1,385
Views
11
CrossRef citations to date
0
Altmetric
Mini-Review

Multiple photomorphogenic repressors work in concert to regulate Arabidopsis seedling development

, , &
Article: e1011934 | Received 26 Dec 2014, Accepted 21 Jan 2015, Published online: 21 Apr 2015

References

  • Von Arnim A, Deng XW. Light control of seedling development. Annu Rev Plant Physiol Plant Mol Biol 1996; 47:215-43; PMID:15012288; http://dx.doi.org/10.1146/annurev.arplant.47.1.215
  • Sullivan JA, Shirasu K, Deng XW. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat. Rev. Genet 2003; 4: 948-58; PMID:14631355; http://dx.doi.org/10.1038/nrg1228
  • Deng XW, Matsui M, Wei N, Wagner D, Chu AM, Feldmann KA, Quail PH. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell 1992; 71:791-801; PMID:1423630; http://dx.doi.org/10.1016/0092-8674(92)90555-Q
  • Hoecker U, Quail PH. The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis. J Biol Chem 2001; 276:38173-8; PMID:11461903
  • Zhu D, Maier A, Lee JH, Laubinger S, Saijo Y, Wang H, Qu LJ, Hoecker U, Deng XW. Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHO GENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell 2008; 20:2307-23; PMID:18812498; http://dx.doi.org/10.1105/tpc.107.056580
  • Osterlund MT, Hardtke CS, Wei N, Deng XW. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 2000; 405:462-6; PMID:10839542; http://dx.doi.org/10.1038/35013076
  • Holm M, Ma LG, Qu LJ, Deng XW. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 2002; 16:1247-59; PMID:12023303; http://dx.doi.org/10.1101/gad.969702
  • Jang IC, Yang JY, Seo HS, Chua NH. HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev 2005; 19:593-602; PMID:15741320; http://dx.doi.org/10.1101/gad.1247205
  • von Arnim AG, Osterlund MT, Kwok SF, Deng XW. Genetic and developmental control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis. Plant Physiol 1997; 114:779-88; PMID:9232869; http://dx.doi.org/10.1104/pp.114.3.779
  • Pacin M, Legris M, Casal JJ. Rapid decline in nuclear constitutive photomorphogenesis1 abundance anticipates the stabilization of its target elongated hypocotyl5 in the light. Plant Physiol 2014; 164:1134-8; PMID:24434030; http://dx.doi.org/10.1104/pp.113.234245
  • Wei N, Chamovitz DA, Deng XW. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 1994; 78:117-24; PMID:8033203
  • Chamovitz, D. A., Wei N, Osterlund MT, von Arnim AG, Staub JM, Matsui M, Deng XW. The COP9 complex a novelmultisubunit nuclear regulator involved in light control of a plant developmental switch. Cell 1996; 86:115-21; PMID:8689678; http://dx.doi.org/10.1016/S0092-8674(00)80082-3
  • Wei, N, Tsuge T, Serino G, Dohmae N, Takio K, Matsui M, Deng XW. The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. Curr Biol 1998; 8:919-22; PMID:9707402; http://dx.doi.org/10.1016/S0960-9822(07)00372-7
  • Lyapina S, Cope G, Shevchenko A, Serino G, Tsuge T, Zhou C, Wolf DA, Wei N, Deshaies RJ. Promotion ofNEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 2001; 292:1382-5; PMID:11337588; http://dx.doi.org/10.1126/science.1059780
  • Schwechheimer C, Serino G, Callis J, Crosby WL, Lyapina S, Deshaies RJ, Gray WM, Estelle M, Deng XW Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science 2001; 292:1379-82; PMID:11337587; http://dx.doi.org/10.1126/science.1059776
  • Yanagawa Y, Sullivan JA, Komatsu S, Gusmaroli G, Suzuki G, Yin J, Ishibashi T, Saijo Y, Rubio V, Kimura S, et al. Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes Dev 2004; 18:2172-81; PMID:15342494; http://dx.doi.org/10.1101/gad.1229504
  • Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 1989; 58:991-9; PMID:2776216; http://dx.doi.org/10.1016/0092-8674(89)90950-1
  • Benvenuto G, Formiggini F, Laflamme P, Malakhov M, Bowler C. The photomorphogensis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosomal context. Curr Biol 2002; 12:1529-34; PMID:12225670; http://dx.doi.org/10.1016/S0960-9822(02)01105-3
  • Schroeder DF, Gahrtz M, Maxwell BB, Cook RK, Kan JM, Alonso JM, Ecker JR, Chory J. De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis. Curr Biol 2002; 12:1462-72; PMID:12225661; http://dx.doi.org/10.1016/S0960-9822(02)01106-5
