1,279
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The role of DNA methylation on gene expression in the vertebrae of ancestrally benzo[a]pyrene exposed F1 and F3 male medaka

, , , , , & show all
Article: 2222246 | Received 16 Jan 2023, Accepted 01 Jun 2023, Published online: 15 Jun 2023

References

  • Reynaud S, Deschaux P. The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review. Aquatic Toxicol. 2006;77(2):229–26. doi: 10.1016/j.aquatox.2005.10.018
  • Abdel-Shafy HI, Mansour MS. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet. 2016;25(1):107–123. doi: 10.1016/j.ejpe.2015.03.011
  • Chepelev NL, Moffat ID, Bowers WJ, et al. Neurotoxicity may be an overlooked consequence of benzo [a] pyrene exposure that is relevant to human health risk assessment. Mutat Res/Rev Mutat Res. 2015;764:64–89.
  • Madeen EP, Williams DE. Environmental PAH exposure and male idiopathic infertility: a review on early life exposures and adult diagnosis. Rev Environ Health. 2017;32(1–2):73–81. doi: 10.1515/reveh-2016-0045
  • Au DWT. The application of histo-cytopathological biomarkers in marine pollution monitoring: a review. Mar Pollut Bull. 2004;48(9–10):817–834. doi: 10.1016/j.marpolbul.2004.02.032
  • Corrales J, Thornton C, White M, et al. Multigenerational effects of benzo [a] pyrene exposure on survival and developmental deformities in zebrafish larvae. Aquatic Toxicol. 2014;148:16–26.
  • Zhao Y, Luo K, Fan Z, et al. Modulation of benzo [a] pyrene-induced toxic effects in Japanese medaka (Oryzias latipes) by 2, 2′, 4, 4′-tetrabromodiphenyl ether. Environ Sci Technol. 2013;47(22):13068–13076.
  • Jiezhang M, Au DW, Wan MT, et al. Multigenerational impacts of benzo [a] pyrene on bone modeling and remodeling in medaka (Oryzias latipes). Environ Sci Technol. 2020;54(19):12271–12284.
  • Mo Jiezhang, Wan MT, Au DW, et al. Transgenerational bone toxicity in F3 medaka (Oryzias latipes) induced by ancestral benzo [a] pyrene exposure: cellular and transcriptomic insights. J Environ Sci. 2023;127:336–348.
  • Seemann F, Jeong CB, Zhang G, et al. Ancestral benzo [a] pyrene exposure affects bone integrity in F3 adult fish (Oryzias latipes). Aquatic Toxicol. 2017;183:127–134. doi: 10.1016/j.aquatox.2016.12.018
  • Seemann F, Peterson DR, Witten PE, et al. Insight into the transgenerational effect of benzo [a] pyrene on bone formation in a teleost fish (Oryzias latipes). Comparative Biochemistry And Physiology Part C: Toxicology & Pharmacology. 2015;178:60–67. doi: 10.1016/j.cbpc.2015.10.001
  • Ho DH, Burggren WW. Epigenetics and transgenerational transfer: a physiological perspective. J Exp Biol. 2010;213(1):3–16. doi: 10.1242/jeb.019752
  • SKInner MK. What is an epigenetic transgenerational phenotype?: f3 or F2. Reprod Toxicol. 2008;25(1):2–6. doi: 10.1016/j.reprotox.2007.09.001
  • Fang X, Corrales J, Thornton C, et al. Global and gene specific DNA methylation changes during zebrafish development. Comp Biochem Physiol Part B Biochem Mol Biol. 2013;166(1):99–108. doi: 10.1016/j.cbpb.2013.07.007
  • Knecht AL, Truong L, Marvel SW, et al. Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to benzo [a] pyrene in zebrafish. Toxicol Appl Pharmacol. 2017;329:148–157.
