724
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Intergenerational effects of early life-stage temperature modulation on gene expression and DNA methylation in Atlantic cod (Gadus morhua)

, , , , & ORCID Icon
Article: 2237759 | Received 13 Mar 2023, Accepted 11 Jul 2023, Published online: 27 Jul 2023

References

  • Cook RM, Sinclair A, Stefansson G. Potential collapse of North Sea cod stocks. Nature. 1997;385(6616):521–14. doi: 10.1038/385521a0
  • Puvanendran V, Mortensen A, Johansen LH, et al. Development of cod farming in Norway: Past and current biological and market status and future prospects and directions. Rev Aquacult. 2022;14:308–342. doi: 10.1111/raq.12599
  • Nardi G, Prickett R, Meeren T, et al. Atlantic cod aquaculture: Boom, bust, and rebirth? J World Aquacult Soc. 2021;52(3):672–690. doi: 10.1111/jwas.12811
  • Hou ZS, Wen HS, Li JF, et al. Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss). Sci Total Environ. 2020;705:135272. doi: 10.1016/j.scitotenv.2019.135272
  • Trevino LS, Dong JR, Kaushal A, et al. Epigenome environment interactions accelerate epigenomic aging and unlock metabolically restricted epigenetic reprogramming in adulthood. Nat Commun. 2020;11:11. doi:10.1038/s41467-020-15847-z
  • Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571(7766):489–499. doi: 10.1038/s41586-019-1411-0
  • Li YY. Modern epigenetics methods in biological research. Methods. 2021;187:104–113. doi: 10.1016/j.ymeth.2020.06.022
  • Barres R, Yan J, Egan B, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–411. doi: 10.1016/j.cmet.2012.01.001
  • Lev I, Toker IA, Mor Y, et al. Germ Granules Govern Small RNA Inheritance. Curr Biol. 2019;29:2880–2891. e2884. doi: 10.1016/j.cub.2019.07.054
  • Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene. 2019;718:144049. Gene 718. doi: 10.1016/j.gene.2019.144049
  • Liu ZJ, Zhou T, Gao DY. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet. 2022;13: doi: 10.3389/fgene.2022.994471
  • Robinson NA, Johnsen H, Moghadam H, et al. Early developmental stress affects subsequent gene expression response to an acute stress in Atlantic salmon: an approach for creating robust fish for aquaculture? G3-Genes Genomes Genet. 2019;9:1597–1611. doi: 10.1534/g3.119.400152
  • Burgerhout E, Mommens M, Johnsen H, et al. Genetic background and embryonic temperature affect DNA methylation and expression of myogenin and muscle development in Atlantic salmon (Salmo salar). PLoS One. 2017;12:e0179918. doi: 10.1371/journal.pone.0179918
  • Campos C, Valente LM, Conceicao LE, et al. Temperature affects methylation of the myogenin putative promoter, its expression and muscle cellularity in Senegalese sole larvae. Epigenetics. 2013;8(4):389–397. doi: 10.4161/epi.24178
  • Krasnov A, Burgerhout E, Johnsen H, et al. Development of Atlantic Salmon (Salmo salar L.) under hypoxic conditions induced sustained changes in expression of immune genes and reduced resistance to moritella viscosa. Frontiers In Ecology And Evolution. 2021;9: doi: 10.3389/fevo.2021.722218
  • Liu JW, Dias K, Plagnes-Juan E, et al. Long-term programming effect of embryonic hypoxia exposure and high-carbohydrate diet at first feeding on glucose metabolism in juvenile rainbow trout. J Exp Biol. 2017a;220:3686–3694. doi: 10.1242/jeb.161406
  • Liu JW, Plagnes-Juan E, Geurden I, et al. Exposure to an acute hypoxic stimulus during early life affects the expression of glucose metabolism-related genes at first-feeding in trout. Sci Rep. 2017b;7(1). doi: 10.1038/s41598-017-00458-4
  • Shang XY, Wan QY, Su JG, et al. DNA methylation of CiRIG-I gene notably relates to the resistance against GCRV and negatively-regulates mRNA expression in grass carp, Ctenopharyngodon idella. Immunobiology. 2016;221(1):23–30. doi: 10.1016/j.imbio.2015.08.006
  • Fellous A, Wegner KM, John U, et al. Windows of opportunity: Ocean warming shapes temperature-sensitive epigenetic reprogramming and gene expression across gametogenesis and embryogenesis in marine stickleback. Glob Chang Biol. 2022;28:54–71. doi: 10.1111/gcb.15942
  • Giannetto A, Nagasawa K, Fasulo S, et al. Influence of photoperiod on expression of DNA (cytosine-5) methyltransferases in Atlantic cod. Gene. 2013;519:222–230. doi: 10.1016/j.gene.2013.02.028
  • Nagasawa K, Giannetto A, Fernandes JM, et al. Photoperiod influences growth and mll (mixed-lineage leukaemia) expression in Atlantic cod. PLoS One. 2012;7:e36908. doi: 10.1371/journal.pone.0036908
  • Kelley JL, Tobler M, Beck D, et al. Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide-rich springs. Proceedings of the National Academy of Sciences of the United States of America. 2021:118.
