1,486
Views
0
CrossRef citations to date
0
Altmetric
Review

Brain Tumors: Development, Drug Resistance, and Sensitization – An Epigenetic Approach

ORCID Icon, , &
Article: 2237761 | Received 05 Feb 2023, Accepted 11 Jul 2023, Published online: 27 Jul 2023

References

  • Azzarelli R, Simons B, Philpott A. The developmental origin of brain tumors: a cellular and molecular framework. Development. 2018;145(10):dev162693. doi: 10.1242/dev.162693 PMID: 29759978.
  • Abou-Antoun T, Hale J, Lathia J, et al. Brain cancer stem cells in adults and children: cell biology and therapeutic implications. Neurotherapeutics. 2017;14(2):372–22. doi: 10.1007/s13311-017-0524-0 PMID: 28374184; PMCID: PMC5398995]
  • Stratakis CA, Tichomirowa MA, Boikos S, et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin Genet. 2010;78(5):457–463. doi: 10.1111/j.1399-0004.2010.01406.x PMID: 20507346; PMCID: PMC3050035
  • Onilude OE, Lusher ME, Lindsey JC, et al. APC and CTNNB1 mutations are rare in sporadic ependymomas. Cancer Genet Cytogenet. 2006;168(2):158–161. doi: 10.1016/j.cancergencyto.2006.02.019 PMID: 16843107
  • Bai J, Shi J, Li C, et al. Whole genome sequencing of skull-base chordoma reveals genomic alterations associated with recurrence and chordoma-specific survival. Nat Commun. 2021;12(1):757. doi: 10.1038/s41467-021-21026-5 PMID: 33536423; PMCID: PMC7859411.
  • Snuderl M, Kannan K, Pfaff E, et al. Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma. Nat Commun. 2018;9(1):2868. doi: 10.1038/s41467-018-05029-3 PMID: 30030436; PMCID: PMC6054684.
  • Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer. 2011;1111(4):289–301. doi: 10.1038/nrc3037 Erratum in: Nat Rev Cancer. 2011 Jun;11(6):458. PMID: 21430697; PMCID: PMC6946181.
  • Kehrer-Sawatzki H, Farschtschi S, Mautner VF, et al. The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. Hum Genet. 2017;136(2):129–148. doi: 10.1007/s00439-016-1753-8 Epub 2016 Dec 5. PMID: 27921248; PMCID: PMC5258795.
  • Guha A, Vicha A, Zelinka T, et al. Genetic variants in patients with multiple head and neck paragangliomas: dilemma in management. Biomedicines. 2021;9(6):626. doi: 10.3390/biomedicines9060626 PMID: 34072806; PMCID: PMC8226913
  • Domingues P, González-Tablas M, Otero Á, et al. Genetic/Molecular alterations of meningiomas and the signaling pathways targeted. Oncotarget. 2015;6(13):10671–10688. doi: 10.18632/oncotarget.3870 PMID: 25965831; PMCID: PMC4484411.
  • Yang I, Nagasawa DT, Kim W, et al. Chromosomal anomalies and prognostic markers for intracranial and spinal ependymomas. J Clin Neurosci. 2012;19(6):779–785. doi: 10.1016/j.jocn.2011.11.004 Epub 2012 Apr 18. PMID: 22516549; PMCID: PMC3615711
  • Smith JS, Perry A, Borell TJ, et al. 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol. 2000;18(3):636–636. doi: 10.1200/JCO.2000.18.3.636
  • Watanabe T, Nobusawa S, Kleihues P, et al. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009;174(4):1149–1153. doi: 10.2353/ajpath.2009.080958 Epub 2009 Feb 26. PMID: 19246647; PMCID: PMC2671348
  • Turkalp Z, Karamchandani J, Das S. IDH mutation in glioma: new insights and promises for the future. JAMA Neurol. 2014;71(10):1319–1325. doi: 10.1001/jamaneurol.2014.1205
  • Richardson S, Hill RM, Kui C, et al. Emergence and maintenance of actionable genetic drivers at medulloblastoma relapse. Neuro Oncol. 2022;2424(11):153–165. doi: 10.1093/neuonc/noab178
  • Zhang X, Zhang Z. Oncohistone mutations in diffuse intrinsic pontine glioma. Trends Cancer. 2019;5(12):799–808. doi: 10.1016/j.trecan.2019.10.009 Epub 2019 Nov 9. PMID: 31813457; PMCID: PMC6986369.