  • Wan, T., Au, D.W.T., Mo, J., Chen, L., Cheung, K.M., Kong, R.Y.C. and Seemann, F. Assessment of parental benzo [a] pyrene exposure-induced cross-generational neurotoxicity and changes in offspring sperm DNA methylome in medaka fish. Environmental Epigenetics; 2022
  • Bioinformatics, Babraham. FastQC: a quality control tool for high throughput sequence data. Cambridge (UK): Babraham Institute; 2011
  • Felix K, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–1572. doi: 10.1093/bioinformatics/btr167
  • Team, R.C. R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna (Austria); 2013. Available from: http://www.R-project.org/.
  • Hao W, Xu T, Feng H, et al. Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res. 2015;43(21):e141–e141. doi: 10.1093/nar/gkv715
  • Yang J-X, Xie P, Li Y-S, et al. Osteoclast-derived miR-23a-5p-containing exosomes inhibit osteogenic differentiation by regulating Runx2. Cell Signal. 2020;70:109504. doi: 10.1016/j.cellsig.2019.109504
  • Singer BD. A practical guide to the measurement and analysis of DNA methylation. Am J Respir Cell Mol Biol. 2019;61(4):417–428. doi: 10.1165/rcmb.2019-0150TR
  • Chen M, Ruan R, Zhong X, et al. Comprehensive analysis of genome‐wide DNA methylation and transcriptomics between ovary and testis in Monopterus albus. Aquacult Res. 2021;52(11):5829–5839. doi: 10.1111/are.15457
  • Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1–10. doi: 10.1038/s41467-019-09234-6
  • Kim D, Paggi JM, Park C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnol. 2019;37(8):907–915. doi: 10.1038/s41587-019-0201-4
  • Yang L, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41(10):e108–e108. doi: 10.1093/nar/gkt214
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Bio. 2014;15(12):1–21. doi: 10.1186/s13059-014-0550-8
  • Kong RYC, Giesy JP, Wu RSS, et al. Development of a marine fish model for studying in vivo molecular responses in ecotoxicology. Aquatic Toxicol. 2008;86(2):131–141. doi: 10.1016/j.aquatox.2007.10.011
  • Shanthanagouda AH, Guo B-S, Ye RR, et al. Japanese medaka: a non-mammalian vertebrate model for studying sex and age-related bone metabolism in vivo. PLoS ONE. 2014;9(2):e88165. doi: 10.1371/journal.pone.0088165
  • Qu W, Hashimoto S-I, Shimada A, et al. Genome-wide genetic variations are highly correlated with proximal DNA methylation patterns. Genome Res. 2012;22(8):1419–1425. doi: 10.1101/gr.140236.112
  • Chen G, Deng C, Yi-Ping L. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272. doi: 10.7150/ijbs.2929
  • Thielen NG, van der Kraan PM, van Caam AP. TGFβ/BMP signaling pathway in cartilage homeostasis. Cells. 2019;8(9):969. doi: 10.3390/cells8090969
  • Yoon BS, Ovchinnikov DA, Yoshii I, et al. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci, USA. 2005;102(14):5062–5067. doi: 10.1073/pnas.0500031102
  • Moustakas A, Heldin C-H. The regulation of TGFβ signal transduction. Development. 2009;136(22):3699–3714. doi: 10.1242/dev.030338
  • Zhou S, Eid K, Glowacki J. Cooperation between TGF‐β and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Mineral Res. 2004;19(3):463–470. doi: 10.1359/JBMR.0301239
  • Zhou S. TGF‐β regulates β‐catenin signaling and osteoblast differentiation in human mesenchymal stem cells. J Cell Biochem. 2011;112(6):1651–1660. doi: 10.1002/jcb.23079
  • Kamiya N, Kobayashi T, Mochida Y, et al. Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J Bone Mineral Res. 2010;25(2):200–210. doi: 10.1359/jbmr.090806
  • Tezuka K, Yasuda M, Watanabe N, et al. Stimulation of osteoblastic cell differentiation by Notch. J Bone Mineral Res. 2002;17(2):231–239. doi: 10.1359/jbmr.2002.17.2.231
  • De Jong DS, Steegenga WT, Hendriks JMA, et al. Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells. Biochem Biophys Res Commun. 2004;320(1):100–107. doi: 10.1016/j.bbrc.2004.05.150
  • Hozumi K. Distinctive properties of the interactions between Notch and Notch ligands. Deve Growth Differ. 2020;62(1):49–58. doi: 10.1111/dgd.12641
  • Youngstrom DW, Dishowitz MI, Bales CB, et al. Jagged1 expression by osteoblast-lineage cells regulates trabecular bone mass and periosteal expansion in mice. Bone. 2016;91:64–74. doi: 10.1016/j.bone.2016.07.006
  • Chengyong H, Wang C, Zhou Y, et al. Embryonic exposure to benzo (a) pyrene influences neural development and function in rockfish (Sebastiscus marmoratus). Neurotoxicology. 2012;33(4):758–762. doi: 10.1016/j.neuro.2012.01.002
  • Goedtke L, John A, Lampen A, et al. Mixture effects of food-relevant polycyclic aromatic hydrocarbons on the activation of nuclear receptors and gene expression, benzo [a] pyrene metabolite profile and DNA damage in HepaRG cells. Food Chem Toxicol. 2021;147:111884.
