1,546
Views
11
CrossRef citations to date
0
Altmetric
Article Addendum

PAMP-triggered immune responses in barley and susceptibility to powdery mildew

&
Article: e1197465 | Received 25 Apr 2016, Accepted 31 May 2016, Published online: 27 Jun 2016

References

  • Boyd LA, Ridout C, O'Sullivan DM, Leach JE, Leung H. Plant-pathogen interactions: disease resistance in modern agriculture. Trends in genetics 2013; 29:233-40; PMID:23153595; http://dx.doi.org/10.1016/j.tig.2012.10.011
  • Faoro F, Maffi D, Cantu D, Iriti M. Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. Biocontrol 2008; 53:387-401; http://dx.doi.org/10.1007/s10526-007-9091-3
  • Vander P, KM Vr, Domard A, Eddine El Gueddari N, Moerschbacher BM. Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol 1998; 118:1353-9; PMID:9847109; http://dx.doi.org/10.1104/pp.118.4.1353
  • Shetty NP, Jensen JD, Knudsen A, Finnie C, Geshi N, Blennow A, Collinge DB, Jørgensen HJ. Effects of beta-1,3-glucan from Septoria tritici on structural defence responses in wheat. J Exp Bot 2009; 60:4287-300; PMID:19880540; http://dx.doi.org/10.1093/jxb/erp269
  • Macho AP, Zipfel C. Plant PRRs and the Activation of Innate Immune Signaling. Molecular Cell 2014; 54:263-72; PMID:24766890; http://dx.doi.org/10.1016/j.molcel.2014.03.028
  • Tanaka S, Ichikawa A, Yamada K, Tsuji G, Nishiuchi T, Mori M, Koga H, Nishizawa Y, O'Connell R, Kubo Y. HvCEBiP, a gene homologous to rice chitin receptor CEBiP, contributes to basal resistance of barley to Magnaporthe oryzae. BMC Plant Biol 2010; 10:288; PMID:21190588; http://dx.doi.org/10.1186/1471-2229-10-288
  • Lee WS, Rudd JJ, Hammond-Kosack KE, Kanyuka K. Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Mol Plant-Microbe Interact 2014; 27:236-43; PMID:24073880; http://dx.doi.org/10.1094/MPMI-07-13-0201-R
  • Schoonbeek HJ, Wang HH, Stefanato FL, Craze M, Bowden S, Wallington E, Zipfel C, Ridout CJ. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol 2015; 206:606-13; PMID:25760815; http://dx.doi.org/10.1111/nph.13356
  • Felle HH, Herrmann A, Hanstein S, Hückelhoven R, Kogel KH. Apoplastic pH signaling in barley leaves attacked by the powdery mildew fungus Blumeria graminis f. sp hordei. Mol Plant-Microbe Interact 2004; 17:118-23; PMID:14714875; http://dx.doi.org/10.1094/MPMI.2004.17.1.118
  • Proels RK, Oberhollenzer K, Pathuri IP, Hensel G, Kumlehn J, Hückelhoven R. RBOHF2 of Barley Is Required for Normal Development of Penetration Resistance to the Parasitic Fungus Blumeria graminis f. sp hordei. Mol Plant-Microbe Interact 2010; 23:1143-50; PMID:20687804; http://dx.doi.org/10.1094/MPMI-23-9-1143
  • Scheler B, Schnepf V, Galgenmuller C, Ranf S, Hückelhoven R. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus. J Exp Bot 2016; 67(11):3263-75; PMID:27056842; http://dx.doi.org/10.1093/jxb/erw141
  • Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K, Menke F, Jones A, et al. Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell 2014; 54:43-55; PMID:24630626; http://dx.doi.org/10.1016/j.molcel.2014.02.021
  • Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog 2012; 8:e1002684; PMID:22589719; http://dx.doi.org/10.1371/journal.ppat.1002684
  • Ranf S, Eschen-Lippold L, Pecher P, Lee J, Scheel D. Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant Journal 2011; 68:100-13; PMID:21668535; http://dx.doi.org/10.1111/j.1365-313X.2011.04671.x
  • McLachlan DH, Kopischke M, Robatzek S. Gate control: guard cell regulation by microbial stress. New Phytol 2014; 203:1049-63; PMID:25040778; http://dx.doi.org/10.1111/nph.12916
  • Koers S, Guzel-Deger A, Marten I, Roelfsema MR. Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell S-type anion channels. Plant J 2011; 68:670-80; PMID:21781196; http://dx.doi.org/10.1111/j.1365-313X.2011.04719.x
  • Prats E, Gay AP, Mur LAJ, Thomas BJ, Carver TLW. Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis. J Exp Bot 2006; 57:2211-26; PMID:16793847; http://dx.doi.org/10.1093/jxb/erj186
  • Li AL, Zhu YF, Tan XM, Wang X, Wei B, Guo HZ, Zhang ZL, Chen XB, Zhao GY, Kong XY, et al. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Mol Biol 2008; 66:429-43; PMID:18185910; http://dx.doi.org/10.1007/s11103-007-9281-5
  • Freymark G, Diehl T, Miklis M, Romeis T, Panstruga R. Antagonistic control of powdery mildew host cell entry by barley calcium-dependent protein kinases (CDPKs). Mol Plant-Microbe Interact 2007; 20:1213-21; PMID:17918623; http://dx.doi.org/10.1094/MPMI-20-10-1213
  • Reiner T, Hoefle C, Hückelhoven R. A barley SKP1-like protein controls abundance of the susceptibility factor RACB and influences the interaction of barley with the barley powdery mildew fungus. Mol Plant Pathol 2016; 17:184-95; PMID:25893638; http://dx.doi.org/10.1111/mpp.12271
  • Eckey C, Korell M, Leib K, Biedenkopf D, Jansen C, Langen G, Kogel KH. Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase. Plant Mol Biol 2004; 55:1-15; PMID:15604661; http://dx.doi.org/10.1007/s11103-004-0275-2
  • Abass M, Morris PC. The Hordeum vulgare signalling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. J Plant Physiol 2013; 170:1353-9; PMID:23702246; http://dx.doi.org/10.1016/j.jplph.2013.04.009
  • Lee J, Eschen-Lippold L, Lassowskat I, Bottcher C, Scheel D. Cellular reprogramming through mitogen-activated protein kinases. Front Plant Sci 2015; 6:940; PMID:26579181; http://dx.doi.org/10.3389/fpls.2015.00940
  • Saijo Y, Tintor N, Lu X, Rauf P, Pajerowska-Mukhtar K, Haweker H, Dong X, Robatzek S, Schulze-Lefert P. Receptor quality control in the endoplasmic reticulum for plant innate immunity. Embo J 2009; 28:3439-49; PMID:19763087; http://dx.doi.org/10.1038/emboj.2009.263
  • Ranf S, Gisch N, Schaffer M, Illig T, Westphal L, Knirel YA, Sánchez-Carballo PM, Zähringer U, Hückelhoven R, Lee J, et al. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol 2015; 16:426-33; PMID:25729922; http://dx.doi.org/10.1038/ni.3124
  • Kervinen T, Peltonen S, Teeri T, Karjalainen R. Differential expression of phenylalanine ammonia‐lyase genes in barley induced by fungal infection or elicitors. New Phytol 1998; 139:293-300; http://dx.doi.org/10.1046/j.1469-8137.1998.00202.x
  • Liu D, Leib K, Zhao P, Kogel KH, Langen G. Phylogenetic analysis of barley WRKY proteins and characterization of HvWRKY1 and -2 as repressors of the pathogen-inducible gene HvGER4c. Mol Genetic Genomics 2014; 289:1331-45; http://dx.doi.org/10.1007/s00438-014-0893-6
  • Chang C, Yu D, Jiao J, Jing S, Schulze-Lefert P, Shen QH. Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. Plant Cell 2013; 25:1158-73; PMID:23532068; http://dx.doi.org/10.1105/tpc.113.109942
  • Mangelsen E, Kilian J, Berendzen KW, Kolukisaoglu H, Harter K, Jansson C, Wanke D. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics 2008; 9:1-17; http://dx.doi.org/10.1186/1471-2164-9-194
  • Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H, Beier F, Müller D, Hensel G, Heise A, Schützendübel A, et al. Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell 2010; 22:937-52; PMID:20305123; http://dx.doi.org/10.1105/tpc.109.067934
  • Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 2007; 315:1098-103; PMID:17185563; http://dx.doi.org/10.1126/science.1136372
  • Kawano Y, Kaneko-Kawano T, Shimamoto K. Rho family GTPase-dependent immunity in plants and animals. Front Plant Sci 2014; 5:522; PMID:25352853; http://dx.doi.org/10.3389/fpls.2014.00522
  • Yang Z, Lavagi I. Spatial control of plasma membrane domains: ROP GTPase-based symmetry breaking. Curr Opin Plant Biol 2012; 15:601-7; PMID:23177207; http://dx.doi.org/10.1016/j.pbi.2012.10.004
  • Hückelhoven R, Panstruga R. Cell biology of the plant-powdery mildew interaction. Curr Opin Plant Biol 2011; 14:738-46; PMID:21924669; http://dx.doi.org/10.1016/j.pbi.2011.08.002
  • Liu W, Liu J, Triplett L, Leach JE, Wang GL. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 2014; 52:213-41; PMID:24906128; http://dx.doi.org/10.1146/annurev-phyto-102313-045926

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.