997
Views
5
CrossRef citations to date
0
Altmetric
Short Communication

Acidity stress for the systemic elicitation of glyceollin phytoalexins in soybean plants

& ORCID Icon
Article: 1604018 | Received 05 Mar 2019, Accepted 29 Mar 2019, Published online: 15 Apr 2019

References

  • Ahuja I, Kissen R, Bones AM. Phytoalexins in defense against pathogens. Trends Plant Sci. 2012;17:73–90. doi:10.1016/j.tplants.2011.11.002.
  • Großkinsky DK, van der Graaff E, Roitsch T. Phytoalexin transgenics in crop protection—fairy tale with a happy end? Plant Sci. 2012;195:54–70. doi:10.1016/j.plantsci.2012.06.008.
  • Jeandet P, Clément C, Cordelier S. Regulation of resveratrol biosynthesis in grapevine: new approaches for disease resistance? J Exp Bot. 2019;70:375–378. doi:10.1093/jxb/ery446.
  • Jeandet P, Hébrard C, Deville M-A, Cordelier S, Dorey S, Aziz A, Crouzet J. Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules. 2014;19:18033–18056. doi:10.3390/molecules191118033.
  • Jiang J, Xi H, Dai Z, Lecourieux F, Yuan L, Liu X, Patra B, Wei Y, Li S, Wang L. VvWRKY8 represses stilbene synthase genes through direct interaction with VvMYB14 to control resveratrol biosynthesis in grapevine. J Exp Bot. 2018;70:715–729. doi:10.1093/jxb/ery401.
  • Graham TL, Graham MY, Subramanian S, Yu O. RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol. 2007;144:728–740. doi:10.1104/pp.107.097865.
  • Hahn MG, Bonhoff A, Grisebach H. Quantitative localization of the phytoalexin glyceollin I in relation to fungal hyphae in soybean roots infected with phytophthora megasperma f. sp. glycinea. Plant Physiol. 1985;77:591–601.
  • Subramanian S, Graham MY, Yu O, Graham TL. RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to phytophthora sojae. Plant Physiol. 2005;137:1345–1353. doi:10.1104/pp.104.057257.
  • Bamji SF, Corbitt C. Glyceollins: soybean phytoalexins that exhibit a wide range of health-promoting effects. J Funct Foods. 2017;34:98–105. doi:10.1016/j.jff.2017.04.020.
  • Nwachukwu ID, Luciano FB, Udenigwe CC. The inducible soybean glyceollin phytoalexins with multifunctional health-promoting properties. Food Res Int. 2013;54:1208–1216. doi:10.1016/j.foodres.2013.01.024.
  • Pham T, Lecomte S, Efstathiou T, Ferriere F, Pakdel F. An update on the effects of glyceollins on human health: possible anticancer effects and underlying mechanisms. Nutrients. 2019;11:79. doi:10.3390/nu11010079.
  • Bratton MR, Martin EC, Elliott S, Rhodes LV, Collins-Burow BM, McLachlan JA, Wiese TE, Boue SM, Burow ME, Wiese TE, Boue SM, Burow ME. Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer. J Steroid Biochem Mol Biol. 2015;150:17–23. doi:10.1016/j.jsbmb.2014.12.014.
  • Chimezie C, Ewing A, Schexnayder C, Bratton M, Glotser E, Skripnikova E, Sá P, Boué S, Stratford RE. Glyceollin effects on MRP2 and BCRP in Caco‐2 cells, and implications for metabolic and transport interactions. J Pharm Sci. 2015;105:972–981.
  • Lee SH, Jee JG, Bae JS, Liu KH, Lee YM. A group of novel HIF‐1α inhibitors, glyceollins, blocks HIF‐1α synthesis and decreases its stability via inhibition of the PI3K/AKT/mTOR pathway and Hsp90 binding. J Cell Physiol. 2015;230:853–862. doi:10.1002/jcp.24813.
  • Payton-Stewart F, Schoene NW, Kim YS, Burow ME, Cleveland TE, Boue SM, Cleveland TE, Boue SM, Wang TT. Molecular effects of soy phytoalexin glyceollins in human prostate cancer cells LNCaP. Mol Carcinog. 2009;48:862–871. doi:10.1002/mc.20532.