  • Luckert C, Ehlers A, Buhrke T, et al. Polycyclic aromatic hydrocarbons stimulate human CYP3A4 promoter activity via PXR. Toxicol Lett. 2013;222(2):180–188. doi: 10.1016/j.toxlet.2013.06.243
  • Mackowiak B, Wang H. Mechanisms of xenobiotic receptor activation: direct vs. indirect. Biochimica Et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2016;1859(9):1130–1140. doi: 10.1016/j.bbagrm.2016.02.006
  • Olsvik PA, Hansen BH, Nordtug T, et al. Transcriptional evidence for low contribution of oil droplets to acute toxicity from dispersed oil in first feeding Atlantic cod (Gadus morhua) larvae. Comp Biochem Physiol Part C Toxicol Pharmacol. 2011;154(4):333–345. doi: 10.1016/j.cbpc.2011.07.002
  • Torvanger I, Metz JR, Olsvik PA, et al. Benzo (a) pyrene reduces osteoclast and osteoblast activity in ex‐vivo scales of zebrafish (Danio rerio [Hamilton‐Buchanan, 1822]) and goldfish (Carassius auratus [Linnaeus, 1758]). J Appl Ichthyol. 2018;34(2):431–439.
  • Eide M, Zhang X, Karlsen OA, et al. The chemical defensome of five model teleost fish. Sci Rep. 2021;11(1):1–13. doi: 10.1038/s41598-021-89948-0
  • Fang X, Corrales J, Thornton C, et al. Transcriptomic changes in zebrafish embryos and larvae following benzo [a] pyrene exposure. Toxicol Sci. 2015;146(2):395–411. doi: 10.1093/toxsci/kfv105
  • Jang WG, Kim EJ, Lee K-N, et al. AMP-activated protein kinase (AMPK) positively regulates osteoblast differentiation via induction of Dlx5-dependent Runx2 expression in MC3T3E1 cells. Biochem Biophys Res Commun. 2011;404(4):1004–1009. doi: 10.1016/j.bbrc.2010.12.099
  • Kanazawa I, Yamaguchi T, Yano S, et al. Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression. Am J Physiol Endocrinol Metab. 2009;296(1):E139–E146. doi: 10.1152/ajpendo.90677.2008
  • Zayzafoon M. Calcium/Calmodulin signaling controls osteoblast growth and differentiation. J Cell Biochem. 2006;97(1):56–70. doi: 10.1002/jcb.20675
  • Choi YH, Choi J-H, Oh J-W, et al. Calmodulin-dependent kinase II regulates osteoblast differentiation through regulation of Osterix. Biochem Biophys Res Commun. 2013;432(2):248–255. doi: 10.1016/j.bbrc.2013.02.005
  • Kai H, Olsen BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Investig. 2016;126(2):509–526. doi: 10.1172/JCI82585
  • Nawachi K, Inoue M, Kubota S, et al. Tyrosine kinase-type receptor ErbB4 in chondrocytes: interaction with connective tissue growth factor and distribution in cartilage. FEBS Lett. 2002;528(1–3):109–113. doi: 10.1016/S0014-5793(02)03263-5
  • Adamopoulos IE, Xia Z, Lau YS, et al. Hepatocyte growth factor can substitute for M-CSF to support osteoclastogenesis. Biochem Biophys Res Commun. 2006;350(2):478–483. doi: 10.1016/j.bbrc.2006.09.076
  • Greenblatt MB, Shim JH, Zou W, et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Investig. 2010;120(7):2457–2473. doi: 10.1172/JCI42285
