3,850
Views
17
CrossRef citations to date
0
Altmetric
Mini-Review

Plant immune responses - from guard cells and local responses to systemic defense against bacterial pathogens

, &
Article: e1588667 | Received 03 Feb 2019, Accepted 25 Feb 2019, Published online: 24 Mar 2019

References

  • Misra BB, Chaturvedi R. When plants brace for the emerging pathogens. Physiol Mol Plant Pathol. 2015;92:181–185. doi:10.1016/j.pmpp.2015.03.004.
  • Spoel SH, Dong XN. How do plants achieve immunity? Defense without specialized immune cells. Nat Rev Immunol. 2012;12(2):89–100. doi:10.1038/nri3141.
  • van Wersch R, Li X, Zhang YL. Mighty dwarfs: arabidopsis autoimmune mutants and their usages in genetic dissection of plant immunity. Front Plant Sci. 2016;7:1717. doi:10.3389/fpls.2016.01717.
  • Fu ZQ, Dong XN. Systemic acquired resistance: turning local infection into global defense. In: Merchant SS, editor. Annual Review of Plant Biology Vol. 64. Palo Alto, USA. Annual Reviews; 2013. p. 839–863. doi:10.1146/annurev-arplant-042811-105606.
  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT. Priming in systemic plant immunity. Science. 2009;324(5923):89–91. doi:10.1126/science.1170025.
  • Yi HS, Yang JW, Choi HK, Ghim SY, Ryu CM. Benzothiadiazole-elicited defense priming and systemic acquired resistance against bacterial and viral pathogens of pepper under field conditions. Plant Biotechnol Rep. 2012;6:373–380. doi:10.1007/s11816-012-0234-3.
  • Zeng W, Brutus A, Kremer JM, Withers JC, Gao X, Jones AD, He SY. A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000. PLoS Pathog. 2011;7(10):e1002291. doi:10.1371/journal.ppat.1002291.
  • Gohre V, Robatzek S. Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol. 2008;46:189–215. doi:10.1146/annurev.phyto.46.120407.110050.
  • Stavrinides J, McCann HC, Guttman DS. Host-pathogen interplay and the evolution of bacterial effectors. Cell Microbiol. 2008;10(2):285–292. doi:10.1111/j.1462-5822.2007.01078.
  • Brooks DM, Hernandez-Guzman G, Kloek AP, Alarcon-Chaldez F, Sreedharan A, Rangaswamy V, Penaloza-Vazquez A, Bender CL, Kunkel BN. Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact. 2004;17(11):162–174. doi:10.1094/MPMI.2004.17.2.162.
  • Melotto M, Underwood W, He SY. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol. 2008;46:101–122. doi:10.1146/annurev.phyto.121107.104959.
  • McLachlan DH, Kopischke M, Robatzek S. Gate control: guard cell regulation by microbial stress. New Phytol. 2014;203(4):1049–1063. doi:10.1111/nph.12916.
  • Sawinski K, Mersmann S, Robatzek S, Bohmer M. Guarding the green: pathways to stomatal immunity. Mol Plant Microbe Interact. 2013;26(6):626–632. doi:10.1094/MPMI-12-12-0288-CR.
  • Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M, Garcia AV, Douki T, Bigeard J, Lauriere C, et al. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol. 2013;11(3): e1001513. doi:10.1371/journal.pbio.1001513.
  • Shang Y, Dai C, Lee MM, Kwak JM, Nam KH. BRI1-associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1 in Arabidopsis. Mol Plant. 2016;9(3):447–460. doi:10.1016/j.molp.2015.12.014.
  • Engineer CB, Hashimoto-Sugimoto M, Negi J, Israelsson-Nordstrom M, Azoulay-Shemer T, Rappel WJ, Iba K, Schroeder JI. CO2 sensing and CO2 peculation of stomatal conductance: advances and open questions. Trends Plant Sci. 2016;21(1):16–30. Epub 2015 Oct 5. doi:10.1016/j.tplants.2015.08.014.
  • Munemasa S, Hauser F, Park J, Waadt R, Brandt B, Schroeder JI. Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr Opin Plant Biol. 2015;28:154–162. doi:10.1016/j.pbi.2015.10.010.
  • Melotto M, Underwood W, Koczan J, Nomura K, He SY. Plant stomata function in innate immunity against bacterial invasion. Cell. 2006;126(5):969–980. doi:10.1016/j.cell.2006.06.054.
