1,307
Views
20
CrossRef citations to date
0
Altmetric
Research Paper

Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings

&
Article: e1054087 | Received 04 May 2015, Accepted 18 May 2015, Published online: 31 Aug 2015

References

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 2005; 139:920-34; PMID:16183851; http://dx.doi.org/10.1104/pp.105.061382
  • Drummond RSM, Martínez-Sánchez NM, Janssen BJ, Templeton KR, Simons JL, Quinn BD, Karunairetnam S, Snowden KC. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia. Plant Physiol 2009; 151:1867-77; PMID:19846541; http://dx.doi.org/10.1104/pp.109.146720
  • Beveridge CA, Kyozuka J. New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol 2010; 13:34-9; PMID:19913454; http://dx.doi.org/10.1016/j.pbi.2009.10.003
  • Kloer DP, Ruch S, Al-Babili S, Beyer P, Schulz GE. The structure of a retinal-forming carotenoid oxygenase. Science 2005; 308:267-9; PMID:15821095; http://dx.doi.org/10.1126/science.1108965
  • Sui X, Kiser PD, Von Lintig J, Palczewski K. Structural basis of carotenoid cleavage: From bacteria to mammals. Arch Biochem Biophys 2013; 539:203-13; PMID:23827316; http://dx.doi.org/10.1016/j.abb.2013.06.012
  • Kloer DP, Schulz GE. Structural and biological aspects of carotenoid cleavage. Cell Mol Life Sci 2006; 63:2291-303; PMID:16909205; http://dx.doi.org/10.1007/s00018-006-6176-6
  • Borowski T, Blomberg MRA, Siegbahn PEM. Reaction mechanism of apocarotenoid oxygenase (ACO): A DFT study. Chem Eur J 2008; 14:2264-76; PMID:18181127; http://dx.doi.org/10.1002/chem.200701344
  • Taiz L, Zeiger E. Plant Physiology. Sunderland, USA: Sinauer Associates Inc.; 2014
  • Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 2009; 150:482-93; PMID:19321710; http://dx.doi.org/10.1104/pp.108.134783
  • Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Müller D, Domagalska MA, Leyser O. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 2010; 137:2905-13; PMID:20667910; http://dx.doi.org/10.1242/dev.051987
  • Shinohara N, Taylor C, Leyser O. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 2013; 11:e1001474; PMID:23382651; http://dx.doi.org/10.1371/journal.pbio.1001474
  • Foo E, Reid JB. Strigolactones: New physiological roles for an ancient signal. J Plant Growth Regul 2013; 32:429-42; http://dx.doi.org/10.1007/s00344-012-9304-6
  • Cheng X, Ruyter-Spira C, Bouwmeester H. The interaction between strigolactones and other plant hormones in the regulation of plant development. Front Plant Sci 2013; 4:1–16; PMID:23785379; http://dx.doi.org/10.3389/fpls.2013.00199
  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, et al. Strigolactone inhibition of shoot branching. Nature 2008; 455:189-94; PMID:18690209; http://dx.doi.org/10.1038/nature07271
  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 2008; 455:195-200; PMID:18690207; http://dx.doi.org/10.1038/nature07272
  • Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 2005; 17:464-74; PMID:15659639; http://dx.doi.org/10.1105/tpc.104.026716
  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development 1993; 119:71-84; PMID:8275865
  • Torrey JG. The induction of lateral roots by indoleacetic acid and root decapitation. Am J Bot 1950; 37:257-64; http://dx.doi.org/10.2307/2437843
  • Blakely LM, Durham M, Evans TA, Blakely RM. Experimental studies on lateral root formation in radish seedling roots. I. General methods, developmental stages, and spontaneous formation of laterals. Bot Gaz 1982; 143:341-52; http://dx.doi.org/10.1086/337308
  • Klee HJ, Horsch RB, Hinchee MA, Hein MB, Hoffmann NL. The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Gene Dev 1987; 1:86-96; http://dx.doi.org/10.1101/gad.1.1.86
  • Kares C, Prinsen E, Van Onckelen H, Otten L. IAA synthesis and root induction with iaa genes under heat shock promoter control. Plant Mol Biol 1990; 15:225-36; PMID:2129423; http://dx.doi.org/10.1007/BF00036909
  • De Smet I. Lateral root initiation: one step at a time. New Phytol 2012; 193:867-73; PMID:22403823; http://dx.doi.org/10.1111/j.1469-8137.2011.03996.x