  • Xin B-C, Wu QS, Jin S, et al. Berberine promotes osteogenic differentiation of human dental pulp stem cells through activating EGFR-MAPK-Runx2 pathways. Pathol Oncol Res. 2019;26(3):1–9. doi: 10.1007/s12253-019-00746-6
  • Hilton MJ, Tu X, Cook J, et al. Ihh controls cartilage development by antagonizing GLI3, but requires additional effectors to regulate osteoblast and vascular development. Development. 2005;132(19):4339–4351. doi: 10.1242/dev.02025
  • Li YD, Liu X, Li ZW, et al. A combination of genome-wide association study and selection signature analysis dissects the genetic architecture underlying bone traits in chickens. Animal. 2021;15(8):100322. doi: 10.1016/j.animal.2021.100322
  • Pérez-Casellas LA, Wang X, Howard KD, et al. Nuclear factor I transcription factors regulate IGF binding protein 5 gene transcription in human osteoblasts. Biochimica Et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2009;1789(2):78–87. doi: 10.1016/j.bbagrm.2008.08.013
  • Deheuninck J, Luo K. SKI and SnoN, potent negative regulators of TGF-β signaling. Cell Res. 2009;19(1):47–57. doi: 10.1038/cr.2008.324
  • Kluppel M, Wight TN, Chan C, et al. Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis. Development. 2005;132(17):3989–4003. doi: 10.1242/dev.01948
  • Al Dhaheri N, Wu N, Zhao S, et al. KIAA1217: a novel candidate gene associated with isolated and syndromic vertebral malformations. Am J Med Genet A. 2020;182(7):1664–1672. doi: 10.1002/ajmg.a.61607
  • Melville DB, Montero-Balaguer M, Levic DS, et al. The feelgood mutation in zebrafish dysregulates COPII-dependent secretion of select extracellular matrix proteins in skeletal morphogenesis. Dis Models Mech. 2011;4(6):763–776. doi: 10.1242/dmm.007625
  • Sargolzaeiaval F, Zhang J, Schleit J, et al. CTC 1 mutations in a Brazilian family with progeroid features and recurrent bone fractures. Mol Gene Genomic Med. 2018;6(6):1148–1156. doi: 10.1002/mgg3.495
  • Assis D, Warri A, Sonia A, et al. High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat Commun. 2012;3(1):1–9. doi: 10.1038/ncomms2058
  • Jing M, Chen X, Liu Y, et al. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: methylation status and DNMTs. Toxicol Appl Pharmacol. 2015;289(2):193–202. doi: 10.1016/j.taap.2015.09.024
  • Chinnadurai RK, Saravanaraman P, Boopathy R. The significance of aryl acylamidase activity of acetylcholinesterase in osteoblast differentiation and mineralization. Mol Cell Biochem. 2018;440(1):199–208. doi: 10.1007/s11010-017-3167-x
  • Dong S, Jie L, Zhang X. Tumor protein p53-induced nuclear protein 2 modulates osteogenic differentiation of human adipose derived stem/stromal cells by activating Wnt/β-catenin signaling. Am J Transl Res. 2020;12(10):6853.
