6,698
Views
66
CrossRef citations to date
0
Altmetric
Review

Who is my neighbor? Volatile cues in plant interactions

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 1634993 | Received 16 Jun 2019, Accepted 18 Jun 2019, Published online: 03 Jul 2019

References

  • Thorpe AS, Thelen GC, Diaconu A, Callaway RM. Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. J Ecol. 2009;97:641–645. doi:10.1111/j.1365-2745.2009.01520.x.
  • Bruno JF, Stachowicz JJ, Bertness MD. Inclusion of facilitation into ecological theory. Trends Ecol Evol. 2003;18:119–125. doi:10.1016/S0169-5347(02)00045-9.
  • Kegge W, Ninkovic V, Glinwood R, Welschen RAM, Voesenek LACJ, Pierik R. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Ann Bot. 2015;115:961–970. doi:10.1093/aob/mcv036.
  • Gruntman M, Groß D, Májeková M, Tielbörger K. Decision-making in plants under competition. Nat Commun. 2017;8. doi:10.1038/s41467-017-02147-2.
  • Biedrzycki ML, Jilany TA, Dudley SA, Bais HP. Root exudates mediate kin recognition in plants. Commun Integr Biol. 2010;3:28–35. doi:10.4161/cib.3.1.10118.
  • Delory BM, Delaplace P, Fauconnier ML, Du Jardin P. Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? Plant Soil. 2016;402:1–26. doi:10.1007/s11104-016-2823-3.
  • Gagliano M, Grimonprez M, Depczynski M, Renton M. Tuned in: plant roots use sound to locate water. Oecologia. 2017;184:151–160. doi:10.1007/s00442-017-3862-z.
  • Markovic D, Nikolic N, Glinwood R, Seisenbaeva G, Ninkovic V. Plant responses to brief touching: a mechanism for early neighbour detection? PLoS One. 2016;11:e0165742. doi:10.1371/journal.pone.0165742.
  • Ninkovic V, Markovic D, Dahlin I. Decoding neighbour volatiles in preparation for future competition and implications for tritrophic interactions. Perspect Plant Ecol Evol Syst. 2016;23:11–17. doi:10.1016/j.ppees.2016.09.005.
  • Baldwin IT. Plant volatiles. Curr Biol. 2010;20:392–397. doi:10.1016/j.cub.2010.02.052.
  • Shemesh H, Ovadia O, Novoplansky A. Anticipating future conditions via trajectory sensitivity. Plant Signal Behav. 2010;5:1501–1503. doi:10.4161/psb.5.11.13660.
  • Callaway RM, Pennings SC, Richards CL. Phenotypic plasticity and interactions among plants. Ecology. 2003;84:1115–1128. doi:10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2.
  • Pierik R, Mommer L, Voesenek LA. Molecular mechanisms of plant competition: neighbour detection and response strategies. Funct Ecol. 2013;27:841–853. doi:10.1111/1365-2435.12010.
  • Violle, C., Garnier, E., Lecoeur, J., Roumet, C., Podeur, C., Blanchard, A., and Navas, M. L. Competition, traits and resource depletion in plant communities. Oecologia. 2009;160:747–755. doi:10.1007/s00442-009-1333-x.
  • Yamawo A, Tagawa J, Hada Y, Suzuki N. Different combinations of multiple defence traits in an extrafloral nectary-bearing plant growing under various habitat conditions. J Ecol. 2014;102:238–247. doi:10.1111/1365-2745.12169.
  • Ninkovic V. Volatile communication between barley plants affects biomass allocation. J Exp Bot. 2003;54:1931–1939. doi:10.1093/jxb/erg192.
  • Callaway RM. Positive interactions among plants. Bot Rev. 1995;61:306–349. doi:10.1093/sysbio/syr125.
  • Metlen KL, Aschehoug ET, Callaway RM. Plant behavioural ecology: dynamic plasticity in secondary metabolites. Plant Cell Environ. 2009;32:641–653. doi:10.1111/j.1365-3040.2008.01910.x.
  • Sampaio BL, Edrada-ebel R, Batista F, Costa D. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Nat Publ Gr. 2016;1–11. doi:10.1038/srep29265.
  • Kessler A, Kalske A. Plant secondary metabolite diversity and species interactions. Annu Rev Ecol Evol Syst. 2018;49:115–138. doi:10.1146/annurev-ecolsys-110617-062406.