  • Celenza JL Jr, Grisafi PL, Fink GR. A pathway for lateral root formation in Arabidopsis thaliana. Gene Dev 2015; 9:2131-42; http://dx.doi.org/10.1101/gad.9.17.2131
  • Negi S, Ivanchenko MG, Muday GK. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 2008; 55:175-87; PMID:18363780; http://dx.doi.org/10.1111/j.1365-313X.2008.03495.x
  • Negi S, Sukumar P, Liu X, Cohen JD, Muday GK. Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J 2010; 61:3-15; PMID:19793078; http://dx.doi.org/10.1111/j.1365-313X.2009.04027.x
  • Lewis DR, Negi S, Sukumar P, Muday GK. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 2011; 138:3485-95; PMID:21771812; http://dx.doi.org/10.1242/dev.065102
  • Muday GK, Rahman A, Binder BM. Auxin and ethylene: collaborators or competitors? Trends Plant Sci 2012; 17:181-95; PMID:22406007; http://dx.doi.org/10.1016/j.tplants.2012.02.001
  • Guo D, Liang J, Qiao Y, Yan Y, Li L, Dai Y. Involvement of G1-to-S transition and AhAUX-dependent auxin transport in abscisic acid-induced inhibition of lateral root primodia initiation in Arachis hypogaea L. J Plant Physiol 2012; 169:1102-11; PMID:22633819; http://dx.doi.org/10.1016/j.jplph.2012.03.014
  • Bielach A, Podlesáková K, Marhavy P, Duclercq J, Cuesta C, Müller B, Grunewald W, Tarkowski P, Benková E. Spatio temporal regulation of lateral root organogenesis in Arabidopsis by cytokinin. Plant Cell 2012; 24:3967-81; PMID:23054471; http://dx.doi.org/10.1105/tpc.112.103044
  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 2004; 134:1624-31; PMID:15047895; http://dx.doi.org/10.1104/pp.103.036897
  • Koltai H, Dor E, Hershenhorn J, Joel DM, Weininger S, Lekalla S, Shealtiel H, Bhattacharya C, Eliahu E, Resnick N, et al. Strigolactones'effect on root growth and root hair elongation may be mediated by auxin efflux carriers. J Plant Growth Regul 2010; 29:129-36; http://dx.doi.org/10.1007/s00344-009-9122-7
  • Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H. Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J Exp Bot 2011; 62:2915-24; PMID:21307387; http://dx.doi.org/10.1093/jxb/erq464
  • Ruyter-Spira C, Kohlen W, Charnikhova T, Van Zeijl A, Van Bezouwen L, De Ruijter N, Cardoso C, López-Ráez JA, Matusova R, Bours R, et al. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 2011; 155:721-34; PMID:21119044; http://dx.doi.org/10.1104/pp.110.166645
  • Li SW, Xue L, Xu S, Feng H, An L. Mediators, genes and signaling in adventitious rooting. Bot Rev 2009; 75: 230-47; http://dx.doi.org/10.1007/s12229-009-9029-9
  • Yadav S, David A, Bhatla SC. Nitric oxide modulates specific steps of auxin-induced adventitious rooting in sunflower. Plant Signal Behav 2010; 5:1163-66; PMID:20948300; http://dx.doi.org/10.4161/psb.5.10.12159
  • Bellamine J, Penel C, Greppin H, Gaspar T. Confirmation of the role of auxin and calcium in the late phases of adventitious root formation. Plant Growth Regul 1998; 26:191-94; http://dx.doi.org/10.1023/A:1006182801823
  • Li YH, Zou MH, Feng BH, Huang X, Zhang Z, Sun GM. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments. Plant Physiol Biochem 2012; 55:33-42; PMID:22522578; http://dx.doi.org/10.1016/j.plaphy.2012.03.012
  • Sukumar P, Maloney GS, Muday GK. Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiol 2013; 162:1392-405; PMID:23677937; http://dx.doi.org/10.1104/pp.113.217174
  • Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ. Arabidopsis lateral root development: an emerging story. Trends Plant Sci 2009; 14:399-408; PMID:19559642; http://dx.doi.org/10.1016/j.tplants.2009.05.002
  • Péret B, Middleton AM, French AP, Larrieu A, Bishopp A, Njo M, Wells DM, Porco S, Mellor N, Band LR, et al. Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Mol Syst Biol 2013; 9:699; PMID:24150423; http://dx.doi.org/10.1038/msb.2013.43
  • Dastidar MG, Jouannet V, Maizel A. Root branching: mechanisms, robustness and plasticity. WIREs Dev Biol 2012; 1:329-343; PMID:23801487; http://dx.doi.org/10.1002/wdev.17
  • Lavenus J, Goh T, Roberts I, Guyomarc'h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L. Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 2013; 18:450-58; PMID:23701908; http://dx.doi.org/10.1016/j.tplants.2013.04.006