  • Wellband K, Roth D, Linnansaari T, et al. Environment-driven reprogramming of gamete DNA methylation occurs during maturation and is transmitted intergenerationally in Atlantic salmon. G3-genes genomes genetics 11. G3: Genes | Genomes | Genetics. 2021;11(12). doi: 10.1093/g3journal/jkab353
  • Skjaerven KH, Hamre K, Penglase S, et al. Thermal stress alters expression of genes involved in one carbon and DNA methylation pathways in Atlantic cod embryos. Comp Biochem Physiol A Mol Integr Physiol. 2014;173C:17–27. doi: 10.1016/j.cbpa.2014.03.003
  • Falk-Petersen IB, Peruzzi S, Lysne H, et al. Effects of different incubation and start-feeding temperature regimes on growth, survival, and histomorphology of cod larvae. Aquaculture International. 2019;27:155–166. doi: 10.1007/s10499-018-0314-7
  • Puvanendran V, Swain T, Tveiten H, et al. Aquaculture International. Optimizing intensive culture protocols for Atlantic cod (Gadus morhua) larvae. 2023. doi: 10.1007/s10499-023-01133-4
  • Hansen OJ, Puvanendran V. Fertilization success and blastomere morphology as predictors of egg and juvenile quality for domesticated Atlantic cod, Gadus morhua, broodstock. Aquacult Res. 2010;41:1791–1798. doi: 10.1111/j.1365-2109.2010.02506.x
  • vonHerbing IH, Boutilier RG, Miyake T, et al. Effects of temperature on morphological landmarks critical to growth and survival in larval Atlantic cod (Gadus morhua). Mar Biol. 1996;124(4):593–606. doi: 10.1007/BF00351041
  • Bjornsson B, Steinarsson A, Oddgeirsson M, et al. Optimal stocking density of juvenile Atlantic cod (Gadus morhua L.) reared in a land-based farm. Aquaculture. 2012;356:342–350. doi: 10.1016/j.aquaculture.2012.04.047
  • Eissa AE, Abu-Seida AM, Ismail MM, et al. A comprehensive overview of the most common skeletal deformities in fish. Aquacult Res. 2021;52(6):2391–2402. doi: 10.1111/are.15125
  • Fjelldal PG, van der Meeren T, Jorstad KE, et al. A radiological study on vertebral deformities in cultured and wild Atlantic cod (Gadus morhua L.). Aquaculture. 2009;289:6–12. doi: 10.1016/j.aquaculture.2008.12.025
  • Imsland AK, Foss A, Koedijk R, et al. Short- and long-term differences in growth, feed conversion efficiency and deformities in juvenile Atlantic cod (Gadus morhua) startfed on rotifers or zooplankton. Aquacult Res. 2006;37(10):1015–1027. doi: 10.1111/j.1365-2109.2006.01523.x
  • Puvanendran V, Calder-Crewe C, Brown JA. Vertebral deformity in cultured Atlantic cod larvae: ontogeny and effects on mortality. Aquacult Res. 2009;40(14):1653–1660. doi: 10.1111/j.1365-2109.2009.02268.x
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170
  • Star B, Nederbragt AJ, Jentoft S, et al. The genome sequence of Atlantic cod reveals a unique immune system. Nature. 2011;477:207–210. doi:10.1038/nature10342
  • Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi: 10.1093/bioinformatics/bts635
  • Varet H, Brillet-Gueguen L, Coppee JY, et al. Sartools: A DESeq2- and EdgeR-Based R pipeline for comprehensive differential analysis of RNA-Seq Data. PLoS One. 2016;11(6):e0157022. doi: 10.1371/journal.pone.0157022
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8
  • Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–1572. doi: 10.1093/bioinformatics/btr167
  • Catoni M, Tsang JM, Greco AP, et al. Dmrcaller: a versatile R/Bioconductor package for detection and visualization of differentially methylated regions in CpG and non-CpG contexts. Nucleic Acids Res. 2018;46:e114. doi: 10.1093/nar/gky602
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi:10.1016/S0022-2836(05)80360-2
  • Jones P, Binns D, Chang HY, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–1240. doi: 10.1093/bioinformatics/btu031
