1,004
Views
4
CrossRef citations to date
0
Altmetric
Article Addendum

Phytosiderophores revisited: 2′-deoxymugineic acid-mediated iron uptake triggers nitrogen assimilation in rice (Oryza sativa L.) seedlings

, , & ORCID Icon
Article: e1031940 | Received 06 Mar 2015, Accepted 14 Mar 2015, Published online: 15 Jul 2015

References

  • Mori S. Iron acquisition by plants. Curr Opin Plant Biol 1999; 2:250-53; PMID:10375565; http://dx.doi.org/10.1016/S1369-5266(99)80043-0
  • Ma JF, Nomoto K. Effective regulation of iron acquisition in graminaceous plants. The role of mugineic acids as phytosiderophores. Physiol Plant 1996; 97:609-17; http://dx.doi.org/10.1111/j.1399-3054.1996.tb00522.x
  • Conte SS, Walker EL. Transporters contributing to iron trafficking in plants. Mol Plant 2011; 4:464-76; PMID:21447758; http://dx.doi.org/10.1093/mp/ssr015
  • Curie C, Briat JF. Iron transport and signaling in plants. Annu Rev Plant Biol 2003; 54:183-206; PMID:14509968; http://dx.doi.org/10.1146/annurev.arplant.54.031902.135018
  • Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 2012; 63:131-52; PMID:22404471; http://dx.doi.org/10.1146/annurev-arplant-042811-105522
  • Chaney RL, Brown JC, Tiffin LO. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 1972; 50:208-13; PMID:16658143; http://dx.doi.org/10.1104/pp.50.2.208
  • Connolly EL, Fett JP, Guerinot ML. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 2002; 14:1347-57; PMID:12084831; http://dx.doi.org/10.1105/tpc.001263
  • Korshunova Y, Eide D, Gregg Clark W, Lou Guerinot M, Pakrasi H. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 1999; 40:37-44; PMID:10394943; http://dx.doi.org/10.1023/A:1026438615520
  • Römheld V, Marschner H. Mechanism of iron uptake by peanut plants: I. FeIII reduction, chelate splitting, and release of phenolics. Plant Physiol 1983; 71:949-54; PMID:16662934; http://dx.doi.org/10.1104/pp.71.4.949
  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 2002; 14:1223-33; PMID:12084823; http://dx.doi.org/10.1105/tpc.001388
  • Römheld V, Marschner H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 1986; 80:175-80; PMID:16664577; http://dx.doi.org/10.1104/pp.80.1.175
  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 2009; 103:1-11; PMID:18977764; http://dx.doi.org/10.1093/aob/mcn207
  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 2001; 409:346-49; PMID:11201743; http://dx.doi.org/10.1038/35053080
  • Takagi S. Naturally occurring iron-chelating compounds in oat- and rice-root washings. I. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 1976:423-33; http://dx.doi.org/10.1080/00380768.1976.10433004
  • Takemoto T, Nomoto K, Fushiya S, Ouchi R, Kusano G, Hikino H, et al. Structure of mugineic acid, a new amino acid possessing an iron-chelating activity from roots washings of water-cultured Hordeum vulgare L. Proc Japan Acad 1978; 54:469-73; http://dx.doi.org/10.2183/pjab.54.469
  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotech 2001; 19:466-69; PMID:11329018; http://dx.doi.org/10.1038/88143
  • Suzuki M, Morikawa KC, Nakanishi H, Takahashi M, Saigusa M, Mori S, et al. Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci Plant Nutr 2008; 54:77-85; http://dx.doi.org/10.1111/j.1747-0765.2007.00205.x
  • Araki R, Kousaka K, Namba K, Murata Y, Murata J. 2′-Deoxymugineic acid promotes growth of rice (Oryza sativa L.) by orchestrating iron and nitrate uptake processes under high pH conditions. Plant J 2015; 81:233-46; PMID:25393516; http://dx.doi.org/10.1111/tpj.12722
  • Namba K, Murata Y, Horikawa M, Iwashita T, Kusumoto S. A practical synthesis of the phytosiderophore 2′-deoxymugineic acid: a key to the mechanistic study of iron acquisition by graminaceous plants. Angew Chem Int Ed 2007; 46:7060-63; PMID:17691091; http://dx.doi.org/10.1002/anie.200702403
  • Feng H, Yan M, Fan X, Li B, Shen Q, Miller AJ, Xu G. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot 2011; 62:2319-32; PMID:21220781; http://dx.doi.org/10.1093/jxb/erq403
  • Kobayashi T, Nishizawa NK. Iron sensors and signals in response to iron deficiency. Plant Sci 2014; 224:36-43; PMID:24908504; http://dx.doi.org/10.1016/j.plantsci.2014.04.002
  • Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trend Plant Sci 2012; 17:478-86; http://dx.doi.org/10.1016/j.tplants.2012.04.001
  • Ahmed E, Holmström SJM. Siderophores in environmental research: roles and applications. Microb Biotechnol 2014; 7:196-208; PMID:24576157; http://dx.doi.org/10.1111/1751-7915.12117
  • Wang R, Okamoto M, Xing X, Crawford NM. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 2003; 132:556-67; PMID:12805587; http://dx.doi.org/10.1104/pp.103.021253