  • Dicke M. Herbivore-induced plant volatiles as a rich source of information for arthropod predators: fundamental and applied aspects. J Indian Inst Sci. 2015;95:35–42.
  • Loreto F, Dicke M, Schnitzler J, Turlings TCJ. Plant volatiles and the environment. Plant Cell Environ. 2014;37:1905–1908. doi:10.1111/pce.12369.
  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013;198:16–32. doi:10.1111/nph.12145.
  • Heil M, Silva Bueno JC. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA. 2007;104:5467–5472. doi:10.1073/pnas.0610266104.
  • Dicke M, Loreto F. Induced plant volatiles: from genes to climate change. Trends Plant Sci. 2010;15:115–117. doi:10.1016/j.tplants.2010.01.007.
  • Baldwin I, Halitschke R, Paschold A, von Dahl C, Preston C. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science. 2006;311:812–816. doi:10.1126/science.1118446.
  • Bruce TJA, Wadhams LJ, Woodcock CM. Insect host location: a volatile situation. Trends Plant Sci. 2005;10:269–274. doi:10.1016/j.tplants.2005.04.003.
  • Ueda H, Kikuta Y, Matsuda K. Plant communication: mediated by individual or blended VOCs? Plant Signal Behav. 2012;7:222–226. doi:10.4161/psb.18765.
  • Preston CA, Laue G, Baldwin IT. Methyl jasmonate is blowing in the wind, but can it act as a plant–plant airborne signal? Biochem Syst Ecol. 2001;29:1007–1023. doi:10.1016/S0305-1978(01)00047-3.
  • Heil M, Karban R. Explaining evolution of plant communication by airborne signals. Trends Ecol Evol. 2010;25:137–144. doi:10.1016/j.tree.2009.09.010.
  • Shiojiri K, Ozawa R, Matsui K, Sabelis MW, Takabayashi J. Intermittent exposure to traces of green leaf volatiles triggers a plant response. Sci Rep. 2012;2:1–5. doi:10.1038/srep00378.
  • Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci USA. 2014;111:7144–7149. doi:10.1073/pnas.1320660111.
  • Girón-Calva PS, Molina-Torres J, Heil M. Volatile dose and exposure time impact perception in neighboring plants. J Chem Ecol. 2012;38:226–228. doi:10.1007/s10886-012-0072-3.
  • Himanen SJ, Bui TNT, Maja MM, Holopainen JK. Utilizing associational resistance for biocontrol: impacted by temperature, supported by indirect defence. BMC Ecol. 2015;15:1–12. doi:10.1186/s12898-015-0048-6.
  • Himanen SJ, Blande JD, Klemola T, Pulkkinen J, Heijari J, Holopainen JK. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants – a mechanism for associational herbivore resistance? New Phytol. 2010;186:722–732. doi:10.1111/j.1469-8137.2010.03220.x.
  • Karban R, Wetzel WC, Shiojiri K, Ishizaki S, Ramirez SR, Blande JD. Deciphering the language of plant communication: volatile chemotypes of sagebrush. J Physiol. 2014a;204:380–385. doi:10.1111/nph.12887.
  • Dicke M, van Poecke RMP, de Boer JG. Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl Ecol. 2003;4:27–42. doi:10.1078/1439-1791-00131.
  • Jassbi AR, Zamanizadehnajari S, Baldwin IT. Phytotoxic volatiles in the roots and shoots of Artemisia tridentata as detected by headspace solid-phase microextraction and gas chromatographic-mass spectrometry analysis. J Chem Ecol. 2010;36:1398–1407. doi:10.1007/s10886-010-9885-0.
  • Peñuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz, M., Piechulla, B., and Schnitzler, J. P. Biogenic volatile emissions from the soil. Plant Cell Environ. 2014;37:1866–1891. doi:10.1111/pce.12340.
  • Depuydt S. Arguments for and against self and non-self root recognition in plants. Front Plant Sci. 2014;5:1–7. doi:10.3389/fpls.2014.00614.
  • Gruntman M, Novoplansky A. From the cover: physiologically mediated self/non-self discrimination in roots. Proc Natl Acad Sci. 2004;101:3863–3867. doi:10.1073/pnas.0306604101.
  • Schmid C, Bauer S, Bartelheimer M. Should I stay or should I go? Roots segregate in response to competition intensity. Plant Soil. 2015;391:283–291. doi:10.1007/s11104-015-2419-3.