  • Xu ML, Bi CWC, Liu EYL, et al. Wnt3a induces the expression of acetylcholinesterase during osteoblast differentiation via the Runx2 transcription factor. J Biol Chem. 2017;292(30):12667–12678. doi: 10.1074/jbc.M117.777581
  • Elsafadi M, Manikandan M, Alajez NM, et al. MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3. Stem Cell Res. 2017;20:94–104. doi: 10.1016/j.scr.2017.03.001
  • Chen WX, Liu HH, Li RX, et al. C-type natriuretic peptide stimulates osteoblastic proliferation and collagen-X expression but suppresses fibroblast growth factor-23 expression in vitro. Pediatr Rheumatol. 2020;18(1):1–11. doi: 10.1186/s12969-020-00441-w
  • Seitz S, Barvencik F, Gebauer M, et al. Preproenkephalin (Penk) is expressed in differentiated osteoblasts, and its deletion in Hyp mice partially rescues their bone mineralization defect. Calcif Tissue Int. 2010;86(4):282–293. doi: 10.1007/s00223-010-9344-5
  • Yanaka N, Imai Y, Kawai E, et al. Novel membrane protein containing glycerophosphodiester phosphodiesterase motif is transiently expressed during osteoblast differentiation. J Biol Chem. 2003;278(44):43595–43602. doi: 10.1074/jbc.M302867200
  • Negishi-Koga T, Shinohara M, Komatsu N, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nature Med. 2011;17(11):1473–1480. doi: 10.1038/nm.2489
  • Nguyen NM, de Oliveira Andrade F, Jin L, et al. Maternal intake of high n-6 polyunsaturated fatty acid diet during pregnancy causes transgenerational increase in mammary cancer risk in mice. Breast Cancer Res. 2017;19(1):1–13. doi: 10.1186/s13058-017-0866-x
  • Anastasiadi D, Shao C, Chen S, et al. Footprints of global change in marine life: inferring past environment based on DNA methylation and gene expression marks. Mol Ecol. 2021;30(3):747–760. doi: 10.1111/mec.15764
  • Metzger DC, Schulte PM. The DNA methylation landscape of stickleback reveals patterns of sex chromosome evolution and effects of environmental salinity. Genome Biol Evol. 2018;10(3):775–785. doi: 10.1093/gbe/evy034
  • Aluru N, Karchner SI, Krick KS, et al. Role of DNA methylation in altered gene expression patterns in adult zebrafish (Danio rerio) exposed to 3, 3’, 4, 4’, 5-pentachlorobiphenyl (PCB 126). Environ Epigenet. 2018;4(1):dvy005. doi: 10.1093/eep/dvy005
  • Bailey KA, Fry RC. Chapter four - environmental toxicant exposure and the epigenome. Adv Mol Toxicol. 2012;6:129–162.
  • Bekim S, Rodenhiser DI. Benzopyrene exposure disrupts DNA methylation and growth dynamics in breast cancer cells. Toxicol Appl Pharmacol. 2006;216(3):458–468. doi: 10.1016/j.taap.2006.06.012
  • Wilson VL, Jones PA. Chemical carcinogen-mediated decreases in DNA 5-methylcytosine content of BALB/3T3 cells. Carcinogenesis. 1984;5(8):1027–1031. doi: 10.1093/carcin/5.8.1027
  • Yoon JH, Smith LE, Feng Z, et al. Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo [a] pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers. Cancer Res. 2001;61(19):7110–7117.
  • Zhang W, Yang J, Lv Y, et al. Paternal benzo[a]pyrene exposure alters the sperm DNA methylation levels of imprinting genes in F0 generation mice and their unexposed F1-2 male offspring. Chemosphere. 2019;228:586–594.