  • Lewis NA, Klein RH, Kelly C, et al. Histone H3.3 K27M chromatin functions implicate a network of neurodevelopmental factors including ASCL1 and NEUROD1 in DIPG. Epigenet Chromatin. 2022;15(1):18. doi: 10.1186/s13072-022-00447-6 PMID: 35590427; PMCID: PMC9121554
  • Cancer M, Hutter S, Holmberg K, et al. Humanized stem cell models of pediatric medulloblastoma reveal an Oct4/mTOR axis that promotes malignancy. Cell Stem Cell. 2019;25(6):855–870. doi: 10.1016/j.stem.2019.10.005 PMID: 31786016.
  • Willbanks A, Leary M, Greenshields M, et al. The evolution of epigenetics: from prokaryotes to humans and its biological consequences. Genet Epigenet. 2016;8:25–36. doi: 10.4137/GEG.S31863 PMID: 27512339].
  • Lapinska K, Faria G, McGonagle S, et al. Cancer progenitor cells: the result of an epigenetic event? Anticancer Res. 2018;38:1–6. doi: 10.21873/anticanres.12184 PMID: 29277749.
  • Romani M, Pistillo MP, Banelli B. Epigenetic Targeting of Glioblastoma. Front Oncol. 2018;8:448. doi: 10.3389/fonc.2018.00448 PMID: 30386738.
  • Moyon S, Liang J, Casaccia P. Epigenetics in NG2 Glia cells. Brain Res. 2016;1638(Pt B):183–198. doi: 10.1016/j.brainres.2015.06.009 PMID: 26092401.
  • Mack S, Hubert C, Miller T, et al. An epigenetic gateway to brain tumor cell identity. Nat Neurosci. 2016;19(1):10–19. doi: 10.1038/nn.4190 PMID: 26713744
  • Orozco J, Knijnenburg T, Manughian-Peter A, et al. Epigenetic profiling for the molecular classification of metastatic brain tumors. Nat Commun. 2018;9(1):4627. doi: 10.1038/s41467-018-06715-y PMID: 30401823
  • Sarkar S, Abujamra A, Loew J, et al. Histone deacetylase inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling. Anticancer Res. 2011;31(9): 2423–2432. PMID: 21868513.
  • Campos-Sanchez E, Martínez-Cano J, Del Pino Molina L, et al. Epigenetic deregulation in human primary immunodeficiencies. Trends Immunol. 2019;40(1):49–65. doi: 10.1016/j.it.2018.11.005
  • Orozco JIJ, Knijnenburg TA, Manughian-Peter AO, et al. Epigenetic profiling for the molecular classification of metastatic brain tumors. Nat Commun. 2018 Nov 6;9(1):4627.
  • Chen KY, Bush K, Klein RH, et al. Reciprocal H3.3 gene editing identifies K27M and G34R mechanisms in pediatric glioma including NOTCH signaling. Commun Biol. 2020;3(1):363. doi: 10.1038/s42003-020-1076-0
  • Johnson DR, Guerin JB, Giannini C, et al. 2016 updates to the WHO brain tumor classification system: what the radiologist needs to know. Radiographics. 2017;37(7):2164–2180. doi: https://doi.org/10.1148/rg.2017170037
  • Tomasetti C, Marchionni L, Nowak M, et al. Only three driver gene mutations are required for the development of lung and colorectal cancers. Proc Natl Acad Sci USA. 2015;12(vol 1):118–123. doi: 10.1073/pnas.1421839112 PMID: 25535351
  • Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  • Sarkar S, Horn G, Moulton K, et al. Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci. 2013;14(10):21087–21113. doi: 10.3390/ijms141021087 PMID: 24152442
  • Byler S, Sarkar S. Do epigenetic drug treatments hold the key to killing cancer progenitor cells? Epigenomics. 2014;6(2):161–165. doi: 10.2217/epi.14.4 PMID: 24811783
  • Longacre M, Snyder NA, Housman G, et al. A comparative analysis of genetic and epigenetic events of breast and ovarian cancer related to tumorigenesis. Int J Mol Sci. 2016;17(5):759. doi: 10.3390/ijms17050759 PMID: 27213343
  • Reilly KM. Brain tumor susceptibility: the role of genetic factors and uses of mouse models to unravel risk. Brain Pathol. 2009 Jan;19(1):121–131. doi: 10.1111/j.1750-3639.2008.00236.x
  • Barnholtz-Sloan J, Sloan AE, Land S, et al. Somatic alterations in brain tumors. Oncol Rep. 2008 Jul;20(1):203–210. doi: 10.3892/or.20.1.203 PMID: 18575738.