  • Rhodes LV, Tilghman SL, Boue SM, Wang S, Khalili H, Muir SE, Bratton MR, Zhang Q, Wang G, Burow ME, Collins-Burow BM. Glyceollins as novel targeted therapeutic for the treatment of triple-negative breast cancer. Oncol Lett. 2012;3:163–171. doi:10.3892/ol.2011.460.
  • Salvo VA, Boue SM, Fonseca JP, Elliott S, Corbitt C, Collins-Burow BM, TJ Curiel, SK Srivastav, et al. Antiestrogenic glyceollins suppress human breast and ovarian carcinoma tumorigenesis. Clin Cancer Res. 2006;12:7159–7164. doi:10.1158/1078-0432.CCR-06-1426.
  • Shin SH, Lee YM. Glyceollins, a novel class of soybean phytoalexins, inhibit SCF-induced melanogenesis through attenuation of SCF/c-kit downstream signaling pathways. Exp Mol Med. 2013;45:1–9. doi:10.1038/emm.2013.20.
  • Zimmermann MC, Tilghman SL, Boue SM, Salvo VA, Elliott S, Williams KY, Skripnikova EV, Ashe H, Payton-Stewart F, et al. Glyceollin I, a novel antiestrogenic phytoalexin isolated from activated soy. J Pharmacol Exp Ther. 2010;332:35–45. doi:10.1124/jpet.109.160382.
  • Seo JY, Kim BR, Oh J, Kim J-S. Soybean-derived phytoalexins improve cognitive function through activation of Nrf2/HO-1 signaling pathway. Int J Mol Sci. 2018;19:268. doi:10.3390/ijms19010268.
  • Khupse RS, Sarver JG, Trendel JA, Bearss NR, Reese MD, Wiese TE, Boue SM, Burow ME, Cleveland TE, Bhatnagar D, Erhardt PW. Biomimetic syntheses and antiproliferative activities of racemic, natural (-), and unnnatural (+) glyceollin I. J Med Chem. 2011;54:3506–3523. doi:10.1021/jm101619e.
  • Luniwal A, Khupse R, Reese M, Liu J, El-Dakdouki M, Malik N, Fang L, Erhardt P. Multigram synthesis of glyceollin I. Org Process Res Dev. 2011;15:1149–1162. doi:10.1021/op200112g.
  • Malik N, Zhang Z, Erhardt P. Total synthesis of (±)-glyceollin II and a dihydro derivative. J Nat Prod. 2015;78:2940–2947. doi:10.1021/acs.jnatprod.5b00607.
  • Boue SM, Carter CH, Ehrlich KC, Cleveland TE. Induction of the soybean phytoalexins coumestrol and glyceollin by Aspergillus. J Agric Food Chem. 2000;48:2167–2172.
  • Farrell KC, Jahan MA, Kovinich N. Distinct mechanisms of biotic and chemical elicitors enable additive elicitation of the anticancer phytoalexin glyceollin I. Molecules. 2017;22:1261–1273. doi:10.3390/molecules22081261.
  • Simons R, Vincken JP, Roidos N, Bovee TFH, van Iersel M, Verbruggen MA, Gruppen H. Increasing soy isoflavonoid content and diversity by simultaneous malting and challenging by a fungus to modulate estrogenicity. J Agric Food Chem. 2011;59:6748–6758. doi:10.1021/jf2010707.
  • Park S, Kim Da S, Kim JH, Kim JS, Kim HJ. Glyceollin-containing fermented soybeans improve glucose homeostasis in diabetic mice. Nutrition. 2012;28:204–211. doi:10.1016/j.nut.2011.05.016.
  • Aisyah S, Gruppen H, Madzora B, Vincken JP. Modulation of isoflavonoid composition of Rhizopus oryzae elicited soybean (Glycine max) seedlings by light and wounding. J Agric Food Chem. 2013;61:8657–8667. doi:10.1021/jf4020203.
  • Cheng Q, Li N, Dong L, Zhang D, Fan S, Jiang L, Wang X, Xu P, Zhang S. Overexpression of soybean isoflavone reductase (GmIFR) Enhances resistance to phytophthora sojae in soybean. Front Plant Sci. 2015;6:1024. doi:10.3389/fpls.2015.01024.
  • Jahan MA, Harris B, Lowery M, Coburn K, Infante AM, Percifield RJ, Ammer AG, Kovinich N. The NAC family transcription factor GmNAC42–1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean. BMC Genomics. 2019;20:149. doi:10.1186/s12864-018-5376-4doi.org/10.1186/s12864-019-5524-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.