203
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Widespread genomic de novo DNA methylation occurs following CD8+ T cell activation and proliferation

, , & ORCID Icon
Article: 2367385 | Received 21 Mar 2024, Accepted 05 Jun 2024, Published online: 20 Jun 2024

References

  • Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447(7143):425–14. doi: 10.1038/nature05918
  • Dutta A, Venkataganesh H, Love PE. New insights into epigenetic regulation of T cell differentiation. Cells. 2021 Dec;10(12):3459. doi: 10.3390/cells10123459
  • Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol. 2009;10(3):192–206. doi: 10.1038/nrm2640
  • Zhang N, Bevan MJ. CD8(+) T cells: foot soldiers of the immune system. Immunity. 2011 Aug;35(2):161–168. doi: 10.1016/j.immuni.2011.07.010
  • Sigal LJ. Activation of CD8 T lymphocytes during viral infections. Encycl Immunobiol. 2016:286–290. doi:10.1016/B978-0-12-374279-7.14009-3.
  • Pardigon N, Bercovici N, Calbo S, et al. Role of co-stimulation in CD8+ T cell activation. Int Immunol. 1998 May;10(5):619–630. doi: 10.1093/intimm/10.5.619
  • Barber A. Costimulation of effector CD8+ T cells: which receptor is optimal for immunotherapy? MOJ Immunol. 2014;1(2):42–44. doi: 10.15406/moji.2014.01.00011
  • Curtsinger JM, Johnson CM, Mescher MF. CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine. J Immunol. 2003 Nov;171(10):5165–5171. doi: 10.4049/jimmunol.171.10.5165
  • Martin MD, Badovinac VP. Defining memory CD8 T cell. Front Immunol. 2018;9:2692. doi: 10.3389/fimmu.2018.02692
  • Sellars M, Huh JR, Day K, et al. Regulation of DNA methylation dictates Cd4 expression during the development of helper and cytotoxic T cell lineages. Nat Immunol. 2015 Jul;16(7):746–754. doi: 10.1038/ni.3198
  • Yang R, Cheng S, Luo N, et al. Distinct epigenetic features of tumor-reactive CD8+ T cells in colorectal cancer patients revealed by genome-wide DNA methylation analysis. Genome Biol [Internet]. 2019;21(1):2. doi: 10.1186/s13059-019-1921-y
  • Wong WK, Yin B, Lam CYK, et al. The interplay between epigenetic regulation and CD8(+) T cell differentiation/exhaustion for T cell immunotherapy. Front Cell Dev Biol. 2021;9:783227. doi: 10.3389/fcell.2021.783227
  • Pauken KE, Sammons MA, Odorizzi PM, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. 2016;354(6316):1160–1165. doi: 10.1126/science.aaf2807
  • Philip M, Fairchild L, Sun L, et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature. 2017 May;545(7655):452–456. doi: 10.1038/nature22367
  • Sen DR, Kaminski J, Barnitz RA, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354(6316):1165–1169. doi: 10.1126/science.aae0491
  • Wherry EJ. T cell exhaustion. Nat Immunol. 2011 Jun;12(6):492–499. doi: 10.1038/ni.2035
  • Bian Y, Li W, Kremer DM, et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature [Internet]. 2020;585(7824):277–282. doi: 10.1038/s41586-020-2682-1
  • Winterbourn CC, Kettle AJ, Hampton MB. Reactive oxygen species and neutrophil function. Annu Rev Biochem. 2016;85(1):765–792. doi: 10.1146/annurev-biochem-060815-014442
  • Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4(5):278–286. doi: 10.1038/nchembio.85
  • Peskin AV, Midwinter RG, Harwood DT, et al. Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity. Free Radic Biol Med. 2005;38(3):397–405. doi: 10.1016/j.freeradbiomed.2004.11.006
  • Peskin AV, Winterbourn CC. Histamine chloramine reactivity with thiol compounds, ascorbate, and methionine and with intracellular glutathione. Free Radic Biol Med. 2003;35(10):1252–1260. doi: 10.1016/S0891-5849(03)00502-1
  • O’Connor KM, Das AB, Winterbourn CC, et al. Inhibition of DNA methylation in proliferating human lymphoma cells by immune cell oxidants. J Biol Chem. 2020 Jun;295(23):7839–7848. doi: 10.1074/jbc.RA120.013092
  • Pullar JM, Vissers MCM, Winterbourn CC. Living with a killer: the effects of hypochlorous acid on mammalian cells. IUBMB Life. 2000;50(4–5):259–266. doi: 10.1080/15216540051080958
  • Seddon AR, Das AB, Hampton MB, et al. Site-specific decreases in DNA methylation in replicating cells following exposure to oxidative stress. Hum Mol Genet. 2022;32(September):1–17.
  • Hock BD, Mckenzie JL. Suppression of CD3/CD28 antibody stimulated responses by human granulocytic myeloid-derived suppressor cells: fact or artefact? Immunol Lett [Internet]. 2013 May [cited 2013 Sep 28];152(2):151–152. doi: 10.1016/j.imlet.2013.05.009
  • Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics. 2014 May;30(10):1363–1369. doi: 10.1093/bioinformatics/btu049
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res [Internet]. 2015 Apr 20;43(7):e47–e47. doi: 10.1093/nar/gkv007
  • Maksimovic J, Phipson B, Oshlack A. A cross-package bioconductor workflow for analysing methylation array data. F1000Res. 2017;5:1–51. doi: 10.12688/f1000research.8839.3
  • Maksimovic J, Gordon L, Oshlack AS. SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13(6):1–12. doi: 10.1186/gb-2012-13-6-r44
  • Shi W, Oshlack A, Smyth GK. Optimizing the noise versus bias trade-off for illumina whole genome expression BeadChips. Nucleic Acids Res. 2010;38(22):e204–e204. doi: 10.1093/nar/gkq871
  • Lin SM, Du P, Huber W, et al. Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res. 2008;36(2):1–9. doi: 10.1093/nar/gkm1075
  • Pidsley R, Zotenko E, Peters TJ, et al. Critical evaluation of the illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol [Internet]. 2016;17(1):1–17. doi: 10.1186/s13059-016-1066-1
  • Du P, Zhang X, Huang CC, et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinf [Internet]. 2010;11(1):587. doi: 10.1186/1471-2105-11-587
  • Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from illumina’s HumanMethylation450 platform. Bioinformatics. 2016;32(2):286–288. Oxford University Press. doi: 10.1093/bioinformatics/btv560
  • Wei Q, Khan IK, Ding Z, et al. NaviGO: interactive tool for visualization and functional similarity and coherence analysis with gene ontology. BMC Bioinf [Internet]. 2017;18(1):177. doi: 10.1186/s12859-017-1600-5
  • Schlicker A, Domingues FS, Rahnenführer J, et al. A new measure for functional similarity of gene products based on gene ontology. BMC Bioinf [Internet]. 2006;7(1):302. doi: 10.1186/1471-2105-7-302
  • Peters TJ, Buckley MJ, Eagleson GK, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8(1):6. doi: 10.1186/1756-8935-8-6
  • Seddon AR, Liau Y, Pace PE, et al. Genome-wide impact of hydrogen peroxide on maintenance DNA methylation in replicating cells. Epigenet Chromatin. 2021;14(1):1–16. doi: 10.1186/s13072-021-00388-6
  • Ebsen H, Lettau M, Kabelitz D, et al. Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol Immunol. 2015 Jun;65(2):416–428. doi: 10.1016/j.molimm.2015.02.008
  • Schulte M, Reiss K, Lettau M, et al. ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death Differ. 2007 May;14(5):1040–1049. doi: 10.1038/sj.cdd.4402101
  • Kawai Y, Ouchida R, Yamasaki S, et al. LAPTM5 promotes lysosomal degradation of intracellular CD3ζ but not of cell surface CD3ζ. Immunol Cell Biol. 2014;92(6):527–534. doi: 10.1038/icb.2014.18
  • Ouchida R, Kurosaki T, Wang J-Y. A role for lysosomal-associated protein transmembrane 5 in the negative regulation of surface B cell receptor levels and B cell activation. J Immunol. 2010;185(1):294–301. doi: 10.4049/jimmunol.1000371
  • Höllbacher B, Duhen T, Motley S, et al. Transcriptomic profiling of human effector and regulatory T cell subsets identifies predictive population signatures. ImmunoHorizons. 2020 Oct;4(10):585–596. doi: 10.4049/immunohorizons.2000037
  • Hock BD, Taylor KG, Cross NB, et al. Effect of activated human polymorphonuclear leucocytes on T lymphocyte proliferation and viability. Immunology. 2012 Nov;137(3):249–258. doi: 10.1111/imm.12004
  • Sinclair LV, Rolf J, Emslie E, et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol. 2013;14(5):500–508. doi: 10.1038/ni.2556
  • Chappell C, Beard C, Altman J, et al. DNA methylation by DNA methyltransferase 1 is critical for effector CD8 T cell expansion. J Immunol. 2006;176(8):4562–4572. doi: 10.4049/jimmunol.176.8.4562
  • Araki K, Turner AP, Shaffer VO, et al. mTOR regulates memory CD8 T-cell differentiation. Nature [Internet]. 2009;460(7251):108–112. doi: 10.1038/nature08155
  • Crompton JG, Narayanan M, Cuddapah S, et al. Lineage relationship of CD81 T cell subsets is revealed by progressive changes in the epigenetic landscape Joseph. Cell Mol Immunol [Internet]. 2015;13(4):502–513. doi: 10.1038/cmi.2015.32
  • Scharer CD, Barwick BG, Youngblood BA, et al. Global DNA methylation remodeling accompanies CD8 T cell effector function. J Immunol. 2013;191(6):3419–3429. doi: 10.4049/jimmunol.1301395