  • Habano W, Miura T, Terashima J, et al. Aryl hydrocarbon receptor as a DNA methylation reader in the stress response pathway. Toxicology. 2022;470:153154. doi: 10.1016/j.tox.2022.153154
  • Abbott BD, Birnbaum LS, Perdew GH. Developmental expression of two members of a new class of transcription factors: i. Expression of aryl hydrocarbon receptor in the C57BL/6N mouse embryo. Dev Dyn. 1995;204(2):133–143. doi: 10.1002/aja.1002040204
  • Guyot E, Chevallier A, Barouki R, et al. The AhR twist: ligand-dependent AhR signaling and pharmaco-toxicological implications. Drug Discovery Today. 2013;18(9):479–486. doi: 10.1016/j.drudis.2012.11.014
  • Ouattara A, Cooke D, Gopalakrishnan R, et al. Methionine restriction alters bone morphology and affects osteoblast differentiation. Bone Rep. 2016;5:33–42. doi: 10.1016/j.bonr.2016.02.002
  • Duan C. Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol Cell Physiol. 2016;310(4):C260–C269. doi: 10.1152/ajpcell.00315.2015
  • Lee SY, Park KH, Yu HG, et al. Controlling hypoxia-inducible factor-2α is critical for maintaining bone homeostasis in mice. Bone Res. 2019;7(1):1–14. doi: 10.1038/s41413-019-0054-y
  • Merceron C, Ranganathan K, Wang E, et al. Hypoxia-inducible factor 2α is a negative regulator of osteoblastogenesis and bone mass accrual. Bone Res. 2019;7(1):1–14. doi: 10.1038/s41413-019-0045-z
  • Holland PW, Harper SJ, McVey JH, Hogan BL. In vivo expression of mRNA for the Ca++-binding protein SPARC (osteonectin) revealed by in situ hybridization. J Cell Bio. 1987;105(1):473–482.
  • Weivoda MM, Chew CK, Monroe DG, et al. Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nat Commun. 2020;11(1):1–13. doi: 10.1038/s41467-019-14003-6
  • Rosset EM, Bradshaw AD. SPARC/Osteonectin in mineralized tissue. Matrix Biol. 2016;52:78–87. doi: 10.1016/j.matbio.2016.02.001
  • Renn J, Schaedel M, Volff JN, et al. Dynamic expression of sparc precedes formation of skeletal elements in the Medaka (Oryzias latipes). Gene. 2006;372:208–218. doi: 10.1016/j.gene.2006.01.011
  • Delany AM, McMahon DJ, Powell JS, et al. Osteonectin/SPARC polymorphisms in Caucasian men with idiopathic osteoporosis. Osteoporosis Int. 2008;19(7):969–978. doi: 10.1007/s00198-007-0523-9
  • Wilson DG, Phamluong K, Lin WY, et al. Chondroitin sulfate synthase 1 (Chsy1) is required for bone development and digit patterning. Dev Biology. 2012;363(2):413–425. doi: 10.1016/j.ydbio.2012.01.005
  • Yang M, Li CJ, Sun X, et al. MiR-497∼ 195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nat Commun. 2017;8(1):1–11. doi: 10.1038/ncomms16003
  • Stemig M, Astelford K, Emery A, et al. Deletion of histone deacetylase 7 in osteoclasts decreases bone mass in mice by interactions with MITF. PLoS ONE. 2015;10(4):e0123843. doi: 10.1371/journal.pone.0123843
  • Barrio-Hernandez I, Jafari A, Rigbolt KT, et al. Phosphoproteomic profiling reveals a defined genetic program for osteoblastic lineage commitment of human bone marrow–derived stromal stem cells. Genome Res. 2020;30(1):127–137. doi: 10.1101/gr.248286.119
  • Jensen ED, Gopalakrishnan R, Westendorf JJ. Regulation of gene expression in osteoblasts. BioFactors. 2010;36(1):25–32. doi: 10.1002/biof.72
  • Guo J, Qin W, Xing Q, et al. TRIM33 is essential for osteoblast proliferation and differentiation via BMP pathway. J Cell Physiol. 2017;232(11):3158–3169. doi: 10.1002/jcp.25769
