED, Walton E, Cecil CAM. AnnuaL research review: DNA methylation as a mediator in the association between risk exposure and child and adolescent psychopathology. J Child Psychol Psychiatry. 2018;59(4):303–322.
  • Martin EM, Fry RC. Environmental Influences on the Epigenome: Exposure- Associated DNA methylation in human populations. Annu Rev Public Health. 2018;39(1):309–333.
  • Neumann A, Walton E, Alemany S, et al. Association between DNA methylation and ADHD symptoms from birth to school age: a prospective meta-analysis. Transl Psychiatry. 2020;10(1):398. DOI:10.1038/s41398-020-01058-z
  • Rijlaarsdam J, Cecil CAM, Relton CL, et al. Epigenetic profiling of social communication trajectories and co-occurring mental health problems: a prospective, methylome-wide association study. Dev Psychopathol. 2022;34(3):1–10.
  • Bromer C, Marsit CJ, Armstrong DA, et al. Genetic and epigenetic variation of the glucocorticoid receptor (NR3C1) in placenta and infant neurobehavior. Dev Psychobiol. 2013;55(7):673–683.
  • Marsit CJ, Maccani MA, Padbury JF, et al. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PloS one. 2012;7(3):e33794. doi:10.1371/journal.pone.0033794.
  • Rygiel CA, Dolinoy DC, Bakulski KM, et al. DNA methylation at birth potentially mediates the association between prenatal lead (Pb) exposure and infant neurodevelopmental outcomes. Environ Epigenet. 2021;7(1):dvab005. DOI:10.1093/eep/dvab005
  • Hüls A, Wedderburn CJ, Groenewold NA, et al. Newborn differential DNA methylation and subcortical brain volumes as early signs of severe neurodevelopmental delay in a South African birth cohort study. World J Biol Psychiatry. 2022;2022(8):1–12. DOI:10.1080/15622975.2021.2016955
  • Roebers CM, Röthlisberger M, Neuenschwander R, et al. The relation between cognitive and motor performance and their relevance for children’s transition to school: a latent variable approach. Hum Mov Sci. 2014;33:284–297.
  • Suggate S, Stoeger H. Fine motor skills enhance lexical processing of embodied vocabulary: a test of the nimble-hands, nimble-minds hypothesis. Q J Exp Psychol. 2017;70(10):2169–2187.
  • Kooijman MN, Kruithof CJ, van Duijn CM, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243–1264. DOI:10.1007/s10654-016-0224-9
  • Guxens M, Ballester F, Espada M, et al. Cohort Profile: the INMA–INfancia y Medio Ambiente–(Environment and Childhood) Project. Int J Epidemiol. 2012;41(4):930–940. DOI:10.1093/ije/dyr054
  • Lehne B, Drong AW, Loh M, et al. A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Bio. 2015;16(1):1–12. DOI:10.1186/s13059-015-0600-x
  • Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–1369. DOI:10.1093/bioinformatics/btu049
  • White T, Muetzel RL, El Marroun H, et al. Paediatric population neuroimaging and the Generation R Study: the second wave. Eur J Epidemiol. 2018;33(1):99–125. DOI:10.1007/s10654-017-0319-y
  • Lopez-Vicente M, Lamballais S, Louwen S, et al. White matter microstructure correlates of age, sex, handedness and motor ability in a population-based sample of 3031 school-age children. Neuroimage. 2021;227:117643.
  • Lezak MD. Neuropsychological assessment, 3rd ed. New York, NY, US: Oxford University Press; 1995.
  • Kaufman AS, Raiford SE, Coalson DL. Intelligent testing with the WISC-V. New Jersey: John Wiley & Sons; 2015.
  • Gervin K, Salas LA, Bakulski KM, et al. Systematic evaluation and validation of reference and library selection methods for deconvolution of cord blood DNA methylation data. Clin Epigenetics. 2019;11(1).
  • Min JL, Hemani G, Davey Smith G, et al. Meffil: efficient normalization and analysis of very large DNA methylation datasets. Bioinformatics. 2018;34(23):3983–3989.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B (Methodological). 1995;57(1):289–300.
  • Bonham LW, Evans DS, Liu Y, et al. Neurotransmitter pathway genes in cognitive decline during aging: evidence for GNG4 and KCNQ2 Genes. Am J Alzheimers Dis Other Demen. 2018;33(3):153–165.
  • Anney RJL, Ripke S, Anttila V, et al. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism. 2017;8(1):21.
  • Peyrot WJ, Price AL. Identifying loci with different allele frequencies among cases of eight psychiatric disorders using CC-GWAS. Nature Genet. 2021;53(4):445–454.
  • Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1091–1102. DOI:10.1016/S1474-4422(19)30320-5
  • Wendt FR, Pathak GA, Lencz T, et al. Multivariate genome-wide analysis of education, socioeconomic status and brain phenome. Nat Human Behav. 2021;5(4):482–496.
  • Yoo SW, Motari MG, Susuki K, et al. Sialylation regulates brain structure and function. Faseb J. 2015;29(7):3040–3053. DOI:10.1096/fj.15-270983
  • Hannon E, Knox O, Sugden K, et al. Characterizing genetic and environmental influences on variable DNA methylation using monozygotic and dizygotic twins. PLoS Genet. 2018;14(8):e1007544. DOI:10.1371/journal.pgen.1007544
  • Rijlaarsdam J, Pappa I, Walton E, et al. An epigenome-wide association meta-analysis of prenatal maternal stress in neonates: a model approach for replication. Epigenetics. 2016;11(2):140–149. DOI:10.1080/15592294.2016.1145329
  • Park YH, Hodges A, Risacher SL, et al. Dysregulated Fc gamma receptor-mediated phagocytosis pathway in Alzheimer’s disease: network-based gene expression analysis. Neurobiol Aging. 2020;88:24–32.
  • Sturgill ER, Aoki K, Lopez PH, et al. Biosynthesis of the major brain gangliosides GD1a and GT1b. Glycobiology. 2012;22(10):1289–1301. DOI:10.1093/glycob/cws103
  • Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56.
  • Casey BJ, Tottenham N, Liston C, et al. Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci. 2005;9(3):104–110.
  • Corley J, Cox SR, Harris SE, et al. Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian Birth Cohort 1936. Transl Psychiatry. 2019;9(1):248. DOI:10.1038/s41398-019-0576-5
  • Yang Y, Yamada T, Hill KK, et al. Chromatin remodeling inactivates activity genes and regulates neural coding. Science. 2016;353(6296):300–305. DOI:10.1126/science.aad4225