  • Hu J, Aguirre M, Peto C, Alonso J, Ecker J, Chory J. A role for peroxisomes in photomorphogenesis and development of Arabidopsis. Science 2002; 297:405-9; PMID:12130786; http://dx.doi.org/10.1126/science.1073633
  • Lau OS, Huang X, Charron JB, Lee JH, Li G, Deng XW. Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock. Mol Cell 2011; 43:703-12; PMID:21884973; http://dx.doi.org/10.1016/j.molcel.2011.07.013
  • Suzuki G, Yanagawa Y, Kwok SF, Matsui M, Deng XW. Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. Genes Dev 2002; 16:554-9; PMID:11877375; http://dx.doi.org/10.1101/gad.964602
  • Ni M, Tepperman JM, Quail PH. PIF3, a phytochrome- interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 1998; 95:657-67; PMID:9845368; http://dx.doi.org/10.1016/S0092-8674(00)81636-0
  • Ni M, Tepperman JM, Quail PH. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 1999; 400:781-4; PMID:10466729; http://dx.doi.org/10.1038/23500
  • Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail PH. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science 2004; 305:1937-41; PMID:15448264; http://dx.doi.org/10.1126/science.1099728
  • Oh E, Kim J, Park E, Kim JI, Kang C, Choi G. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell 2004; 16:3045-58; PMID:15486102; http://dx.doi.org/10.1105/tpc.104.025163
  • Kim J, Yi H, Choi G, Shin B, Song PS. Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell 2003; 15:2399-407; PMID:14508006; http://dx.doi.org/10.1105/tpc.014498
  • Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 2008; 53:312-23; PMID:18047474; http://dx.doi.org/10.1111/j.1365-313X.2007.03341.x
  • Shin J, Kim K, Kang H, Zulfugarov IS, Bae G, Lee CH, Lee D, Choi G. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc Natl Acad Sci U S A 2009; 106:7660-5; PMID:19380720; http://dx.doi.org/10.1073/pnas.0812219106
  • Leivar P, Monte E, Oka Y, Liu T, Carle C, Castillon A, Huq E, Quail PH. Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr Biol 2008; 18:1815-23; PMID:19062289; http://dx.doi.org/10.1016/j.cub.2008.10.058
  • Bauer D, Viczian A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KC, Adám E, Fejes E, Schäfer E, et al. Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 2004; 16:1433-45; PMID:15155879; http://dx.doi.org/10.1105/tpc.021568
  • Al-Sady B, Ni W, Kircher S, Schafer E, Quail PH. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell 2006; 23:439-46; PMID:16885032; http://dx.doi.org/10.1016/j.molcel.2006.06.011
  • Ni W, Xu SL, Tepperman JM, Stanley DJ, Maltby DA, Gross JD, Burlingame AL, Wang ZY, Quail PH. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 2014; 344:1160-4; PMID:24904166; http://dx.doi.org/10.1126/science.1250778
  • Chen H, Shen Y, Tang X, Yu L, Wang J, Guo L, Zhang Y, Zhang H, Feng S, Strickland E, et al. Arabidopsis CULLIN4 Forms an E3 Ubiquitin Ligase with RBX1 and the CDD Complex in Mediating Light Control of Development. Plant Cell 2006; 18:1991-2004; PMID:16844902; http://dx.doi.org/10.1105/tpc.106.043224
  • Chen H, Huang X, Gusmaroli G, Terzaghi W, Lau OS, Yanagawa Y, Zhang Y, Li J, Lee JH, Zhu D, et al. Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell 2010; 22:108-23; PMID:20061554; http://dx.doi.org/10.1105/tpc.109.065490
  • Huang X, Ouyang X, Yang P, Lau OS, Chen L, Wei N, Deng XW. Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B. Proc Natl Acad Sci U S A 2013; 110:16669-74; PMID:24067658; http://dx.doi.org/10.1073/pnas.1316622110
  • Dong J, Tang D, Gao Z, Yu R, Li K, He H, Terzaghi W, Deng XW, Chen H. Arabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark. Plant Cell 2014; 26:3630-45; PMID:25248553; http://dx.doi.org/10.1105/tpc.114.130666
  • Xu X, Paik I, Zhu L, Bu Q, Huang X, Deng XW, Huq E. PHYTOCHROME INTERACTING FACTOR1 Enhances the E3 Ligase Activity of CONSTITUTIVE PHOTOMORPHOGENIC1 to Synergistically Repress Photomorphogenesis in Arabidopsis. Plant Cell 2014; 26:1992-2006; PMID:24858936; http://dx.doi.org/10.1105/tpc.114.125591

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.