1,307
Views
13
CrossRef citations to date
0
Altmetric
Short Communication

Reactive oxygen species, nitric oxide production and antioxidant gene expression during development of aerenchyma formation in wheat

&
Article: e1428515 | Received 04 Dec 2017, Accepted 12 Jan 2018, Published online: 06 Feb 2018

References

  • Bailey-Serres J, Lee SC, Brinton E. Waterproofing crops: Effective flooding survival strategies. Plant Physiol. 2012;160:1698–709. doi:10.1104/pp.112.208173.
  • Drew MC, He C, Morgan PW. Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. 2000;3:123–27. doi:10.1016/S1360-1385(00)01570-3.
  • Shussler E, Longstreth DJ. Aerenchyma develops by cell lysis in roots and cell separation in leaf petioles in Sagittaria lancifolia (Alismataceae). Am J Bot. 1996;83:1266–73. doi:10.2307/2446110.
  • Evans DE. Aerenchyma formation. New Phytol. 2003;161:35–49. doi:10.1046/j.1469-8137.2003.00907.x.
  • Wany A, Kumari A, Gupta KJ. Nitric oxide is essential for the development of aerenchyma in wheat roots under hypoxic stress. Plant Cell Environ. 2017;40:3002–17. doi:10.1111/pce.13061.
  • Delledonne M, Xia Y, Dixon RA, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature. 1998;6394:585–8. doi:10.1038/29087.
  • Yamauchi T, Watanabe K, Fukazawa A, Mori H, Abe F, Kawaguchi K, Oyanagi A, Nakazono M. Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. J Exp Bot. 2014;65:261–73. doi:10.1093/jxb/ert371.
  • Jackson MB, Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1999;1:274–87. doi:10.1111/j.1438-8677.1999.tb00253.x.
  • Gunawardena AHLAN, Pearce DM, Jackson MB, Hawes CR, Evans DE. Characterization of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta. 2001;212:205–14. doi:10.1007/s004250000381.
  • Drew MC. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:223–50. doi:10.1146/annurev.arplant.48.1.223.
  • He CJ, Drew MC, Morgan PW. Induction of enzymes associated with lysigenous aerenchyma formation in roots of Zea mays during hypoxia or nitrogen starvation. Plant Physiol. 1994;112:1679–85. doi:10.1104/pp.105.3.861.
  • Mur LA, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJ, Hebelstrup KH, Gupta KJ. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants. 2013;5:pls052. doi:10.1093/aobpla/pls052.
  • Gupta KJ, Stoimenova M, Kaiser WM. In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot. 2005;56:2601–09. doi:10.1093/jxb/eri252.
  • Planchet E, Gupta KJ, Sonoda M, Kaiser WM. Nitric oxide emission from tobacco leaves and cell suspensions: Rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J. 2005;41:732–43. doi:10.1111/j.1365-313X.2005.02335.x.
  • Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD. Nitrite driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta. 2007;226:465–74. doi:10.1007/s00425-007-0496-0.
  • Gupta KJ, Shah JK, Brotman Y, Jahnke K, Willmitzer L, Kaiser WM, Bauwe H, Igamberdiev AU. Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J Exp Bot. 2012;63:1773–84. doi:10.1093/jxb/ers053.
  • Gupta AK, Kumari A, Mishra S, Wany A, Gupta KJ. The functional role of nitric oxide in plant mitochondrial metabolism. Adv Bot Res. 2016;77:145–63. doi:10.1016/bs.abr.2015.10.007.
  • Gupta KJ, Lee CP, Ratcliffe RG. Nitrite protects mitochondrial structure and function under hypoxia. Plant Cell Physiol. 2017;58:175–83. doi:10.1093/pcp/pcw174.
  • Gibbs J, Turner DW, Armstrong W, Darwent MJ, Greenway H. Response to oxygen deficiency in primary maize roots. I. Development of oxygen deficiency in the stele reduces radial solute transport to the xylem. Aust J Plant Physiol. 1998;25:745–58. doi:10.1071/PP97135.
  • Thomson CJ, Atwell BJ, Greenway H. Response of wheat seedlings to low O2 concentrations in nutrient solution. I. Growth, O2 uptake and synthesis of fermentative end-products by root segments. J Exp Bot. 1989;40:985–91. doi:10.1093/jxb/40.9.985.
  • Vergara R, Parada F, Rubio S, Perez FJ. Hypoxia induces H2O2 production and activates antioxidant defence system in grapevine buds through mediation of H2O2 and ethylene. J Exp Bot. 2012;63:4123–31. doi:10.1093/jxb/ers094.
  • Hasanuzzaman M, Hossain MA, Jaime A, da Silva T, Fujita M. Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Defense Is a Key Factor. In: Venkateswarlu B., Shanker A., Shanker C., Maheswari M. (eds) Crop Stress and its Management: Perspectives and Strategies. Springer, Dordrecht. 2012. doi:10.1007/978-94-007-2220-0_8.
  • Yun BW, Feechan A, Yin M, Saidi NB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH, et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature. 2011;478:264–8. doi:10.1038/nature10427.
  • Frungillo L, Skelly MJ, Loake GJ, Spoel SH, Salgado I. S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway. Nat Commun. 2014;5:5401. doi:10.1038/ncomms6401.
  • Wang Y, Loake GJ, Chu C. Cross-talk of nitric oxide and reactive oxygen species in plant programmed cell death. Front Plant Sci. 2013;4:314. doi:10.3389/fpls.2013.00314.
  • Liszkay A, van der Zalm E, Schopfer P. Production of reactive oxygen intermediates (O2˙−, H2O2, and ˙OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol. 2004;136:3114–23. 10.1104/pp.104.044784.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.