  • Carella P, Merl-Pham J, Wilson DC, Dey S, Hauck SM, Vlot AC, Cameron RK. Comparative proteomics analysis of phloem exudates collected during the induction of systemic acquired resistance. Plant Physiol. 2016;171(2):1495–1510. doi:10.1104/pp.16.00269.
  • Shah J, Zeier J. Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci. 2013;4(30):1–16. doi:10.3389/fpls.2013.00030.
  • Dempsey DA, Klessig DF. SOS - too many signals for systemic acquired resistance? Trends Plant Sci. 2012;17(9):538–545. doi:10.1016/j.tplants.2012.05.011.
  • Zheng XY, Zhou M, Yoo H, Pruneda-Paz JL, Spivey NW, Kay SA, Dong XNA. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proc Natl Acad Sci U S A. 2015;112(30):9166–9173. doi:10.1073/pnas.1511182112.
  • Hao FS, Zhao SL, Dong H, Zhang H, Sun LR, Miao C. Nia1 and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure . J Int Plant Biol. 2010;52(3):298–307. doi:10.1111/j.1744-7909.2010.00920.
  • Assmann SM, Jegla T. Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2. Curr Opin Plant Biol. 2016;33:157–167. doi:10.1016/j.pbi.2016.07.003.
  • Liu J, Chen SF, Chen LJ, Zhou Q, Wang ML, Feng DR, Li JF, Wang JF, Wang HB, Liu B. BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death in Arabidopsis. J Integr Plant Biol. 2017;59(4):234–239. doi:10.1111/jipb.12529.
  • Mersmann S, Bourdais G, Rietz S, Robatzek S. Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol. 2010;154(1):391–400. doi:10.1104/pp.110.154567.
  • Jeworutzki E, Roelfsema MRG, Anschutz U, Krol E, Elzenga JTM, Felix G, Boller T, Hedrich R, Becker D. Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. Plant J. 2010;62(3):367–378. doi:10.1111/j.1365-313X.2010.04155.x.
  • Macho AP, Boutrot F, Rathjen JP, Zipfel C. ASPARTATE OXIDASE plays an important role in Arabidopsis stomatal immunity. Plant Physiol. 2012;159(4):1845–1856. doi:10.1104/pp.112.199810.
  • Lee S, Yang DS, Uppalapati SR, Sumner LW, Mysore KS. Suppression of plant defense responses by extracellular metabolites from Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. BMC Plant Biol. 2013;13:65. doi:10.1186/1471-2229-13-65.
  • Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–329. doi:10.1038/nature05286.
  • Zipfel C, Rathjen JP. Plant immunity: avrPto targets the frontline. Cur Biol. 2008;18(5):R218–R220. doi:10.1016/j.cub.2008.01.016.
  • Monaghan J, Zipfel C. Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol. 2012;15(4):349–357. doi:10.1016/j.pbi.2012.05.006.
  • Ross AF. Systemic effects of local lesion formation. Beemster ABR, Dijkstra J. editors. Viruses of Plants. Amsterdam: North-Holland Publishing Company;1966. p. 127–150.
  • Chester KS. The problem of acquired physiological immunity in plants. Q Rev Biol. 1933;8:129–154. doi:10.1086/394430.
  • Mishina TE, Zeier J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J. 2007;50(3):500–513. doi:10.1111/j.1365-313X.2007.03067.x.
  • Chen C, Xiao YG, Li X, Ni M. Light-regulated stomatal aperture in Arabidopsis. Mol Plant. 2012;5(3):566–572. doi:10.1093/mp/sss039.
  • Belin C, de Franco PO, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A, Giraudat J, Barbier-Brygoo H, Thomine S. Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol. 2006;141(4):1316–1327. doi:10.1104/pp.106.079327.
  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell. 2002;14(12):3089–3099. doi:10.1105/tpc.007906.
  • Zhang T, Chen S, Harmon AC. Protein phosphorylation in stomatal movement. Plant Signal Behav. 2014;9(11):e972845. doi:10.4161/15592316.2014.972845.
  • Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, et al. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell. 2009;21(8):2220–2236. doi:10.1105/tpc.109.065730.
  • Zheng XY, Spivey NW, Zeng WQ, Liu PP, Fu ZQ, Klessig DF, He SY, Dong XN. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe. 2012;11(6):587–596. doi:10.1016/j.chom.2012.04.014.
  • Zhang L, Zhang F, Melotto M, Yao J, He SY. Jasmonate signaling and manipulation by pathogens and insects. J Exp Bot. 2017;68(6):1371–1385. doi:10.1093/jxb/erw478.