  • Kirschner G, Balla B, Horváth P, et al. Effects of imatinib and nilotinib on the whole transcriptome of cultured murine osteoblasts. Mol Med Rep. 2016;14(3):2025–2037. doi: 10.3892/mmr.2016.5459
  • Mizoshiri N, Shirai T, Terauchi R, et al. The tetraspanin CD81 mediates the growth and metastases of human osteosarcoma. Cell Oncol. 2019;42(6):861–871. doi: 10.1007/s13402-019-00472-w
  • Warsi S, Blank U, Dahl M, et al. BMP signaling is required for postnatal murine hematopoietic stem cell self-renewal. Haematologica. 2021;106(8):2203. doi: 10.3324/haematol.2019.236125
  • Wattanachanya L, Wang L, Millard SM, et al. Assessing the osteoblast transcriptome in a model of enhanced bone formation due to constitutive Gs–G protein signaling in osteoblasts. Exp Cell Res. 2015;333(2):289–302. doi: 10.1016/j.yexcr.2015.02.009
  • Kim SP, Li Z, Zoch ML, et al. Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex-and diet-dependent manner. JCI Insight. 2017;2(16). doi: 10.1172/jci.insight.92704
  • Taubmann J, Krishnacoumar B, Böhm C, et al. Metabolic reprogramming of osteoclasts represents a therapeutic target during the treatment of osteoporosis. Sci Rep. 2020;10(1):1–9. doi: 10.1038/s41598-020-77892-4
  • Wu Y, Wang M, Feng H, et al. Lactate induces osteoblast differentiation by stabilization of HIF1α. Mol Cell Endocrinol. 2017;452:84–92. doi: 10.1016/j.mce.2017.05.017
  • Danjo A, Yamaza T, Kido MA, et al. Cystatin C stimulates the differentiation of mouse osteoblastic cells and bone formation. Biochem Biophys Res Commun. 2007;360(1):199–204. doi: 10.1016/j.bbrc.2007.06.028
  • Guo L, Zhu Y, Li L, et al. Breast cancer cell‐derived exosomal miR‐20a‐5p promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1. Cancer Med. 2019;8(12):5687–5701. doi: 10.1002/cam4.2454
  • Kim HJ, Minashima T, McCarthy EF, et al. Progressive ankylosis protein (ANK) in osteoblasts and osteoclasts controls bone formation and bone remodeling. J Bone Mineral Res. 2010;25(8):1771–1783. doi: 10.1002/jbmr.60
  • Rai MF, Schmidt EJ, Hashimoto S, et al. Genetic loci that regulate ectopic calcification in response to knee trauma in LG/J by SM/J advanced intercross mice. J Orthop Res. 2015;33(10):1412–1423. doi: 10.1002/jor.22944
  • Wu M, Chen W, Lu Y, et al. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun. 2017;8(1):1–13. doi: 10.1038/ncomms13700
  • Kim HN, Ponte F, Nookaew I, et al. Estrogens decrease osteoclast number by attenuating mitochondria oxidative phosphorylation and ATP production in early osteoclast precursors. Sci Rep. 2020;10(1):1–17. doi: 10.1038/s41598-020-68890-7
  • Ma P, Song NN, Li Y, et al. Fine-tuning of Shh/Gli signaling gradient by non-proteolytic ubiquitination during neural patterning. Cell Rep. 2019;28(2):541–553. doi: 10.1016/j.celrep.2019.06.017
  • Ma P, Yang X, Kong Q, et al. The ubiquitin ligase RNF220 enhances canonical Wnt signaling through USP7-mediated deubiquitination of β-catenin. Mol Cell Biol. 2014;34(23):4355–4366. doi: 10.1128/MCB.00731-14
  • Wang H, Yang C, Li Y, et al. RNF220-mediated ubiquitination promotes aggresomal accumulation and autophagic degradation of cytoplasmic Gli via HDAC6. Biochem Biophys Res Commun. 2021;557:323–328. doi: 10.1016/j.bbrc.2021.03.156