  • Tiong KL, Yeang CH. Explaining cancer type specific mutations with transcriptomic and epigenomic features in normal tissues. Sci Rep. 2018;8(1):11456. doi: 10.1038/s41598-018-29861-1
  • Kennedy SR, Zhang Y, Risques RA. Cancer-associated mutations but no cancer: insights into the early steps of carcinogenesis and implications for early cancer detection. Trends Cancer. 2019;5(9):531–540. doi: 10.1016/j.trecan.2019.07.007 PMID: 31474358.
  • Platten M, Bunse L, Wick A, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature. 2021;592(7854):463–468. doi: 10.1038/s41586-021-03363-z
  • Heerboth S, Housman G, Leary M, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4(1):1–13. doi: 10.1186/s40169-015-0048-3 PMID: 25852822
  • Perkins A, Liu G. Primary brain tumors in adults: diagnosis and treatment. Am Fam Physician. 2016;93(3):211–217. PMID: 26926614.
  • Grant R. Overview: brain tumor diagnosis and management/Royal College of physicians guidelines. J Neurol Neurosurg Psychiatry. 2004;75(Suppl 2):ii18–23. doi: 10.1136/jnnp.2004.040360 PMID: 15146035
  • McFaline-Figueroa J, Lee EQ. Brain Tumors. Am j med. 2018;131(8):874–882. doi: 10.1016/j.amjmed.2017.12.039 PMID: 29371158.
  • Samorodnitsky E, Ghosh E, Mazumder S, et al. Methylation by DNMT1 is more efficient in chronic lymphocytic leukemia cells than in normal cells. J Proteomics Bioinform. 2014;S10–004. doi: 10.4172/jpb.S10-004
  • Sarkar S, Goldgar S, Byler S, et al. Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy. Epigenomics. 2013;5(1):87–94. doi: 10.2217/epi.12.68 PMID: 23414323.
  • Hnisz D, Brian J, Abraham BJ, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155(4):934–947. doi: 10.1016/j.cell.2013.09.053 PMID: 24119843
  • Tang F, Yang Z, Tan Y, et al. Super-enhancer function and its application in cancer targeted therapy. NPJ Precis Oncol. 2020;12(4):2. PMID: 32128448. doi: 10.1038/s41698-020-0108-z
  • Byler S, Goldgar S, Heerboth S, et al. Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res. 2014;34(3):1071–1077. PMID: 24596345.
  • Won H, Huang J, Opland C, et al. Human evolved regulatory elements modulate genes involved in cortical expansion and neurodevelopmental disease susceptibility. Nat Commun. 2019;10(1):2396. doi: 10.1038/s41467-019-10248-3 PMID: 31160561.
  • Doan R, Bae B, Cubelos B, et al. Mutations in human accelerated regions disrupt cognition and social behavior. Cell. 2016;167(2):341–354.e12. doi: 10.1016/j.cell.2016.08.071 PMID: 27667684
  • Tan AC, Ashley DM, López GY, et al. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. doi: https://doi.org/10.3322/caac.21613
  • Miao R, Xia L, Chen H, et al. Improved classification of blood-brain-barrier drugs using deep learning. Sci Rep. 2019;9(1):8802. doi: 10.1038/s41598-019-44773-4 PMID: 31217424.