  • Ndamukong I, Al Abdallat A, Thurow C, Fode B, Zander M, Weigel R, Gatz C. SA- inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J. 2007;50(1):128–139. doi:10.1111/j.1365-313X.2007.03039.x.
  • Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C, Van Wees SCM, Ritsema T, Pieterse CMJ. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta. 2010;232(6):1423–1432. doi:10.1007/s00425-010-1265-z.
  • Panchal S, Chitrakar R, Thompson BK, Obulareddy N, Roy D, Hambright WS, Melotto M. Regulation of stomatal defense by air relative humidity. Plant Physiol. 2016;172(3):2021–2032. doi:10.1104/pp.16.00696.
  • Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot. 2012;63(10):3523–3543. doi:10.1093/jxb/ers100.
  • Fan J, Hill L, Crooks C, Doerner P, Lamb C. Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol. 2009;150(4):1750–1761. doi:10.1104/pp.109.137943.
  • Zhou Y, Vroegop-Vos I, Schuurink RC, Pieterse CMJ, Van Wees SCM. Atmospheric CO2 alters resistance of Arabidopsis to Pseudomonas syringae by affecting abscisic acid accumulation and stomatal responsiveness to coronatine. Front Plant Sci. 2017;8:700. doi:10.3389/fpls.2017.00700.
  • Su JB, Zhang MM, Zhang L, Sun TF, Liu YD, Lukowitz W, Xu J, Zhang SQ. Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell. 2017;29(3):526–542. doi:10.1105/tpc.16.00577.
  • Scholthof KBG. The disease triangle: pathogens, the environment and society. Nat Rev Microbiol. 2007;5:152–156. doi:10.1038/nrmicro1596.
  • McNew GL. The nature, origin, and evolution of parasitism. In: Horsfall JG, Dimond AE, editors. Plant pathology: an advanced treatise. New York: Academic Press; 1960. p. 19–69.
  • Choi HK, Iandolino A, Da Silva FG, Cook DR. Water deficit modulates the response of Vitis vinifera to the Pierce’s disease pathogen Xylella fastidiosa. Mol Plant Microbe Interact. 2013;26(6):643–657. doi:10.1094/MPMI-09-12-0217-R.
  • Gupta A, Sarkar AK, Senthil-Kumar M. Global transcriptional analysis reveals unique and shared responses in Arabidopsis thaliana exposed to combined drought and pathogen stress. Front Plant Sci. 2016;7:686. doi:10.3389/fpls.2016.00686.
  • Zhao C, Wang X, Wang X, Wu K, Li P, Chang N, Wang J, Wang F, Li J, Bi Y. Glucose-6-phosphate dehydrogenase and alternative oxidase are involved in the cross tolerance of highland barley to salt stress and UV-B radiation. J Plant Physiol. 2015;181:83–95. doi:10.1016/j.jplph.2015.03.016.
  • Capiati DA, País SM, Téllez-Iñón MT. Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signalling. J Exp Bot. 2006;57(10):2391–2400. doi:10.1093/jxb/erj212.
  • Manavella PA, Arce AL, Dezar CA, Bitton F, Renou JP, Crespi M, Chan RL. Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J. 2006;48(1):125–137. doi:10.1111/j.1365-313X.2006.02865.x.
  • Shah J, Chaturvedi R, Chowdhury Z, Venables B, Petros RA. Signaling by small metabolites in systemic acquired resistance. Plant J. 2014;79(4):645–658. doi:10.1111/tpj.12464.
  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science. 2007;318(5847):113–116. doi:10.1126/science.1147113.
  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA. Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science. 2006;311(5762):812–815. doi:10.1126/science.1118446.
  • Nandi A, Welti R, Shah J. The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell. 2004;16(2):465–477. doi:10.1105/tpc.016907.
  • Chanda B, Xia Y, Mandal MK, Yu KS, Sekine KT, Gao QM, Selote D, Hu YL, Stromberg A, Navarre D, et al. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet. 2011;43(5):421–427. doi:10.1038/ng.798.
  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature. 2002;419(6905):399–403. doi:10.1038/nature00962.
  • Lascombe MB, Bakan B, Buhot N, Marion D, Blein JP, Larue V, Lamb C, Prange T. The structure of “defective in induced resistance” protein of Arabidopsis thaliana, DIR1, reveals a new type of lipid transfer protein. Protein Sci. 2008;17(9):1522–1530. doi:10.1110/ps.035972.108.
