1,793
Views
21
CrossRef citations to date
0
Altmetric
Mini-Review

NADPH oxidases, essential players of hormone signalings in plant development and response to stresses

, ORCID Icon &
Article: 1657343 | Received 10 Aug 2019, Accepted 14 Aug 2019, Published online: 20 Aug 2019

References

  • Waszczak C, Carmody M, Kangasjärvi J. Reactive oxygen species in plant signaling. Annu Rev Plant Biol. 2018;69:5.1–5.28. doi:10.1146/annurev-arplant-042817-040322.
  • Huang H, Ullah F, Zhou DX, Yi M, Zhao Y. Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci. 2019;10:800. doi:10.3389/fpls.2019.00170.
  • Song Y, Miao Y, Song CP. Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytol. 2014;201(4):1121–1140. doi:10.1111/nph.12565.
  • Mhamdi A, Breusegem FV. Reactive oxygen species in plant development. Development. 2018;145:dev164376. doi:10.1242/dev.158527.
  • Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, Zhu JK, Gong Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol. 2018;60(09):67–88. doi:10.1111/jipb.12654.
  • Suzuki N, Miller G, Morales J, Morales J, Shulaev V, Torres MA, Mittler R. Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol. 2011;14(6):691–699. doi:10.1016/j.pbi.2011.07.014.
  • Marino D, Dunand C, Puppo A, Pauly N. A burst of plant NADPH oxidases. Trends Plant Sci. 2012;17(1):9–15. doi:10.1016/j.tplants.2011.10.001.
  • Chen Q, Yang G. Signal function studies of ROS, especially RBOH-dependent ROS, in plant growth, development and environmental stress. J Plant Growth Regul. 2019. doi:10.1007/s00344-019-09971-4.
  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot. 2015;66(10):2839–2856. doi:10.1093/jxb/erv089.
  • Müller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G. The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol. 2009;184:885–897. doi:10.1111/j.1469-8137.2009.03005.x.
  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 2003;422:442–446. doi:10.1038/nature01485.
  • Macpherson N, Takeda S, Shang Z, Dark A, Mortimer JC, Brownlee C, Dolan L, Davies JM. NADPH oxidase involvement in cellular integrity. Planta. 2008;227:1415–1418. doi:10.1007/s00425-008-0716-2.
  • Ma LY, Zhang H, Sun LR, Jiao YH, Zhang GZ, Miao C, Hao FS. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. J Exp Bot. 2012;63:305–317. doi:10.1093/jxb/err280.
  • Jiao YH, Sun LR, Song YL, Wang LM, Liu LP, Zhang LY, Liu B, Li N, Miao C, Hao FS. AtrbohD and AtrbohF positively regulate abscisic acid inhibited primary root growth by affecting Ca2+ signaling and auxin response of roots in Arabidopsis. J Exp Bot. 2013;64:4183–4192. doi:10.1093/jxb/ert228.
  • Li N, Sun LR, Zhang LY, Song YL, Hu PP, Li C, Hao FS. AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis. Planta. 2015;241:591–602. doi:10.1007/s00425-014-2161-8.
  • Liu B, Sun LR, Ma LY, Hao FS. Both AtrbohD and AtrbohF are essential for mediating responses to oxygen deficiency in Arabidopsis. Plant Cell Rep. 2017;36:947–957. doi:10.1007/s00299-017-2128-x.
  • Sun LR, Liya M, Shibin H, Hao FS. AtrbohD functions downstream of ROP2 and positively regulates waterlogging response in Arabidopsis. Plant Signal Behav. 2018;13(9):e1513300. doi:10.1080/15592324.2018.1513300.
  • Xie HT, Wan ZY, Li S, Zhang Y. Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. Plant Cell. 2014;26:2007–2023. doi:10.1105/tpc.113.120782.
  • He H, Yan J, Yu X, Liang Y, Fang L, Scheller HV, Zhang A. The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana. Biochem Biophys Res Commun. 2017;491(3):834–839. doi:10.1016/j.bbrc.2017.07.166.
  • Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, et al. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell. 2014;26:1069–1080. doi:10.1105/tpc.113.120782.
  • Mangano S, Denita-Juarez SP, Choi HS, Hwang Y, Ranocha P, Velasquez SM, Borassi C, Barberini ML, Aptekmann AA, Muschietti JP, et al. Molecular link between auxin and ROS-mediated polar growth. Proc Natl Acad Sci USA. 2017;114:5289–5294. doi:10.1073/pnas.1701536114.