  • Tiwary S, Morale J, Kwiatkowski S, et al. Metastatic brain tumors disrupt the blood-brain barrier and alter lipid metabolism by inhibiting expression of the endothelial cell fatty acid transporter Mfsd2a. Sci Rep. 2018;8(1):8267. doi: 10.1038/s41598-018-26636-6 PMID: 29844613.
  • Arvanitis C, Ferraro G, Jain R. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41. doi: 10.1038/s41568-019-0205-x PMID: 31601988
  • Pardridge W. Drug transport in the brain via the cerebrospinal fluid. Fluids Barriers CNS. 2011;8(1):7. doi: 10.1186/2045-8118-8-7 PMID: 21349155.
  • El-Habashy SE, Nazief AM, Adkins CE, et al. Novel treatment strategies for brain tumors and metastases. Pharm Pat Anal. 2014 May;3(3):279–296. doi: 10.4155/ppa.14.19 PMID: 24998288; PMCID: PMC4465202.
  • Pathan SA, Iqbal Z, Zaidi SM, et al. CNS drug delivery systems: novel approaches. Recent Pat Drug Deliv Formul. 2009;3(1):71–89. doi: 10.2174/187221109787158355
  • Costantino L, Tosi G, Ruozi B, et al. Chapter 3 - colloidal systems for CNS drug delivery. Prog Brain Res. 2009;180:35–69. Highlights the novel colloidal carrier systems used to effectively deliver molecular therapeutics across the BBB into the brain. It provides a comprehensive overview of the novel pharmaceutical nano-formulations in efficiently targeting the problematic CNS.
  • Kuo Y-C, Lin P-I, Wang C-C. Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly(lactide-co-glycolide) nanoparticles. Nanomedicine (Lond). 2011;6(6):1011–1026. doi: 10.2217/nnm.11.25
  • Kazantsev AG, Outeiro TF. Editorial [hot topic: drug discovery for CNS disorders: from bench to bedside (guest editor: Tiago Fleming Outeiro)]. CNS Neurol Disord Drug Targets. 2010;9(6):668. doi: 10.2174/187152710793237395
  • Lockman PR, Mittapalli RK, Taskar KS, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res. 2010;16(23):5664–5678. doi: 10.1158/1078-0432.CCR-10-1564
  • Hirano A, Matsui T. Vascular structures in brain tumors. Hum Pathol. 1975;6(5):611–621. doi: 10.1016/S0046-8177(75)80045-1
  • Hiesiger EM, Voorhies RM, Basler GA, et al. Opening the blood-brain and blood-tumor barriers in experimental rat brain tumors: the effect of intracarotid hyperosmolar mannitol on capillary permeability and blood flow. Ann Neurol. 1986;19(1):50–59. doi: 10.1002/ana.410190110
  • Gerstner ER, Fine RL. Increased permeability of the blood-brain barrier to chemotherapy in metastatic brain tumors: establishing a treatment paradigm. J Clin Oncol. 2007;25(16):2306–2312. doi: 10.1200/JCO.2006.10.0677
  • Bronger H, Konig J, Kopplow K, et al. ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res. 2005;65(24):11419–11428. doi: 10.1158/0008-5472.CAN-05-1271
  • Meegan M, O’Boyle N. Special issue “anticancer drugs”. Pharmaceuticals (Basel). 2019;12(3):134. doi:10.3390/ph12030134 PMID: 31527393.
  • Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173(2):321–337.e10. doi:10.1016/j.cell.2018.03.035 PMID: 29625050.
  • Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers. 2014;6(3):1769–1792. doi: 10.3390/cancers6031769 PMID: 25198391.
