1,051
Views
3
CrossRef citations to date
0
Altmetric
Mini-Review

Protection of root apex meristem during stress responses

, , &
Article: e1428517 | Received 26 Dec 2017, Accepted 06 Jan 2018, Published online: 06 Feb 2018

References

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CP, Osório ML, Carvalho I, Faria T, Pinheiro C. How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot. 2002;89:907–16. doi:10.1093/aob/mcf105.
  • Bailey-Serres J, Voesenek LA. Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol. 2008;59:313–39. doi:10.1146/annurev.arplant.59.032607.092752.
  • Wendehenne D, Durner J, Klessig DF. Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol. 2004;7:449–55. doi:10.1016/j.pbi.2004.04.002.
  • Mira MM, Huang S, Kapoor K, Hammond C, Hill RD, Stasolla C. Expression of Arabidopsis class 1 phytoglobin (AtPgb1) delays death and degradation of the root apical meristem during severe PEG-induced water deficit. J Exp Bot. 2017;68:5653–68. doi:10.1093/jxb/erx371.
  • Mira MM, Hill RD, Stasolla C. Phytoglobins improve hypoxic root growth by alleviating apical meristem cell death. Plant Physiol. 2016;172:2044–56. doi:10.1104/pp.16.01150.
  • Mira MM, El-Khateeb EA, SayedAhmed HI, Hill RD, Stasolla C. Are avoidance and acclimation responses during hypoxic stress modulated by distinct cell-specific mechanisms? Plant Signal Behav. 2017;12:e1273304. doi:10.1080/15592324.2016.1273304.
  • Sanz L, Albertos P, Mateos I, Sánchez-Vicente I, Lechón T, Fernández-Marcos M, Lorenzo O. Nitric oxide (NO) and phytohormones crosstalk during early plant development. J Exp Bot. 2015;66:2857–68. doi:10.1093/jxb/erv213.
  • Hill RD. Non-symbiotic hemoglobins-What's happening beyond nitric oxide scavenging? AoB Plants. 2012;2012:pls004. doi:10.1093/aobpla/pls004.
  • Stasolla C, Hill RD. Determining cellular responses: Phytoglobins may direct the traffic. Trends Plant Sci. 2017;22:820–22. doi:10.1016/j.tplants.2017.08.002.
  • van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature. 1997;390:287–89. doi:10.1038/36856.
  • Grafi G, Florentin A, Ransbotyn V, Morgenstern Y. The stem cell state in plant development and in response to stress. Front Plant Sci. 2011;2–53. doi:10.3389/fpls.2011.00053.
  • Lee Y, Lee WS, Kim SH. Hormonal regulation of stem cell maintenance in roots. J Exp Bot. 2013;64:1153–65. doi:10.1093/jxb/ers331.
  • Kong X, Lu S, Tian H, Ding Z. WOX5 is shining in the root stem cell niche. Trends Plant Sci. 2015;20:601–3. doi:10.1016/j.tplants.2015.08.009.
  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003;426:147–53. doi:10.1038/nature02085.
  • Tsukagoshi H, Busch W, Benfey PN. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell. 2010;143:606–16. doi:10.1016/j.cell.2010.10.020.
  • Bigarella CL, Liang R, Ghaffari S. Stem cells and the impact of ROS signaling. Development. 2014;141:4206–18. doi:10.1242/dev.107086.
  • Fernández-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O. Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci USA. 2011;108:18506–11. doi:10.1073/pnas.1108644108.
  • Liu W, Li RJ, Han TT, Cai W, Fu ZW, Lu YT. Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol. 2015;168:343–56. doi:10.1104/pp.15.00030.
  • Mira MM, Wally OSD, Elhiti M, El-Shanshory A, Reddy DS, Hill RD, Stasolla C. Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis class 2 phytoglobin. J Exp Bot. 2016;67:22–31. doi:10.1093/jxb/erw022.
  • Elhiti M, Hebelstrup KH, Wang A, Li C, Cui Y, Hill RD, Stasolla C. Function of the type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis. Plant J. 2013;74:946–58. doi:10.1111/tpj.12181.
  • Mira M, Hill RD, Stasolla C. Regulation of programmed cell death by phytoglobins. J Exp Bot. 2016;67:5901–20. doi:10.1093/jxb/erw259.
  • Wally OS, Mira MM, Hill RD, Stasolla C. Hemoglobin regulation of plant embryogenesis and plant pathogen interaction. Plant Signal and Behav. 2013; 8:e25264. doi:10.4161/psb.25264.
  • Hebelstrup KH, Jensen EO. Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana. Planta. 2008;227:917–27. doi:10.1007/s00425-007-0667-z.
  • Huang S, Hill RD, Wally OS, Dionisio G, Ayele BT, Jami SK, Stasolla C. Hemoglobin control of cell survival/death decision regulates in vitro plant embryogenesis. Plant Physiol. 2014;165:810–25. doi:10.1104/pp.114.239335.
  • Mira M, Adel ES, Stasolla C. Ethylene is integrated into nitric oxide regulation of Arabidopsis somatic embryogenesis. J Genet Eng Biotechnol. 2015;13:7–17. doi:10.1016/j.jgeb.2015.01.001.
  • Lipka E, Muller S. Nitrosative stress triggers microtubule reorganization in Arabidopsis thaliana. J Exp Bot. 2014;65:4177–89. doi:10.1093/jxb/eru194.
  • Drew MC, He II, Morgan PW. Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. 2000;5:123–7. doi:10.1016/S1360-1385(00)01570-3.
  • Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, et al. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol. 2011;190:351–68. doi:10.1111/j.1469-8137.2010.03535.x.