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–29. doi: 10.1038/75556
  • Gene Ontology C, Douglass E, Good BM. The gene ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021;49:D325–D334. doi:10.1093/nar/gkaa1113
  • Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23(2):257–258. doi: 10.1093/bioinformatics/btl567
  • Aramaki T, Blanc-Mathieu R, Endo H, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36(7):2251–2252. doi: 10.1093/bioinformatics/btz859
  • Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29(1):28–35. doi: 10.1002/pro.3711
  • Puvanendran V, Falk-Petersen IB, Lysne H, et al. Effects of different step-wise temperature increment regimes during egg incubation of Atlantic cod (Gadus morhua L.) on egg viability and newly hatched larval quality. Aquac Res. 2015;46:226–235. doi: 10.1111/are.12173
  • Sussman CR, Ward CJ, Leightner AC, et al. Phosphodiesterase 1A modulates cystogenesis in zebrafish. J Am Soc Nephrol. 2014;25(10):2222–2230. doi: 10.1681/ASN.2013040421
  • Kaizuka T, Hara T, Oshiro N, et al. Tti1 and tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem. 2010;285:20109–20116. doi:10.1074/jbc.M110.121699
  • Dyson N. The regulation of E2F by Prb-family proteins. Genes Dev. 1998;12(15):2245–2262. doi: 10.1101/gad.12.15.2245
  • Liao Y, Du W. Rb-independent E2F3 promotes cell proliferation and alters expression of genes involved in metabolism and inflammation. FEBS Open Bio. 2017;7(10):1611–1621. doi: 10.1002/2211-5463.12306
  • Asp P, Acosta-Alvear D, Tsikitis M, et al. E2f3b plays an essential role in myogenic differentiation through isoform-specific gene regulation. Genes Dev. 2009;23(1):37–53. doi: 10.1101/gad.1727309
  • Ma ML, Wang XM, Chen XC, et al. MicroRNA-432 targeting E2F3 and P55PIK inhibits myogenesis through PI3K/AKT/mTOR signaling pathway. RNA Biol. 2017;14(3):347–360. doi: 10.1080/15476286.2017.1279786
  • Hall TE, Johnston IA. Temperature and developmental plasticity during embryogenesis in the Atlantic cod Gadus morhua L. Mar Biol. 2003;142(5):833–840. doi: 10.1007/s00227-003-1030-y
  • Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157(1):95–109. doi: 10.1016/j.cell.2014.02.045
  • Potok ME, Nix DA, Parnell TJ, et al. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell. 2013;153(4):759–772. doi: 10.1016/j.cell.2013.04.030
  • Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet. 2017;18(11):643–658. doi: 10.1038/nrg.2017.57
  • Bizuayehu TT, Johansen SD, Puvanendran V, et al. Temperature during early development has long-term effects on microRNA expression in Atlantic cod. BMC Genomics. 2015;16(1). doi: 10.1186/s12864-015-1503-7
  • Fitz-James MH, Cavalli G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat Rev Genet. 2022;23(6):325–341. doi: 10.1038/s41576-021-00438-5
  • Pierron F, Lorioux S, Heroin D, et al. Transgenerational epigenetic sex determination: Environment experienced by female fish affects offspring sex ratio. Environ Pollut. 2021;277:116864. doi: 10.1016/j.envpol.2021.116864
  • Krusche J, Basse S, Schaub B. Role of early life immune regulation in asthma development. Semin Immunopathol. 2020;42(1):29–42. doi: 10.1007/s00281-019-00774-z
  • Sharples AP, Turner DC. Skeletal muscle memory. Am J Physiol Cell Physiol. 2023;324(6):C1274–C1294. doi: 10.1152/ajpcell.00099.2023
  • Sulek M, Kordaczuk J, Wojda I. Current understanding of immune priming phenomena in insects. J Invertebr Pathol. 2021;185:107656. doi:10.1016/j.jip.2021.107656
  • Willis AR, Sukhdeo R, Reinke AW. Remembering your enemies: mechanisms of within-generation and multigenerational immune priming in Caenorhabditis elegans. FEBS J. 2021;288(6):1759–1770. doi: 10.1111/febs.15509