  • Champigny MJ, Shearer H, Mohammad A, Haines K, Neumann M, Thilmony R, He SY, Fobert P, Dengler N, Cameron RK. Localization of DIR1 at the tissue, cellular and subcellular levels during systemic acquired resistance in Arabidopsis using DIR1: gUSand DIR1: eGFPreporters. BMC Plant Biol. 2011;11:125. doi:10.1186/1471-2229-11-125.
  • Cecchini NM, Steffes K, Schlappi MR, Gifford AN, Greenberg JT. Arabidopsis AZI1 family proteins mediate signal mobilization for systemic defence priming. Nat Commun. 2015;23(6):7658. doi:10.1038/ncomms8658.
  • Kachroo A, Robin GP. Systemic signaling during plant defense. Curr Opin Plant Bio. 2013;16(4):527–533. doi:10.1016/j.pbi.2013.06.019.
  • Chaturvedi R, Venables B, Petros RA, Nalam V, Li VM, Wang XM, Takemoto LJ, Shah J. An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant J. 2012;71(1):161–172. doi:10.1111/j.1365-313X.2012.04981.x.
  • Isaacs M, Carella P, Faubert J, Rose JKC, Cameron RK. Orthology analysis and in vivo complementation studies to elucidate the role of DIR1 during systemic acquired resistance in Arabidopsis thaliana and Cucumis sativus. Front Plant Sci. 2016;7:566. doi:10.3389/fpls.2016.00566.
  • Cameron RK, Carella P, Isaacs M, Champigny M, Merl-Pham J, Dey S, Vlot AC. Using DIR1 to investigate long-distance signal movement during systemic acquired resistance. Can J Plant Pathol. 2016;38(1):19–24. doi:10.1080/07060661.2016.1147497.
  • Navarova H, Bernsdorff F, Doring AC, Zeier J. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell. 2012;24(12):5123–5141. doi:10.1105/tpc.112.103564.
  • Bernsdorff F, Doring AC, Gruner K, Schuck S, Brautigam A, Zeier J. Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell. 2016;28(1):102–129. doi:10.1105/tpc.15.00496.
  • Dixon DC, Cutt JR, Klessig DF. Differential targeting of the tobacco PR-1 pathogenesis-related proteins to the extracellular space and vacuoles of crystal idioblasts. EMBO J. 1991;10(6):1317–1324. doi:10.1002/j.1460-2075.1991.tb07650.x.
  • Cecchini NM, Jung HW, Engle NL, Tschaplinski TJ, Greenberg JT. ALD1 regulates basal immune components and early inducible defense responses in Arabidopsis. Mol Plant Microbe Interact. 2015;28(4):455–466. doi:10.1094/MPMI-06-14-0187-R.
  • Fujita T, Noguchi K, Terashima I. Apoplastic mesophyll signals induce rapid stomatal responses to CO2 in Commelina communis. New Phytol. 2013;199(2):395–406. doi:10.1111/nph.12261.
  • Palevitz BA, Hepler PK. Changes in dye coupling of stomatal cells of Allium and Commelina demonstraded by micorinjection of lucifer yellow. Planta. 1985;164(4):473. doi:10.1007/BF00395962.
  • Oparka KJ, Cruz SS. The great escape: phloem transport and unloading of macromolecules. Annu Rev Plant Physiol Plant Mol Biol. 2000;51:323–347. doi:10.1146/annurev.arplant.51.1.323.
  • Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol Biochem. 2008;46(11):941–950. doi:10.1016/j.plaphy.2008.06.011.
  • Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS. Tell me more: roles of NPRs in plant immunity. Trends Plant Sci. 2013;18(7):402–411. doi:10.1016/j.tplants.2013.04.004.
  • Kumar AS, Lakshmanan V, Caplan JL, Powell D, Czymmek KJ, Levia DF, Bais HP. Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J. 2012; 72(4):694–706. doi:10.1111/j.1365-313X.2012.05116.x.
  • Conrath U. Molecular aspects of defence priming. Trends Plant Sci. 2011;16(10):524–531. doi:10.1016/j.tplants.2011.06.004.
  • Beckers GJM, Jaskiewicz M, Lui Y, Underwood WR, He SY, Zhang S, Conrath U. Mitogen-Activated Protein Kinases 3 and 6 are required for full priming stress responses in Arabidopsis thaliana. Plant Cell. 2009;21(3):944–953. doi:10.1105/tpc.108.062158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.