790
Views
10
CrossRef citations to date
0
Altmetric
Article Addendum

THB1 regulates nitrate reductase activity and THB1 and THB2 transcription differentially respond to NO and the nitrate/ammonium balance in Chlamydomonas

, , &
Article: e1042638 | Received 23 Mar 2015, Accepted 10 Apr 2015, Published online: 31 Aug 2015

References

  • Rosales EP, Iannone MF, Groppa MD, Benavides MP. Nitric oxide inhibits nitrate reductase activity in wheat leaves. Plant Physiol Biochem 2011; 49:124-30; PMID:21093280; http://dx.doi.org/10.1016/j.plaphy.2010.10.009
  • Jin CW, Du ST, Zhang YS, Lin XY, Tang CX. Differential regulatory role of nitric oxide in mediating nitrate reductase activity in roots of tomato (Solanum lycocarpum). Ann Bot 2009; 104:9-17; PMID:19376780; http://dx.doi.org/10.1093/aob/mcp087
  • Franco AR, Cárdenas J, Fernandez E. Involvement of Reversible Inactivation in the Regulation of Nitrate Reductase Enzyme Levels in Chlamydomonas reinhardtii. Plant Physiol 1987; 84:665-9; PMID:16665499; http://dx.doi.org/10.1104/pp.84.3.665
  • Sanz-Luque E, Ocana-Calahorro F, Llamas A, Galvan A, Fernandez E. Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii. J Exp Bot 2013; 64:3373-83; PMID:23918969; http://dx.doi.org/10.1093/jxb/ert175
  • Smagghe BJ, Trent JT, Hargrove MS. NO Dioxygenase Activity in Hemoglobins Is Ubiquitous In Vitro, but Limited by Reduction In Vivo. PLoS ONE 2008; 3:e2039; http://dx.doi.org/10.1371/journal.pone.0002039
  • Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M. Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 2004; 16:2785-94; PMID:15367716; http://dx.doi.org/10.1105/tpc.104.025379
  • Sainz M, Pérez-Rontomé C, Ramos J, Mulet JM, James EK, Bhattacharjee U, Petrich JW, Becana M. Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. Plant J 2013; 76:875-87; PMID:24118423; http://dx.doi.org/10.1111/tpj.12340
  • Bonamore A, Boffi A. Flavohemoglobin: Structure and reactivity. IUBMB Life 2007; 60:19-28; http://dx.doi.org/10.1002/iub.9
  • Ouellet H, Ouellet Y, Richard C, Labarre M, Wittenberg B, Wittenberg J, Guertin M. Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc Natl Acad Sci USA 2002; 99:5902-7; PMID:11959913; http://dx.doi.org/10.1073/pnas.092017799
  • Singh S, Thakur N, Oliveira A, Petruk AA, Hade MD, Sethi D, Bidon-Chanal A, Martí MA, Datta H, Parkesh R, et al. Mechanistic Insight into the Enzymatic Reduction of Truncated Hemoglobin N of Mycobacterium tuberculosis: Role of the cd loop and pre-a motif in electron cycling. J Biol Chem 2014; 289:21573-83; PMID:24928505; http://dx.doi.org/10.1074/jbc.M114.578187
  • Stewart JJ, Coyne KJ. Analysis of raphidophyte assimilatory nitrate reductase reveals unique domain architecture incorporating a 2/2 hemoglobin. Plant Mol Biol 2011; 77:565-75; PMID:22038092; http://dx.doi.org/10.1007/s11103-011-9831-8
  • Trevisan S, Manoli A, Begheldo M, Nonis A, Enna M, Vaccaro S, Caporale G, Ruperti B, Quaggiotti S. Transcriptome analysis reveals coordinated spatiotemporal regulation of hemoglobin and nitrate reductase in response to nitrate in maize roots. New Phytol 2011; 192:338-52; PMID:21762167; http://dx.doi.org/10.1111/j.1469-8137.2011.03822.x
  • Yamasaki H, Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 2000; 468:89-92; PMID:10683447; http://dx.doi.org/10.1016/S0014-5793(00)01203-5
  • Sakihama Y, Nakamura S, Yamasaki H. Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms. Plant Cell Physiol 2002; 43:290-7; PMID:11917083; http://dx.doi.org/10.1093/pcp/pcf034
  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 2002; 53:103-10; PMID:11741046; http://dx.doi.org/10.1093/jexbot/53.366.103
  • Hemschemeier A, Düner M, Casero D, Merchant SS, Winkler M, Happe T. Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide. Proc Natl Acad Sci USA 2013; 110:10854-9; PMID:23754374; http://dx.doi.org/10.1073/pnas.1302592110
  • de Montaigu A, Sanz-Luque E, Macias MI, Galvan A, Fernandez E. Transcriptional regulation of CDP1 and CYG56 is required for proper NH4+ sensing in Chlamydomonas. J Exp Bot 2011; 62:1425-37; PMID:21127023; http://dx.doi.org/10.1093/jxb/erq384
  • de Montaigu A, Sanz-Luque E, Galvan A, Fernandez E. A soluble guanylate cyclase mediates negative signaling by ammonium on expression of nitrate reductase in Chlamydomonas. Plant Cell 2010; 22:1532-48; PMID:20442374; http://dx.doi.org/10.1105/tpc.108.062380
  • Fernandez E, Cardenas J. Regulation of the nitrate-reducing system enzymes in wild-type and mutant strains of Chlamydomonas reinhardii. Molec Gen Genet 1982; 186:164-9; PMID:6810063; http://dx.doi.org/10.1007/BF00331846

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.