1,298
Views
5
CrossRef citations to date
0
Altmetric
Short communication

BIG regulates sugar response and C/N balance in Arabidopsis

, , & ORCID Icon
Article: 1669418 | Received 07 Sep 2019, Accepted 13 Sep 2019, Published online: 03 Oct 2019

References

  • Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol. 2010;13:1–5. doi:10.1016/j.pbi.2009.12.002.
  • Li HM, Altschmied L, Chory J. Arabidopsis mutants define downstream branches in the phototransduction pathway. Genes Dev. 1994;8:339–349. doi:10.1101/gad.8.3.339.
  • Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M, Chory J. BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev. 2001;15:1985–1997. doi:10.1101/gad.905201.
  • Kanyuka K, Praekelt U, Franklin KA, Billingham OE, