1,714
Views
11
CrossRef citations to date
0
Altmetric
Article Addendum

Growth and cortical microtubule dynamics in shoot organs under microgravity and hypergravity conditions

ORCID Icon, ORCID Icon &
Article: e1422468 | Received 08 Dec 2017, Accepted 20 Dec 2017, Published online: 16 Jan 2018

References

  • Hoson T, Soga K. New aspects of gravity responses in plant cells. Int Rev Cytol. 2003;229:209–44. doi:10.1016/S0074-7696(03)29005-7.
  • Soga K. Gravity resistance in plants. Biol Sci Space. 2010;24:129–34. doi:10.2187/bss.24.129.
  • Soga K. Resistance of plants to gravitational force. J Plant Res. 2013;126:589–96. doi:10.1007/s10265-013-0572-4.
  • Waldron KW, Brett CT. Effects of extreme acceleration on the germination, growth and cell wall composition of pea epicotyls. J Exp Bot. 1990;41:71–7. doi:10.1093/jxb/41.1.71.
  • Kasahara H, Shiwa M, Takeuchi Y, Yamada M. Effects of hypergravity on elongation growth in radish and cucumber hypocotyls. J Plant Res. 1995;108:59–64. doi:10.1007/BF02344306.
  • Hoson T, Nishitani K, Miyamoto K, Ueda J, Kamisaka S, Yamamoto R, Masuda Y. Effects of hypergravity on growth and cell wall properties of cress hypocotyls. J Exp Bot. 1996;47:513–7. doi:10.1093/jxb/47.4.513.
  • Soga K, Wakabayashi K, Hoson T, Kamisaka S. Hypergravity increases the molecular size of xyloglucans by decreasing xyloglucan-degrading activity in azuki bean epicotyls. Plant Cell Physiol. 1999;40:581–5. doi:10.1093/oxfordjournals.pcp.a029580.
  • Soga K, Harada K, Wakabayashi K, Hoson T, Kamisaka S. Increased molecular mass of hemicellulosic polysaccharides is involved in growth inhibition of maize coleoptiles and mesocotyls under hypergravity conditions. J Plant Res. 1999;112:273–8. doi:10.1007/PL00013881.
  • Soga K, Wakabayashi K, Hoson T, Kamisaka S. Gravitational force regulates elongation growth of Arabidopsis hypocotyls by modifying xyloglucan metabolism. Adv Space Res. 2001;27:1011–6. doi:10.1016/S0273-1177(01)00176-4.
  • Nakabayashi I, Karahara I, Tamaoki D, Masuda K, Wakasugi T, Yamada K, Soga K, Hoson T, Kamisaka S. Hypergravity stimulus enhances primary xylem development and decreases mechanical properties of secondary cell walls in inflorescence stems of Arabidopsis thaliana. Ann Bot. 2006;97:1083–90. doi:10.1093/aob/mcl055.
  • Wakabayashi K, Soga K, Kamisaka S, Hoson T. Increase in the level of arabinoxylan-hydroxycinnamate network in cell walls of wheat coleoptiles grown under continuous hypergravity conditions. Physiol Plant. 2005;125:127–34. doi:10.1111/j.1399-3054.2005.00544.x.
  • Hoson T, Soga K, Mori R, Saiki M, Wakabayashi K, Kamisaka S, Kamigaichi S, Aizawa S, Yoshizaki I, Mukai C, et al. Morphogenesis of rice and Arabidopsis seedlings in space. J Plant Res. 1999;112:477–86. doi:10.1007/PL00013903.
  • Hoson T, Soga K, Mori R, Saiki M, Nakamura Y, Wakabayashi K, Kamisaka S. Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant Cell Physiol. 2002;43:1067–71. doi:10.1093/pcp/pcf126.
  • Soga K, Wakabayashi K, Kamisaka S, Hoson T. Stimulation of elongation growth and xyloglucan breakdown in Arabidopsis hypocotyls under microgravity conditions in space. Planta. 2002;215:1040–6. doi:10.1007/s00425-002-0838-x.
  • Soga K, Yamazaki C, Kamada M, Tanigawa N, Kasahara H, Yano S, Kojo KH, Kutsuna N, Kato T, Hashimoto T, et al. Modification of growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls grown under microgravity conditions in space. Physiol Plant. 2018;162:135–44. doi:10.1111/ppl.12640.
  • Hoson T, Soga K, Wakabayashi K, Hashimoto T, Karahara I, Yano S, Tanigaki F, Shimazu T, Kasahara H, Masuda D, et al. Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space. Plant Biol. 2014;16(S1):91–6. doi:10.1111/plb.12099.
  • Soga K, Biology Club, Kurita A, Yano S, Ichikawa T, Kamada M, Takaoki M. Growth and morphogenesis of azuki bean seedlings in space during SSAF2013 program. Biol Sci Space. 2014;28:6–11. doi:10.2187/bss.28.6.
  • Soga K, Wakabayashi K, Kamisaka S, Hoson T. Hypergravity induces reorientation of cortical microtubules and modifies growth anisotropy in azuki bean epicotyls. Planta. 2006;224:1485–94. doi:10.1007/s00425-006-0319-8.
  • Matsumoto S, Kumasaki S, Soga K, Wakabayashi K, Hashimoto T, Hoson T. Gravity-induced modifications to development in hypocotyls of Arabidopsis tubulin mutants. Plant Physiol. 2010;152:918–26. doi:10.1104/pp.109.147330.
  • Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. Int Rev Cell Mol Biol. 2014;312:1–52. doi:10.1016/B978-0-12-800178-3.00001-4.
  • Soga K, Kotake T, Wakabayashi K, Hoson T. Changes in the transcript levels of microtubule-associated protein MAP65-1 during reorientation of cortical microtubules in azuki bean epicotyls. Acta Physiol Plant. 2012;4:533–40. doi:10.1007/s11738-011-0850-5.
  • Murakami M, Soga K, Kotake T, Kato T, Hashimoto T, Wakabayashi K, Hoson T. Roles of MAP65-1 and BPP1 in gravity resistance of Arabidopsis hypocotyls. Biol Sci Space. 2016;30:1–7. doi: 10.2187/bss.30.1.
  • Soga K, Kotake T, Wakabayashi K, Kamisaka S, Hoson T. Transient increase in the transcript levels of γ-tubulin complex genes during reorientation of cortical microtubules by gravity in azuki bean (Vigna angularis) epicotyls. J Plant Res. 2008;121:493–8. doi:10.1007/s10265-008-0179-3.
  • Soga K, Kotake T, Wakabayashi K, Kamisaka S, Hoson T. The transcript level of katanin gene is increased transiently in response to changes in gravitational conditions in azuki bean epicotyls. Biol Sci Space. 2009;23:23–8. doi:10.2187/bss.23.23.
  • Soga K, Yamaguchi A, Kotake T, Wakabayashi K, Kamisaka S, Hoson T. Transient increase in the levels of γ-tubulin complex and katanin are responsible for reorientation by ethylene and hypergravity of cortical microtubules. Plant Signal Behav. 2010;5:1480–2. doi:10.4161/psb.5.11.13561.