  • Huang W, Zwimpfer E, Hervé MR, Bont Z, Erb M. Neighbourhood effects determine plant–herbivore interactions below-ground. J Ecol. 2018;106:347–356. doi:10.1111/1365-2745.12805.
  • Hu, L., Robert, C. A. M., Cadot, S., Zhang, X., Ye, M., Li, B., Manzo, D., Chervet, N., Steinger, T., Van Der Heijden, M. G., et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 2018;9:1–13. doi:10.1038/s41467-018-05122-7.
  • Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol. 2012;66:265–283. doi:10.1146/annurev-micro-092611-150107.
  • Wenke K, Kai M, Piechulla B. Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta. 2010;231:499–506. doi:10.1007/s00425-009-1076-2.
  • Junker RR, Tholl D. Volatile organic compound mediated interactions at the plant-microbe interface. J Chem Ecol. 2013;39:810–825. doi:10.1007/s10886-013-0325-9.
  • Sharifi R, Lee S, Ryu C. Microbe-induced plant volatiles. New Phytol. 2018;220:684–691. doi:10.1111/nph.14955.
  • Tilman D. The resource-ratio hypothesis of plant succession. Am Nat. 1985;125:827–852. doi:10.1086/284382.
  • Grime JP. Plant strategies and vegetation processes. Chichester-New York-Brisbane-Toronto: John Wiley & Sons, Ltd. 1979.
  • Pettersson J, Ninkovic V, Glinwood R. Plant activation of barley by intercropped conspecifics and weeds: allelobiosis. Bcpc Int Congr Crop Sci Technol. 2003;1(2). Congr. Proc. 2003. p. 1135–1144.
  • Ninkovic V, Glinwood R, Pettersson J. Communication between undamaged plants by volatiles: the role of allelobiosis. Commun Plants Neuronal Asp Plant Life. 2006;421–434. doi:10.1007/978-3-540-28516-8_28.
  • Tilman D. On the meaning of competition and the mechanisms of competitive superiority. Funct Ecol. 1987;1:304–315. doi:10.2307/2389785.
  • Kellner M, Brantestam AK, Åhman I, Ninkovic V. Plant volatile-induced aphid resistance in barley cultivars is related to cultivar age. Theor Appl Genet. 2010;121:1133–1139. doi:10.1007/s00122-010-1377-7.
  • Dahlin I, Rubene D, Glinwood R, Ninkovic V. Pest suppression in cultivar mixtures is influenced by neighbor-specific plant-plant communication. Ecol Appl. 2018;28:2187–2196. doi:10.1002/eap.1807.
  • Ninkovic V, Dahlin I, Vucetic A, Petrovic-Obradovic O, Glinwood R, Webster B. Volatile exchange between undamaged plants – a new mechanism affecting insect orientation in intercropping. PLoS One. 2013;8:e69431. doi:10.1371/journal.pone.0069431.
  • Ninkovic V, Glinwood R, Dahlin I. Weed-barley interactions affect plant acceptance by aphids in laboratory and field experiments. Entomol Exp Appl. 2009;133:38–45. doi:10.1111/j.1570-7458.2009.00900.x.
  • Glinwood R, Ninkovic V, Pettersson J, Ahmed E. Barley exposed to aerial allelopathy from thistles (Cirsium spp.) becomes less acceptable to aphids. Ecol Entomol. 2004;29:188–195. doi:10.1111/j.0307-6946.2004.00582.x.
  • Vucetic A, Dahlin I, Petrovic-Obradovic O, Glinwood R, Webster B, Ninkovic V. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission. Plant Signal Behav. 2014;9:7–12. doi:10.4161/psb.29517.
  • Ninkovic V, Pettersson J. Searching behaviour of the sevenspotted ladybird, Coccinella septempunctata– effects of plant-plant odour interaction. Oikos. 2003;100:65–70. doi:10.1034/j.1600-0706.2003.11994.x.
  • Ninkovic V, Abassi S, Al Ahmed E, Glinwood R, Pettersson J. Effect of within-species plant genotype mixing on habitat preference of a polyphagous insect predator. Oecologia. 2011;166:391–400. doi:10.1007/s00442-010-1839-2.
  • Holopainen JK, Gershenzon J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 2010;15:176–184. doi:10.1016/j.tplants.2010.01.006.