  • Brennan CW, Verhaak RGW, Mckenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;85(155):462–477. doi: 10.1016/j.cell.2013.09.034
  • Furnari FB, Cloughesy TF, Cavenee WK, et al. Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer. 2015;15:302–310. doi: 10.1038/nrc3918
  • Libermann TA, Nusbaum HR, Razon N, et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature. 1985;313:144–147. doi: 10.1038/313144a0
  • Krauth J. Comments on the paper by Möller et al. (1989): problems in single-case evaluation. Eur Arch Psychiatry Neurol Sci. 1990;239(6):391–394. discussion 395–397. doi: 10.1007/BF01734548
  • Akhavan D, Cloughesy TF, Mischel P. S. mTOR signaling in glioblastoma: lessons learned from bench to bedside. Neuro Oncol. 2010;12:882–889. doi: 10.1093/neuonc/noq052
  • Liu X, Chen X, Shi L, et al. The third-generation EGFR inhibitor AZD9291 overcomes primary resistance by continuously blocking ERK signaling in glioblastoma. J Exp Clin Cancer Res. 2019;38:219. doi:10.1186/s13046-019-1235-7
  • Gao M, Fu Y, Zhou W, et al. EGFR activates a TAZ-driven oncogenic program in glioblastoma. Cancer Res. 2021;81(13):3580–3592. doi: 10.1158/0008-5472.CAN-20-2773
  • Chen C, Cheng CD, Wu H, et al. Osimertinib successfully combats EGFR-negative glioblastoma cells by inhibiting the MAPK pathway. Acta Pharm Sin. 2021;42:108–114. doi:10.1038/s41401-020-0418-2
  • Leary M, Heerboth S, Lapinska K, et al. Sensitization of drug resistant cancer cells: a matter of combination therapy. Cancers. 2018;10(12):483. doi: 10.3390/cancers10120483 PMID: 30518036
  • Raymond E, Faivre S, Chaney S, et al. Cellular and molecular pharmacology of oxaliplatin. Mol Cancer Ther. 2002;1(3):227–235. PMID: 12467217.
  • Mataga M, Rosenthal S, Heerboth S, et al. Anti-breast cancer effects of histone deacetylase inhibitors and calpain inhibitors. Anticancer Res. 2012;32(7):2523–2529. PMID: 22753709.
  • Lapinska K, Housman G, Byler S, et al. The effects of histone deacetylase inhibitor and calpain inhibitor combination therapies on ovarian cancer cells. Anticancer Res. 2016;36(11):5731–5742. doi: 10.21873/anticanres.11156 PMID: 27793894
  • Weaver B, Bement W. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25(18):2677–2681. doi: 10.1091/mbc.E14-04-0916 PMID: 25213191.
  • William D, Walther M, Schneider B, et al. Temozolomide-induced increase of tumorigenicity can be diminished by targeting of mitochondria in in vitro models of patient individual glioblastoma. PLoS One. 2018;13(1):e0191511. doi: 10.1371/journal.pone.0191511 PMID: 29352318.
  • Barbuti AM, Chen ZS. Paclitaxel through the ages of anticancer therapy: exploring its role in chemoresistance and radiation therapy. Cancers (Basel). 2015;7(4):2360–2371. doi: 10.3390/cancers7040897 PMID: 26633515
  • Zhou J, Kang Y, Chen L, et al. The drug-resistance mechanisms of five platinum-based antitumor agents. Front Pharmacol. 2020;11:343. doi: 10.3389/fphar.2020.00343 PMID: 32265714; PMCID: PMC7100275.
  • Hegi ME, Diserens AC, Gorila T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003. doi: 10.1056/NEJMoa043331
  • Esteller M, Hamilton SR, Burger PC, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999;59(4): 793–797. PMID: 10029064.
  • Bady P, Kurscheid S, Delorenzi M, et al. The DNA methylome of DDR genes and benefit from RT or TMZ in IDH mutant low-grade glioma treated in EORTC 22033. Acta Neuropathol. 2018;135(4):601–615. doi: 10.1007/s00401-018-1810-6
  • Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of αketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30. doi:10.1016/j.ccr.2010.12.014
  • Duncan CG, Barwick BG, Jin G, et al. A heterozygous IDH1R132H/WT mutation induces genomewide alterations in DNA methylation. Genome Res. 2012;22:2339–2355. doi:10.1101/gr.132738.111
  • Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–483. doi:10.1038/nature10866
  • Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–820. doi: 10.1007/s00401-016-1545-1
  • Castelo-Branco P, Choufani S, Marck S, et al. Methylation of TERT promoter and risk stratification of childhood brain tumors: an integrative genomic and molecular study. Lancet Oncol. 2013;14(6):534–542. doi: 10.1016/S1470-2045(13)70110-4
  • Bardella C, Al-Dalahmah O, Krell D, et al. Expression of Idh1(R132H) in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis. Cancer Cell. 2016;30(4):578–594. doi: 10.1016/j.ccell.2016.08.017
  • Lu C, Ward P, Kapoor G, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483(7390):474–478. doi: 10.1038/nature10860
  • Al-Emran A, Marzese DM, Menon DR, et al. Commonly integrated epigenetic modifications of differentially expressed genes lead to adaptive resistance in cancer. Epigenomics. 2019;11(7):732–737. doi: 10.2217/epi-2018-0173 PMID: 31070054.