  • Delledonne M, Xia Y, Dixon RA, Lamb CJ. Nitric oxide functions as a signal in plant disease resistance. Nature. 1998;394:585–88. doi:10.1038/29087.
  • Delledonne M, Zeier J, Marocco A, Lamb CJ. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA. 2001;98:13454–59. doi:10.1073/pnas.231178298.
  • Gross F, Durner J, Gaupels F. Nitric oxide, antioxidants and prooxidants in plant defence responses. Frontiers in Plant Science. 2013;4:419. doi:10.3389/fpls.2013.00419.
  • Qu ZL, Zhong NQ, Wang HY, Chen AP, Jian GL, Xia GX. Ectopic expression of the cotton non-symbiotic hemoglobin gene GhHbd1 triggers defense responses and increases disease tolerance in Arabidopsis. Plant Cell Physiol. 2006;47:1058. doi:10.1093/pcp/pcj076.
  • Guy PA, Sidaner J-P, Schroeder S, Edney M, MacGregor AW, Hill RD. Embryo phytoglobin gene expression as a measure of germination in cereals. J Cereal Sci. 2002;36:147–56. doi:10.1006/jcrs.2002.0460.
  • Wang Y, Elhiti M, Hebelstrup KH, Hill RD, Stasolla C. Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis. Plant Physiol Biochem. 2011;49:1108–06. doi:10.1016/j.plaphy.2011.06.005.
  • Arredondo-Peter R, Moran JF, Sarath G. Rice (Oryza) hemoglobins. F1000Research. 2014;3:253. doi:10.12688/f1000research.5530.2.
  • Montilla-Bascon G, Rubiales D, Hebelstrup KH, Mandon J, Harren FJM, Cristescu SM, Mur LAJ, Prats E. Reduced nitric oxide levels during drought stress promote drought tolerance in barley and is associated with elevated polyamine biosynthesis. Sci Rep. 2017;7:13311. doi:10.1038/s41598-017-13458-1.
  • Bai X, Long J, He X, Yan J, Chen X, Tan Y, Li K, Chen L, Xu H. Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Sci Rep. 2016;6:26400. doi:10.1038/srep26400.
  • Parent C, Crevecoeur M, Capelli N, Dat JF. Contrasting growth and adaptive responses of two oak species to flooding stress: role of non-symbiotic haemoglobin. Plant Cell Environ. 2011;34:1113–26. doi:10.1111/j.1365-3040.2011.02309.x.
  • Ubeda-Tomás S, Beemster GTS, Bennett MJ. Hormonal regulation of root growth: integrating local activities into global behaviour. Trends Plant Sci. 2012;17;326–331. doi:10.1016/j.tplants.2012.02.002.
  • Serrano I, Romero-Puertas MC, Sandalio LM, Olmedilla A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J Exp Bot. 2015;66:2869–76. doi:10.1093/jxb/erv083.
  • Lee Y, Lee WS, Kim SH. Hormonal regulation of stem cell maintenance in roots. J Exp Bot. 2013;64:1153–65. doi:10.1093/jxb/ers331.
  • Miyashima S, Sebastian J, Lee JY, Helariutta Y. Stem cell function during plant vascular development. EMBO J. 2013;32:178–93. doi:10.1038/emboj.2012.301.
  • Moller BK, Ten Hove CA, Xiang D, Williams N, Lopez LG, Yoshida S, Smit M, Datla R, Weijers D. Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo. Proc Natl Acad Sci USA. 2017;114:E2533–39. doi:10.1073/pnas.1616493114.
  • Pernas M, Ryan E, Dolan L. SCHIZORIZA controls tissue system complexity in plants, Curr. Biol. 2010;20:818–23.
  • Palovaara J, de ZT, Weijers D. Tissue and organ initiation in the plant embryo: A first time for everything. Annu Rev Cell Dev Biol. 2016;32:47–75. doi:10.1146/annurev-cellbio-111315-124929.
  • Forzani C, Aichinger E, Sornay E, Willemsen V, Laux T, Dewitte W, Murray JA. WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Curr Biol. 2014;24:1939–44. doi:10.1016/j.cub.2014.07.019.
  • Sabatini S, Heidstra R, Wildwater M, Scheres B. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev. 2003;17:354–58. doi:10.1101/gad.252503.
  • Moubayidin L, Di MR, Sozzani R, Pacifici E, Salvi E, Terpstra I, Bao D, van Dijken A, Dello Ioio R, Perilli S, et al. Spatial coordination between stem cell activity and cell differentiation in the root meristem. Dev Cell. 2013;26:405–15. doi:10.1016/j.devcel.2013.06.025.
  • Zhang W, Swarup R, Bennett M, Schaller GE, Kieber JJ. Cytokinin induces cell division in the quiescent center of the Arabidopsis root apical meristem. Curr Biol. 2013;23:1979–89. doi:10.1016/j.cub.2013.08.008.
  • Di MR, De RM, Pacifici E, Salvi E, Sozzani R, Benfey PN, Busch W, Novak O, Ljung K, Di Paola L, et al. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proc Natl Acad Sci USA. 2017;114:E7641–49. doi:10.1073/pnas.1705833114.
  • Street IH, Aman S, Zubo Y, Ramzan A, Lost Data, Shakeel SN, Kieber JJ, Schaller GE. Ethylene inhibits cell proliferation of the Arabidopsis root meristem. Plant Physiol. 2015;169:338–50. doi:10.1104/pp.15.00415.
  • Arc E, Galland M, Godin B, Cueff G, Rajjou L. Nitric oxide implication in the control of seed dormancy and germination. Front Plant Sci. 2013;4:346. doi:10.3389/fpls.2013.00346.
  • Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol. 2007;143:1173–88. doi:10.1104/pp.106.093435.
  • Nie XZ, Hill RD. Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue. Plant Physiol. 1997;114:835–40. doi:10.1104/pp.114.3.835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.