822
Views
0
CrossRef citations to date
0
Altmetric
Research article

DNA methylation profiles in bovine sperm are associated with daughter fertility

, , , , & ORCID Icon
Article: 2280889 | Received 18 Nov 2022, Accepted 03 Nov 2023, Published online: 20 Nov 2023

References

  • Berry DP, Friggens NC, Lucy M, et al. Milk production and fertility in cattle, Annu. Rev Anim Biosci. 2016;4:269–13. doi: 10.1146/annurev-animal-021815-111406
  • Thundathil JC, Dance AL, Kastelic JP. Fertility management of bulls to improve beef cattle productivity. Theriogenology. 2016;86:397–405. doi: 10.1016/j.theriogenology.2016.04.054
  • Liu A, Wang Y, Sahana G, et al. Genome-wide association studies for female fertility traits in Chinese and Nordic holsteins, Sci. Sci Rep. 2017;7:8487. doi: 10.1038/s41598-017-09170-9
  • Cai Z, Guldbrandtsen B, Lund MS, et al. Prioritizing candidate genes for fertility in dairy cows using gene-based analysis, functional annotation and differential gene expression. BMC Genomics. 2019;20: doi: 10.1186/s12864-019-5638-9
  • Peter S, Ekstrm TJ. Epigenetics–a helpful tool to better understand processes in clinical nephrology?, Nephrol. Dial. Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2008;23:1493. doi: 10.1093/ndt/gfn056
  • Kitamura A, Miyauchi N, Hamada H, et al. Epigenetic alterations in sperm associated with male infertility, Congenit. Anom. 2015;55:133–144. doi: 10.1111/cga.12113
  • Štiavnická M, Chaulot-Talmon A, Perrier J-P, et al. Sperm DNA methylation patterns at discrete CpGs and genes involved in embryonic development are related to bull fertility. BMC Genomics. 2022;23:379. doi: 10.1186/s12864-022-08614-5
  • Kropp J, Carrillo JA, Namous H, et al. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics. 2017;18:280. doi: 10.1186/s12864-017-3673-y
  • Atsem S, Reichenbach J, Potabattula R, et al. Paternal age effects on sperm FOXK1 and KCNA7 methylation and transmission into the next generation. Hum Mol Genet. 2016;25:4996–5005. doi: 10.1093/hmg/ddw328
  • Jenkins TG, Aston KI, Pflueger C, et al. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet. 2014;10:e1004458. doi: 10.1371/journal.pgen.1004458
  • Zhang Y, Sirard M-A. Epigenetic inheritance of acquired traits through DNA methylation. Anim Front Rev Mag Anim Agric. 2021;11:19–27. doi: 10.1093/af/vfab052
  • Painter RC, Osmond C, Gluckman P, et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life, BJOG int. J Obstet Gynaecol. 2008;115:1243–1249. doi: 10.1111/j.1471-0528.2008.01822.x
  • Burdge GC, Hoile SP, Uller T, et al. Progressive, transgenerational changes in offspring phenotype and Epigenotype following nutritional transition. PLoS One. 2011;6:e28282. doi: 10.1371/journal.pone.0028282
  • Zhang Y, Chaput C, Fournier E, et al. Comparing the whole genome methylation landscape of dairy calf blood cells revealed intergenerational inheritance of the maternal metabolism. Epigenetics. 2022;17:705–714. doi: 10.1080/15592294.2021.1955188
  • Zhang Y, Bruna de Lima C, Labrecque R, et al. Whole genome DNA methylation analysis of the sperm in relation to bull fertility, Reprod. Camb Engl. 2023;165:REP-22–0283. doi: 10.1530/REP-22-0283
  • Doormaal BJV, Kistemaker G, Fatehi J, et al. Genetic Evaluation of Female Fertility in Canadian Dairy Breeds[J]. 2004;32.
  • Guo YS, Tao JZ. Metabolomics and pathway analyses to characterize metabolic alterations in pregnant dairy cows on D 17 and D 45 after AI. Sci Rep. 2018;8:5973. doi: 10.1038/s41598-018-23983-2
  • Zhuang X-J, Tang W-H, Feng X, et al. Trim27 interacts with Slx2, is associated with meiotic processes during spermatogenesis. Cell Cycle Georget Tex. 2016;15:2576–2584. doi: 10.1080/15384101.2016.1174796
  • Messerschmidt DM, Vries WD, Ito M, et al. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science. 2012;335:1499–1502. doi: 10.1126/science.1216154
  • Spehr M, Schwane K, Riffell JA, et al. Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm, Mol. Cell Endocrinol. 2006;250:128–136. doi: 10.1016/j.mce.2005.12.035