  • Abolhoda A, Wilson A, Ross H, et al. Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin Cancer Res. 1999;5(11): 3352–3356. PMID: 10589744.
  • Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting P-glycoprotein. Cancer Control. 2003;10(2):159–165. doi: 10.1177/107327480301000207 PMID: 12712010
  • Michael M, Doherty MM. Tumoral drug metabolism: overview and its implications for cancer therapy. J Clin Onc. 2005;23(1):205–229. doi: 10.1200/JCO.2005.02.120 PMID: 15625375.
  • Plastaras J, Guengerich F, Nebert D, et al. Xenobiotic-metabolizing cytochromes P450 convert prostaglandin endoperoxide to hydroxyheptadecatrienoic acid and the mutagen, malondialdehyde. J Biol Chem. 2000;275(16):11784–11790. doi: 10.1074/jbc.275.16.11784 PMID: 10766802
  • Shen H, He M, Liu H, et al. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos. 2007;35(8):1292–1300. doi: 10.1124/dmd.107.015354 PMID: 17470523
  • Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006;25(11):1679–1691. doi: 10.1038/sj.onc.1209377 PMID: 16550168.
  • Thomas J, Wang L, Clark RE, et al. Active transport of imatinib into and out of cells: Implications for drug resistance. Blood. 2004;104(12):3739–3745. doi: 10.1182/blood-2003-12-4276 PMID: 15315971
  • Brunen D, Willems S, Kellner U, et al. TGF-β: an emerging player in drug resistance. Cell Cycle. 2013;12(18):2960–2968. doi: 10.4161/cc.26034 PMID: 23974105.
  • Ravindranath AK, Kaur S, Wernyj RP, et al. CD44 promotes multi-drug resistance by protecting P-glycoprotein from FBXO21-mediated ubiquitination. Oncotarget. 2015;6(28):26308–26321. doi: 10.18632/oncotarget.4763 PMID: 26299618.
  • Hori A, Shimoda M, Naoi Y, et al. Vasculogenic mimicry is associated with trastuzumab resistance of HER2-positive breast cancer. Breast Cancer Res. 2019;21(1):88. doi: 10.1186/s13058-019-1167-3 PMID: 31387614.
  • Yang X, Zheng F, Xing H, et al. Resistance to chemotherapy-induced apoptosis via decreased caspase-3 activity and overexpression of antiapoptotic proteins in ovarian cancer. J Cancer Res Clin Oncol. 2004;130(7):423–428. doi: 10.1007/s00432-004-0556-9 PMID: 15156398.
  • Wilson T, Johnston P, Longley DB. Anti-apoptotic mechanisms of drug resistance in cancer. Curr Cancer Drug Targets. 2009;9(3):307–319. doi: 10.2174/156800909788166547 PMID: 19442051.
  • Stover E, Baco M, Cohen O, et al. Pooled genomic screens identify anti-apoptotic genes as targetable mediators of chemotherapy resistance in ovarian cancer. Mol Cancer Res. 2019;17(11):2281–2293. doi: 10.1158/1541-7786.MCR-18-1243 PMID: 31462500
  • Maier P, Spier I, Laufs S, et al. Chemoprotection of human hematopoietic stem cells by simultaneous lentiviral overexpression of multidrug resistance 1 and O(6)-methylguanine-DNA methyltransferase(P140K). Gene Ther. 2010;17(3):389–399. doi: 10.1038/gt.2009.133 PMID: 19865182
  • Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–760. doi: 10.1038/nature05236 PMID: 17051156.