  • Chipoy C, Berreur M, Couillaud S, et al. Downregulation of osteoblast markers and induction of the glial fibrillary acidic protein by oncostatin M in osteosarcoma cells require PKCδ and STAT3. J Bone Mineral Res. 2004;19(11):1850–1861. doi: 10.1359/JBMR.040817
  • Andrade AC, Lui JC, Nilsson O. Temporal and spatial expression of a growth-regulated network of imprinted genes in growth plate. Pediatr Nephrol. 2010;25(4):617–623. doi: 10.1007/s00467-009-1339-y
  • Bajayo A, Goshen I, Feldman S, et al. Central IL-1 receptor signaling regulates bone growth and mass. Proc Nat Acad Sci. 2005;102(36):12956–12961. doi: 10.1073/pnas.0502562102
  • Hatzikotoulas K, Roposch A, Shah KM, et al. Genome-wide association study of developmental dysplasia of the hip identifies an association with GDF5. Commun Biol. 2018;1(1):1–11. doi: 10.1038/s42003-018-0052-4
  • Alam I, Koller DL, Cañete T, et al. Fine mapping of bone structure and strength QTLs in heterogeneous stock rat. Bone. 2015;81:417–426. doi: 10.1016/j.bone.2015.08.013
  • Mo C, Guo J, Qin J, et al. Single‐cell transcriptomics of LepR‐positive skeletal cells reveals heterogeneous stress‐dependent stem and progenitor pools. Embo J. 2022;41(4):e108415. doi: 10.15252/embj.2021108415
  • Tower RJ, Li Z, Cheng YH, et al. Spatial transcriptomics reveals a role for sensory nerves in preserving cranial suture patency through modulation of BMP/TGF-β signaling. Proc Nat Acad Sci. 2021;118(42):e2103087118. doi: 10.1073/pnas.2103087118
  • Swan AL, Schütt C, Rozman J, et al. Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genet. 2020;16(12):e1009190. doi: 10.1371/journal.pgen.1009190
  • Xiao P, Chen Y, Jiang H, et al. In vivo genome‐wide expression study on human circulating B cells suggests a novel ESR1 and MAPK3 network for postmenopausal osteoporosis. J Bone Mineral Res. 2008;23(5):644–654. doi: 10.1359/jbmr.080105
  • O’Brien JM, Beal MA, Yauk CL, et al. Benzo(a)pyrene is mutagenic in mouse spermatogonial stem cells and dividing spermatogonia. Toxicol Sci. 2016;152(2):363–371. doi: 10.1093/toxsci/kfw088
  • Rathore K, Cekanova M. Effects of environmental carcinogen benzo(a)pyrene on canine adipose-derived mesenchymal stem cells. Res Vet Sci. 2015;103:34–43. doi: 10.1016/j.rvsc.2015.09.012
  • Slotkin TA, Skavicus S, Card J, et al. In vitro models reveal differences in the developmental neurotoxicity of an environmental polycyclic aromatic hydrocarbon mixture compared to benzo[a]pyrene: neuronotypic PC12 Cells and embryonic neural stem cells. Toxicology. 2017;377:49–56.
  • Zhou Y, Jiang R, An L, et al. Benzo[a]pyrene impedes self-renewal and differentiation of mesenchymal stem cells and influences fracture healing. Sci Total Environ. 2017;587-588:305–315.
  • Barajas-Olmos FM, Ortiz-Sánchez E, Imaz-Rosshandler I, et al. Analysis of the dynamic aberrant landscape of DNA methylation and gene expression during arsenic-induced cell transformation. Gene. 2019;711:143941. doi: 10.1016/j.gene.2019.143941
  • Binder H, Willscher E, Loeffler-Wirth H, et al. DNA methylation, transcriptome and genetic copy number signatures of diffuse cerebral WHO grade II/III gliomas resolve cancer heterogeneity and development. Acta Neuropathol Commun. 2019;7(1):59. doi: 10.1186/s40478-019-0704-8
  • Blake LE, Roux J, Hernando-Herraez I, et al. A comparison of gene expression and DNA methylation patterns across tissues and species. Genome Res. 2020;30(2):250–262. doi: 10.1101/gr.254904.119