  • Loreto F, Barta C, Brilli F, Nogues I. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ. 2006;29:1820–1828. doi:10.1111/j.1365-3040.2006.01561.x.
  • Asai T, Matsukawa T, Kajiyama S. Metabolic changes in citrus leaf volatiles in response to environmental stress. J Biosci Bioeng. 2016;121:235–241. doi:10.1016/j.jbiosc.2015.06.004.
  • Unsicker SB, Kunert G, Gershenzon J. Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol. 2009;12:479–485. doi:10.1016/j.pbi.2009.04.001.
  • Yamauchi Y, Kunishima M, Mizutani M, Sugimoto Y. Reactive short-chain leaf volatiles act as powerful inducers of abiotic stress-related gene expression. Sci Rep. 2015;5:8030. doi:10.1038/srep08030.
  • Danner H, Desurmont GA, Cristescu SM, van Dam NM. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytol. 2017;220:726–738. doi:10.1111/nph.14428.
  • Karban R, Yang LH, Edwards KF. Volatile communication between plants that affects herbivory: a meta-analysis. Ecol Lett. 2014b;17:44–52. doi:10.1111/ele.12205.
  • Zakir A, Sadek MM, Bengtsson M, Hansson BS, Witzgall P, Anderson P. Herbivore-induced plant volatiles provide associational resistance against an ovipositing herbivore. J Ecol. 2013;101:410–417. doi:10.1111/1365-2745.12041.
  • Dudareva N, Negre F, Nagegowda DA, Orlova I. Plant volatiles: recent advances and future perspectives. CRC Crit Rev Plant Sci. 2006;25:417–440. doi:10.1080/07352680600899973.
  • Dicke M, Baldwin IT. The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help.”. Trends Plant Sci. 2010;15:167–175. doi:10.1016/j.tplants.2009.12.002.
  • van Wijk M, de Bruijn PJA, Sabelis MW. Complex odor from plants under attack: herbivore’s enemies react to the whole, not its parts. PLoS One. 2011;6:e21742. doi:10.1371/journal.pone.0021742.
  • Kigathi RN, Weisser WW, Reichelt M, Gershenzon J, Unsicker SB. Plant volatile emission depends on the species composition of the neighboring plant community. BMC Plant Biol. 2019;19:1–17. doi:10.1186/s12870-018-1541-9.
  • Sharkey TD, Yeh S. Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:407–436. doi:10.1146/annurev.arplant.52.1.407.
  • Navarro, A., Smolander, S., Struthers, H., Zorita, E., Ekman, A. M. L., Kaplan, J. O., Guenther, A., Arneth, A. and Riipinen, I. Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium. J Geophys Res Atmos. 2014;119:6867–6885. doi:10.1002/2013JD021238.Received.
  • Hansen U, Seufert G. Temperature and light dependence of β-caryophyllene emission rates. J Geophys Res Atmos. 2003;108. doi:10.1029/2003JD003853.
  • Lee K, Seo PJ. Airborne signals from salt-stressed Arabidopsis plants trigger salinity tolerance in neighboring plants. Plant Signal Behav. 2014;9:3–6. doi:10.4161/psb.28392.
  • Caparrotta S, Boni S, Taiti C, Palm E, Mancuso S, Pandolfi C. Induction of priming by salt stress in neighboring plants. Environ Exp Bot. 2018;147:261–270. doi:10.1016/j.envexpbot.2017.12.017.
  • Braam J. In touch: plant responses to mechanical stimuli. New Phytol. 2005;165:373–389. doi:10.1111/j.1469-8137.2004.01263.x.
  • Markovic D, Glinwood R, Olsson U, Ninkovic V. Plant response to touch affects the behaviour of aphids and ladybirds. Arthropod Plant Interact. 2014;8:171–181. doi:10.1007/s11829-014-9303-6.
  • Markovic, D., Colzi, I., Taiti, C., Ray, S., Scalone, R., Gregory Ali, J., Mancuso, S. and Ninkovic, V. Airborne signals synchronize the defenses of neighboring plants in response to touch. J Exp Bot. 2019;70:691–700. doi:10.1093/jxb/ery375.
  • Elhakeem A, Markovic D, Broberg A, Anten NPR, Ninkovic V. Aboveground mechanical stimuli affect belowground plant-plant communication. PLoS One. 2018;13:e0195646. doi:10.1371/journal.pone.0195646.