  • Farahani E, Patra H, Jangamreddy J, et al. Cell adhesion molecules and their relation to (cancer) cell stemness. Carcinogenesis. 2014;35(4):747–759. doi: 10.1093/carcin/bgu045 PMID: 24531939.
  • Quintero-Fabian S, Arreola R, Becerril-Villanueva E, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 2019;9:1370. doi: 10.3389/fonc.2019.01370 PMID: 31921634.
  • Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host–tumor cell interactions during hematogenous dissemination. Cancer Discov. 2012;2(12):1091–1099. doi: 10.1158/2159-8290.CD-12-0329 PMID: 23166151.
  • Flavahan WA, Drier Y, Liau BB, et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature. 2016;529(7584):110–114. doi: 10.1038/nature16490 Epub 2015 Dec 23. PMID: 26700815; PMCID: PMC4831574.
  • Venere M, Horbinski CM, Crish JF, et al. The mitotic kinesin KIF11 is a driver of invasion, proliferation, and self-renewal in glioblastoma. Sci Transl Med. 2015;7(304):304ra143. doi: 10.1126/scitranslmed.aac6762
  • Ghosh D, Nandi A, Bhattacharjee A. Combination therapy to checkmate glioblastoma: clinical challenges and advances. Clin Trans Med. 2018;7(1):33. doi: https://doi.org/10.1186/s40169-018-0211-8
  • George SL, Falzone N, Chittenden S, et al. Individualized 131I-Mibg therapy in the management of refractory and relapsed neuroblastoma. Nucl Med Commun. 2016;37(5):466–472. doi: 10.1097/MNM.0000000000000470 PMID: 26813989; PMCID: PMC4819901.
  • Kayano D, Kinuya S. Current consensus on I-131 MIBG therapy. Nucl Med Mol Imaging. 2018;52(4):254–265. doi: 10.1007/s13139-018-0523-z Epub 2018 May 3. PMID: 30100938; PMCID: PMC6066492
  • Stanculeanu DL, Daniela Z, Lazescu A, et al. Development of new immunotherapy treatments in different cancer types. J Med Life. 2016;9(3): 240–248. PMID: 27974927.
  • Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3(10):250–261. doi: 10.20517/2394-4722.2017.41
  • Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651–668. doi: 10.1038/s41577-020-0306-5 PMID: 32433532
  • Bai R, Chen N, Li L, et al. Mechanisms of Cancer Resistance to Immunotherapy. Front Oncol. 2020;10:1290. doi: 10.3389/fonc.2020.01290 PMID: 32850400.
  • Fecci PE, Ochial H, Mitchell D, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4(+) T cell compartment without affecting regulatory T-cell function. Clin Cancer Res. 2007;13(7):2158–2167. doi: 10.1158/1078-0432.CCR-06-2070
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264. doi: 10.1038/nrc3239
  • Zeng J, See AP, Phallen J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86(2):343–349. doi: 10.1016/j.ijrobp.2012.12.025
  • Patel K, Kollory A, Takashima A, et al. MicroRNA let-7 downregulates STAT3 phosphorylation in pancreatic cancer cells by increasing SOCS3 expression. Cancer Lett. 2014;347(1):54–64. doi: 10.1016/j.canlet.2014.01.020 PMID: 24491408
  • Lawlor E, Thiele C. Epigenetic changes in pediatric solid tumors: promising new targets. Clin Cancer Res. 2012;18(10):2768–2779. doi: 10.1158/1078-0432.CCR-11-1921 PMID: 22589485.
  • Clark P, Treisman D, Ebben J, et al. Developmental signaling pathways in brain tumor-derived stem-like cells. Dev Dyn. 2007;236(12):3297–3308. doi: 10.1002/dvdy.21381 PMID: 18000980
  • Hertzman Johansson C, Egyhazi Brage S. BRAF inhibitors in cancer therapy. Pharmacol Ther. 2014;142(2):176–182. doi: 10.1016/j.pharmthera.2013.11.011 PMID: 24325952.
  • Griffin M, Scotto D, Josephs DH, et al. BRAF inhibitors: resistance and the promise of combination treatments for melanoma. Oncotarget. 2017;8(44):78174–78192. doi: 10.18632/oncotarget.19836 PMID: 29100459.