  • Orman-Ligeza B, Parizot B, Rycke R, Fernandez A, Himschoot E, Breusegem F, Bennett MJ, Périlleux C, Beeckman T, Draye X. RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development. 2016;143:3328–3339. doi:10.1242/dev.136465.
  • Lin IS, Wu YS, Chen CT, Chen GH, Hwang SG, Jauh GY, Tzen JTC, Yang CY. AtRBOH I confers submergence tolerance and is involved in auxin-mediated signaling pathways under hypoxic stress. Plant Growth Regul. 2017;83:277–285. doi:10.1007/s10725-017-0292-1.
  • Shu K, Zhou W, Chen F, Luo X, Yang W. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Front Plant Sci. 2018;9:416. doi:10.3389/fpls.2018.00416.
  • Ishibashi Y, Kasa S, Sakamoto M, Aoki N, Kai K, Yuasa T, Hanada A, Yamaguchi S, Iwaya-Inoue M. A role for reactive oxygen species produced by NADPH oxidases in the embryo and aleurone cells in Barley seed germination. PLoS One. 2015;10(11):e0143173. doi:10.1371/journal.pone.0143173.
  • Kai K, Kasa S, Sakamoto M, Aoki N, Watabe G, Yuasa T, Iwaya-Inoue M, Ishibashi Y. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination. Plant Signal Behav. 2016;11(5):e1180492. doi:10.1080/15592324.2016.1180492.
  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, et al. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci. 2017;8:161. doi:10.3389/fpls.2017.00161.
  • Sun LR, Wang YB, He SB, Hao FS. Mechanisms for abscisic acid inhibition of primary root growth. Plant Signal Behav. 2018;13(9):e1500069. doi:10.1080/15592324.2018.1500069.
  • Dubois M, Van Den Broeck L, Inzé D. The pivotal role of ethylene in plant growth. Trends Plant Sci. 2018;23(4):311–323. doi:10.1016/j.tplants.2018.01.003.
  • Zermiani M, Zonin E, Nonis A, Begheldo M, Ceccato L, Vezzaro A, Baldan B, Trentin A, Masi A, Pegoraro M, et al. Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits. J Exp Bot. 2015;66(22):7255–7270. doi:10.1093/jxb/erv422.
  • Yang CY, Huang YC, Ou SL. ERF73/HRE1 is involved in H2O2 production via hypoxia-inducible Rboh gene expression in hypoxia signaling. Protoplasma. 2017;254:1705–1714. doi:10.1007/s00709-016-1012-9.
  • Yang CY, Hsu FC, Li JP, Wang NN, Shih MC. The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol. 2011;156(1):202–212. doi:10.1104/pp.111.172486.
  • Yang CY. Hydrogen peroxide controls transcriptional responses of ERF73/HRE1 and ADH1 via modulation of ethylene signaling during hypoxic stress. Planta. 2014;239(4):877–885. doi:10.1007/s00425-013-2020-z.
  • Yamauchi T, Yoshioka M, Fukazawa A, Mori H, Nishizawa NK, Tsutsumi N, Yoshioka H, Nakazono M. An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions. Plant Cell. 2017;29:775–790. doi:10.1105/tpc.16.00976.
  • Ni XL, Gui MY, Tan LL, Zhu Q, Liu WZ, Li CX. Programmed cell death and aerenchyma formation in water-logged sunflower stems and its promotion by ethylene and ROS. Front Plant Sci. 2019;9:1928. doi:10.3389/fpls.2018.01928.
  • Yao Y, He RJ, Xie QL, Zhao XH, Deng XM, He JB, Song L, He J, Marchant A, Chen XY, et al. ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol. 2017;213(4):1667–1681. doi:10.1111/nph.14223.
  • Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Caño-Delgado AI. Brassinosteroid signaling in plant development and adaptation to stress. Development. 2019;146(5):dev151894. doi:10.1242/dev.151894.
  • Ha Y, Shang Y, Nam KH. Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis. J Exp Bot. 2016;67(22):6297–6308. doi:10.1093/jxb/erw385.
  • Deng XG, Zhu T, Zou LJ, Han XY, Zhou X, Xi DH, Zhang DW, Lin HH. Orchestration of hydrogen peroxide and nitric oxide in brassinosteroids mediated systemic virus resistance in Nicotiana benthamiana. Plant J. 2016;85(4):478–493. doi:10.1111/tpj.13120.
  • Song LX, Xu XC, Wang FN, Wang Y, Xia XJ, Shi K, Zhou YH, Zhou J, Yu JQ. Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOG-dependent activation of MAPKs in tomato. Plant Cell Environ. 2018;41:1113–1125. doi:10.1111/pce.12952.
  • Tian Y, Fan M, Qin Z, Lv H, Wang M, Zhang Z, Zhou W, Zhao N, Li X, Han C, et al. Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat Commun. 2018;9:1063. doi:10.1038/s41467-018-03463-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.