  • De Klerk GJ, Keppel M, Ter Brugge J, Meekes H. Timing of the phases in adventitious root formation in apple microcuttings. J Exp Bot 1995; 46:965-72; http://dx.doi.org/10.1093/jxb/46.8.965
  • De Klerk GJ, Van Der Krieken W, De Jong JC. The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 1999; 35:189-199; http://dx.doi.org/10.1007/s11627-999-0076-z
  • Bellamine J, Penel C, Greppin H, Gaspar T. Confirmation of the role of auxin and calcium in the late phases of adventitious root formation. Plant Growth Regul 1998; 26:191-94; http://dx.doi.org/10.1023/A:1006182801823
  • Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T, et al. Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 2012; 158:1976-87; PMID:22323776; http://dx.doi.org/10.1104/pp.111.187104
  • Pacurar DI, Perrone I, Bellini C. Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol Plant 2014; 151:83-96; PMID:24547793; http://dx.doi.org/10.1111/ppl.12171
  • Shen H, Luong P, Huq E. The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 2007; 145:1471-83; PMID:17951458; http://dx.doi.org/10.1104/pp.107.107227
  • Shen H, Zhu L, Bu QY, Huq E. MAX2 affects multiple hormones to promote photomorphogenesis. Mol Plant 2012; 5:750-62; PMID:22466576; http://dx.doi.org/10.1093/mp/sss029
  • Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P. A small molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 2010; 6:741-49; PMID:20818397; http://dx.doi.org/10.1038/nchembio.435
  • Hu Z, Yan H, Yang J, Yamaguchi S, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M. Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness. Plant Cell Physiol 2010; 51:1136-42; PMID:20498118; http://dx.doi.org/10.1093/pcp/pcq075
  • Urquhart S, Foo E, Reid JB. The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting. Physiol Plant 2015; 153:392-402; PMID:24962787; http://dx.doi.org/10.1111/ppl.12246
  • Ivanchenko MG, Muday GK, Dubrovsky JG. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 2008; 55:335-47
  • Jusaitis M. Rooting response of mung bean cuttings to 1- aminocyclopropane-1-carboxylic acid and inhibitors of ethylene biosynthesis. Sci Hortic 1986; 29:77-85; http://dx.doi.org/10.1016/0304-4238(86)90033-6
  • Liu J, Mukherjee I, Reid DM. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. III. The role of ethylene. Physiol Plant 1990; 78:268-76; http://dx.doi.org/10.1111/j.1399-3054.1990.tb02091.x
  • Pan R, Wang J, Tian X. Influence of ethylene on adventitious root formation in mung bean hypocotyl cuttings. Plant Growth Regul 2002; 36:135-39; http://dx.doi.org/10.1023/A:1015051725089
  • Drew MC, Jackson MB, Giffard S. Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L. Planta 1979; 147:83-88; PMID:24310899; http://dx.doi.org/10.1007/BF00384595
  • Drew MC, He CJ, Morgan PW. Decreased ethylene biosynthesis, and induction of aerenchyma, by nitrogen- or phosphate- starvation in adventitious roots of Zea mays L. Plant Physiol 1989; 91:266-71; PMID:16667008; http://dx.doi.org/10.1104/pp.91.1.266
  • Stöhr C, Stremlau S. Formation and possible roles of nitric oxide in plant roots. J Exp Bot 2006; 57:463-70; PMID:16356940; http://dx.doi.org/10.1093/jxb/erj058
  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L. Nitric oxide is required for root organogenesis. Plant Physiol 2002; 129:954-56; PMID:12114551; http://dx.doi.org/10.1104/pp.004036
  • Pagnussat GC, Lanteri ML, Lamattina L. Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 2003; 132:1241-48; PMID:12857806; http://dx.doi.org/10.1104/pp.103.022228
  • Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 2004; 135:279-86; PMID:15122018; http://dx.doi.org/10.1104/pp.103.038554
  • Lanteri ML, Pagnussat GC, Lamattina L. Calcium and calcium dependent protein kinases are involved in nitric oxide-and auxin induced adventitious root formation in cucumber. J Exp Bot 2006; 57:1341-51; PMID:16531462; http://dx.doi.org/10.1093/jxb/erj109
  • Mendez-Bravo A, Raya-Gonzalez J, Herrera-Estrella L, López-Bucio J. Nitric oxide is involved in alkamide-induced lateral root development in Arabidopsis. Plant Cell Physiol 2010; 51:1612-26; PMID:20685967; http://dx.doi.org/10.1093/pcp/pcq117
  • De Rybel B, Audenaert D, Xuan W, Overvoorde P, Strader LC, Kepinski S, Hoye R, Brisbois R, Parizot B, Vanneste S, et al. A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nat Chem Biol 2012; 8:798-805; PMID:22885787; http://dx.doi.org/10.1038/nchembio.1044
  • Schlicht M, Ludwig-Müller J, Burbach C, Volkmann D, Baluska F. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. New Phytol 2013; 200:473-82; PMID:23795714; http://dx.doi.org/10.1111/nph.12377
  • Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG, Yoneyama K, Nogué F, Rameau C. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development 2011; 138:1531-39; PMID:21367820; http://dx.doi.org/10.1242/dev.058495
  • Porcel R, Aroca R, Ruiz-Lozano JM. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustainable Dev 2012; 32:181-200; http://dx.doi.org/10.1007/s13593-011-0029-x
  • Rasmussen A, Depuydt S, Goormachtig S, Geelen D. Strigolactones fine-tune the root system. Planta 2013 238:615-26; PMID:23801297; http://dx.doi.org/10.1007/s00425-013-1911-3
  • Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 2011; 155:974-87; PMID:21119045; http://dx.doi.org/10.1104/pp.110.164640
  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 2012; 483: 341-44; PMID:22398443; http://dx.doi.org/10.1038/nature10873
  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, et al. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 2001; 13:843-52; PMID:11283340; http://dx.doi.org/10.1105/tpc.13.4.843
  • Sugimoto Y, Ali AM, Yabuta S, Kinoshita H, Inanaga S, Itai A. Germination strategy of Striga hermonthica involves regulation of ethylene biosynthesis. Physiol Plant 2003; 119:137-45; http://dx.doi.org/10.1034/j.1399-3054.2003.00162.x
  • Koltai H. Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions. Ann Bot 2013; 112:409-15; PMID:23059852; http://dx.doi.org/10.1093/aob/mcs216
  • Hayward A, Stirnberg P, Beveridge C, Leyser O. Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 2009; 151:400-12; PMID:19641034; http://dx.doi.org/10.1104/pp.109.137646
  • Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A, Rubio-Moraga A, Beyer P, Gomez-Gomez L, Al-Babili S, et al. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. PNAS 2014; 111:12246-51; PMID:25097262; http://dx.doi.org/10.1073/pnas.1404629111
  • Torres J, Cooper CE, Sharpe M, Wilson MT. Reactivity of nitric oxide with cytochrome c oxidase: interactions with the binuclear centre and mechanism of inhibition. J Bioenergy Biomemb 1998; 30:63-69; PMID:9623807; http://dx.doi.org/10.1023/A:1020559528124
  • Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett 1995; 369:136-39; PMID:7649245; http://dx.doi.org/10.1016/0014-5793(95)00763-Y
  • Giulivi C. Functional implications of nitric oxide produced by mitochondria in mitochondrial metabolism. Biochem J 1998; 332:673-79; PMID:9620869
  • Drapier JC. Interplay between NO and (Fe-S) clusters: relevance to biological systems. Methods 1997; 11:319-29; PMID:9073575; http://dx.doi.org/10.1006/meth.1996.0426
  • Boller T, Herner RC, Kende H. Assay for and enzymatic formation of an ethylene precursor, 1-Aminocyclopropane-1-carboxylic acid. Planta 1979; 145:293-03; PMID:24317737; http://dx.doi.org/10.1007/BF00454455
  • Lizada MCC, Yang SF. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem 1979; 100:140-45; PMID:543532; http://dx.doi.org/10.1016/0003-2697(79)90123-4
  • Truernit E, Bauby H, Belcram K, Barthélémy J, Palauqui JC. OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana. Development 2012; 139:1306-15; PMID:22395740; http://dx.doi.org/10.1242/dev.072629
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248-54; PMID:942051; http://dx.doi.org/10.1016/0003-2697(76)90527-3
  • Mathieu S, Bigey F, Procureur J, Terrier N, Günata Z. Production of a recombinant carotenoid cleavage dioxygenase from grape and enzyme assay in water-miscible organic solvents. Biotechnol Lett 2007; 29:837-41; PMID:17295086; http://dx.doi.org/10.1007/s10529-007-9315-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.