  • Heerboth S, Lapinska K, Snyder N, et al. The use of epigenetic drugs in diseases: an overview. Genet Epigenet. 2014;6:9–19. doi: 10.4137/GEG.S12270 PMID: 25512710.
  • Sarkar S, Longacre M, Tatur N, et al. Histone deacetylases (HDACs): function, mechanism, & inhibition. Encycl Anal Chem, R.A. Meyers (Ed.). 2014;1–9. doi: 10.1002/9780470027318.a9365
  • Rankin AM, Forman L, Sarkar S, et al. Enhanced cytotoxicity from deoxyguanosine-enriched T-oligo in prostate cancer cells. Nucleic Acid Ther. 2013;23(5):311–321. doi: 10.1089/nat.2013.0420 PMID: 23971906
  • Sarkar S, Faller D. Telomere-homologous G-rich oligonucleotides sensitize human ovarian cancer cells to TRAIL-induced growth inhibition and apoptosis. Nucleic Acid Ther. 2013;23(3):167–174. doi: 10.1089/nat.2012.0401 PMID: 23634944.
  • Bender CM, Pao MM, Jones PA. Inhibition of DNA methylation by 5-Aza-2′-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res. 1998;58(1): 95–101. PMID: 9426064.
  • Zhang Y, Dong W, Zhu J, et al. Combination of EZH2 inhibitor and BET inhibitor for treatment of diffuse intrinsic pontine glioma. Cell Biosc. 2017;7(1):56. doi: 10.1186/s13578-017-0184-0 PMID: 29118968.
  • Thurn KT, Thomas S, Moore A, et al. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol. 2011;7(2):263–283. doi: 10.2217/fon.11.2 PMID: 21345145
  • Blagitko-Dorfs N, Jiang Y, Duque-Afonso J, et al. Epigenetic priming of AML blasts for all-trans retinoic acid-induced differentiation by the HDAC class-I selective inhibitor entinostat. PLoS One. 2013 October;8(10):| e7525. doi: 10.1371/journal.pone.0075258
  • Cacan E, Ali MW, Boyd NH, et al. Inhibition of HDAC1 and DNMT1 modulate RGS10expression and decrease ovarian cancer chemoresistance. PLoS One. 2014;9(1):e87455. doi: 10.1371/journal.pone.0087455 PMID: 24475290.
  • Pathania R, Ramachandran S, Mariappan G, et al. Combined inhibition of DNMT and HDAC blocks the tumorigenicity of cancer stem-like cells and attenuates mammary tumor growth. Cancer Res. 2016;76(11):3224–3235. doi: 10.1158/0008-5472.CAN-15-2249 PMID: 27197203
  • Sarkar S, Faller D. T-oligos inhibit growth and induce apoptosis in human ovarian cancer cells. Oligonucleotides. 2011;21(1):47–53. doi: 10.1089/oli.2010.0259 PMID: 21281128
  • Frew AJ, Lindemann RK, Martin BP, et al. Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. Proc Natl Acad Sci USA. 2008;105(32):11317–11322. doi: 10.1073/pnas.0801868105 PMID: 18685088
  • Bensaid D, Blondy T, Deshayes S, et al. Assessment of new HDAC inhibitors for immunotherapy of malignant pleural mesothelioma. Clin Epigenetics. 2018;10(1):79. doi: 10.1186/s13148-018-0517-9 PMID: 29946373
  • Almeida VR, Vieira IA, Buendia M, et al. Combined treatments with a retinoid receptor agonist and epigenetic modulators in human neuroblastoma cells. Mol Neurobiol. 2017;54(10):7610–7619. doi: 10.1007/s12035-016-0250-3
  • Wang H, Fan Z, Shliaha PV, et al. H3k4me3 regulates RNA polymerase II promoter-proximal pause-release. Nature. 2023;615(7951):339–348. doi: 10.1038/s41586-023-05780-8
  • Butler M, Pongor L, Su YT, et al. MGMT status as a clinical biomarker in glioblastoma. Trends Cancer. 2020;6(5):380–391. doi: 10.1016/j.trecan.2020.02.010 Epub 2020 Mar 27. PMID: 32348734; PMCID: PMC7315323.