  • Flegel C, Vogel F, Hofreuter A, et al. Characterization of the olfactory receptors expressed in human spermatozoa. Front Mol Biosci. 2015 73;2. 10.3389/fmolb.2015.00073
  • Feng S, Zhong Z, Wang M, et al. Efficient and accurate determination of genome-wide DNA methylation patterns in Arabidopsis thaliana with enzymatic methyl sequencing. Epigenetics Chromatin. 2020;13:42. doi: 10.1186/s13072-020-00361-9
  • Meissner A, Gnirke A, Bell GW, et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005;33:5868–5877. doi: 10.1093/nar/gki901
  • Doormaal B, Kistemaker G, Fatehi J, et al. Genetic Evaluation of female fertility in Canadian dairy breeds. 2004.
  • Jamrozik J, Fatehi J, Kistemaker GJ, et al. Estimates of Genetic Parameters for Canadian Holstein Female Reproduction Traits. J Dairy Sci. 2005;88:2199–2208. doi: 10.3168/jds.S0022-0302(05)72895-2
  • Kutchy NA, Velho A, Menezes ESB, et al. Testis specific histone 2B is associated with sperm chromatin dynamics and bull fertility-a pilot study, Reprod. Biol Endocrinol RBE. 2017;15:59. doi: 10.1186/s12958-017-0274-1
  • Ruth KS, Campbell PJ, Chew S, et al. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes. Eur J Hum Genet EJHG. 2016;24:284–290. doi: 10.1038/ejhg.2015.102
  • Liu A, Liu M, Li Y, et al. Differential expression and prediction of function of lncRnas in the ovaries of low and high fecundity hanper sheep, Reprod. Domest Anim Zuchthyg. 2021;56:604–620. doi: 10.1111/rda.13898
  • Christenson LK, Gunewardena S, Hong X, et al. Research resource: preovulatory LH surge effects on follicular theca and granulosa transcriptomes, Mol. Endocrinol Baltim Md. 2013;27:1153–1171. doi: 10.1210/me.2013-1093
  • Bigonnesse F, Marois M, Maheux R, et al. Interleukin-1 receptor accessory protein is constitutively expressed in human endometrium throughout the menstrual cycle, Mol. Hum Reprod. 2001;7:333–339. doi: 10.1093/molehr/7.4.333
  • Skibiel AL, Peñagaricano F, Amorín R, et al. In Utero Heat Stress Alters the Offspring Epigenome, Sci. Sci Rep. 2018;8:14609. doi: 10.1038/s41598-018-32975-1
  • Pinto FM, Almeida TA, Hernandez M, et al. Candenas, mRNA expression of tachykinins and tachykinin receptors in different human tissues. Eur J Pharmacol. 2004;494:233–239. doi: 10.1016/j.ejphar.2004.05.016
  • Blasco V, Pinto FM, González-Ravina C, et al. Tachykinins and kisspeptins in the regulation of human male fertility. J Clin Med. 2019;9:113. doi: 10.3390/jcm9010113
  • Lambert S, Blondin P, Vigneault C, et al. Spermatozoa DNA methylation patterns differ due to peripubertal age in bulls. Theriogenology. 2018;106:21–29. doi: 10.1016/j.theriogenology.2017.10.006
  • Walsh SW, Williams EJ, Evans ACO. A review of the causes of poor fertility in high milk producing dairy cows. Anim Reprod Sci. 2011;123:127–138. doi: 10.1016/j.anireprosci.2010.12.001
  • Vaisvila R, Ponnaluri VKC, Sun Z, et al. Davis, enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 2021;31:1280–1289. doi: 10.1101/gr.266551.120
  • Bolger AM, Marc L, Bjoern U. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170
  • Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications, Bioinforma. Oxf Engl. 2011;27:1571–1572. doi: 10.1093/bioinformatics/btr167
  • Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923
  • Wang H-Q, Tuominen LK, Tsai C-J. SLIM: a sliding linear model for estimating the proportion of true null hypotheses in datasets with dependence structures, Bioinforma. Oxf Engl. 2011;27:225–231. doi: 10.1093/bioinformatics/btq650
  • Yu G, Wang L-G, He Q-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization, Bioinforma. Oxf Engl. 2015;31:2382–2383. doi: 10.1093/bioinformatics/btv145
  • Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools, methods Mol. Biol Clifton NJ. 2009;563:123–140. doi: 10.1007/978-1-60761-175-2_7
  • Krämer A, Green J, Pollard J, et al. Causal analysis approaches in Ingenuity pathway analysis, Bioinforma. Oxf Engl. 2014;30:523–530. doi: 10.1093/bioinformatics/btt703
  • Huang DW, Sherman BT, Tan Q, et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8:R183. doi: 10.1186/gb-2007-8-9-r183