1,367
Views
13
CrossRef citations to date
0
Altmetric
Short Communication

The E3 ubiquitin ligase HOS1 is involved in ethylene regulation of leaf expansion in Arabidopsis

&
Article: e1003755 | Received 15 Dec 2014, Accepted 20 Dec 2014, Published online: 21 Apr 2015

References

  • Gonzalez N, Vanhaeren H, Inzé D. Leaf size control: complex coordination of cell division and expansion. Trends Plant Sci 2012; 17: 332–40; PMID:22401845; http://dx.doi.org/10.1016/j.tplants.2012.02.003
  • Kalve S, De Vos D, Beemster GT. Leaf development: a cellular perspective. Front Plant Sci 2014; 5: 362; PMID:25132838; http://dx.doi.org/10.3389/fpls.2014.00362
  • Qin M, Kuhn R, Moran S, Quail PH. Overexpressed phytochrome C has similar photosensory specificity to phytochrome B but a distinctive capacity to enhance primary leaf expansion. Plant J 1997; 12: 1163–72; PMID:9418054; http://dx.doi.org/10.1046/j.1365-313X.1997.12051163.x
  • Tang AC, Boyer JS. Growth-induced water potentials and the growth of maize leaves. J Exp Bot 2002; 53: 489–503; PMID:11847248; http://dx.doi.org/10.1093/jexbot/53.368.489
  • Keller CP, Stahlberg R, Barkawi LS, Cohen JD. Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis. Plant Physiol 2004; 134: 1217–26; PMID:14988474; http://dx.doi.org/10.1104/pp.103.032300
  • Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun TP. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J 2006; 45: 804–18; PMID:16460513; http://dx.doi.org/10.1111/j.1365-313X.2005.02642.x
  • Zhiponova MK, Vanhoutte I, Boudolf V, Betti C, Dhondt S, Coppens F, Mylle E, Maes S, González-García MP, Caño-Delgado AI, et al. Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. New Phytol 2013; 197: 490–502; PMID:23253334; http://dx.doi.org/10.1111/nph.12036
  • Smalle J, Haegman M, Kurepa J, Van Montagu M, Straeten DV. Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci USA 1997; 94: 2756–61; PMID:11038610; http://dx.doi.org/10.1073/pnas.94.6.2756
  • Yamasaki S, Fujii N, Matsuura S, Mizusawa H, Takahashi H. The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol 2001; 42: 608–19; PMID:11427680; http://dx.doi.org/10.1093/pcp/pce076
  • Butenko MA, Patterson SE, Grini PE, Stenvik GE, Amundsen SS, Mandal A, Aalen RB. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 2003; 15: 2296–307; PMID:12972671; http://dx.doi.org/10.1105/tpc.014365
  • Jing HC, Schippers JH, Hille J, Dijkwel PP. Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J Exp Bot 2005; 56: 2915–23; PMID:16172137; http://dx.doi.org/10.1093/jxb/eri287
  • Kevany BM, Tieman DM, Taylor MG, Cin VD, Klee HJ. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J 2007; 51: 458–67; PMID:17655616; http://dx.doi.org/10.1111/j.1365-313X.2007.03170.x
  • Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman CS, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, et al. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 2009; 21: 3803–22; PMID:20023197; http://dx.doi.org/10.1105/tpc.109.070201
  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 1997; 89: 1133–44; PMID:9215635; http://dx.doi.org/10.1016/S0092-8674(00)80300-1
  • Hua J, Chang C, Sun Q, Meyerowitz EM. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 1995; 269: 1712–4; PMID:7569898; http://dx.doi.org/10.1126/science.7569898
  • Tholen D, Voesenek LA, Poorter H. Ethylene insensitivity does not increase leaf area or relative growth rate in Arabidopsis, Nicotiana tabacum, and Petunia x hybrida. Plant Physiol 2004; 134: 1803–12; PMID:15064382; http://dx.doi.org/10.1104/pp.103.034389
  • Guo H, Ecker JR. The ethylene signaling pathway: new insights. Curr Opin Plant Biol 2004; 7: 40–9; PMID:14732440; http://dx.doi.org/10.1016/j.pbi.2003.11.011
  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 1993; 72: 427–41; PMID:8431946; http://dx.doi.org/10.1016/0092-8674(93)90119-B
  • Zhu Z, Guo H. Genetic basis of ethylene perception and signal transduction in Arabidopsis. J Integr Plant Biol 2008; 50: 808–15; PMID:18713391; http://dx.doi.org/10.1111/j.1744-7909.2008.00710.x
  • An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 2010; 22: 2384–401; PMID:20647342; http://dx.doi.org/10.1105/tpc.110.076588
  • Chang C, Shockey JA. The ethylene-response pathway: signal perception to gene regulation. Curr Opin Plant Biol 1999; 2: 352–8; PMID:10508761; http://dx.doi.org/10.1016/S1369-5266(99)00004-7
  • Ishitani M, Xiong L, Lee H, Stevenson B, Zhu JK. HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 1998; 10: 1151–61; PMID:9668134; http://dx.doi.org/10.1105/tpc.10.7.1151
  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 2003; 17: 1043–54; PMID:12672693; http://dx.doi.org/10.1101/gad.1077503
  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 2006; 103: 8281–6; PMID:16702557; http://dx.doi.org/10.1073/pnas.0602874103
  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 1998; 16: 433–42; PMID:9881163; http://dx.doi.org/10.1046/j.1365-313x.1998.00310.x
  • Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu JK. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev 2001; 15: 912–24; PMID:11297514; http://dx.doi.org/10.1101/gad.866801
  • Lee K, Seo PJ. The Arabidopsis E3 ubiquitin ligase HOS1 contributes to auxin biosynthesis in the control of hypocotyl elongation. Plant Growth Regul 2014; http://dx.doi.org/10.1007/s10725-014-9985-xx
  • Lazaro A, Valverde F, Piñeiro M, Jarillo JA. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell 2012; 24: 982–99; PMID:22408073; http://dx.doi.org/10.1105/tpc.110.081885
  • Rodríguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 1999; 283: 996–8; PMID:9974395; http://dx.doi.org/10.1126/science.283.5404.996
  • McDaniel BK, Binder BM. ethylene receptor 1 (etr1) is sufficient and has the predominant role in mediating inhibition of ethylene responses by silver in Arabidopsis thaliana. J Biol Chem 2012; 287: 26094–103; PMID:22692214; http://dx.doi.org/10.1074/jbc.M112.383034
  • Lee SH, Reid DM. The role of endogenous ethylene in the expansion of Helianthus annuus leaves. Can J Bot 1997; 75: 501–8; PMID:11541081; http://dx.doi.org/10.1139/b97-054
  • Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol 2002; 130: 1908–17; PMID:12481073; http://dx.doi.org/10.1104/pp.010546
  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 2007; 19: 2169–85; PMID:17630276; http://dx.doi.org/10.1105/tpc.107.052068
  • Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G, Bhalerao R, Ljung K, Bennett MJ. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 2007; 19: 2186–96; PMID:17630275; http://dx.doi.org/10.1105/tpc.107.052100
  • Gorsuch PA, Pandey S, Atkin OK. Thermal de-acclimation: how permanent are leaf phenotypes when cold-acclimated plants experience warming? Plant Cell Environ 2010; 33: 1124–37; PMID:20199622; http://dx.doi.org/10.1111/j.1365-3040.2009.02074.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.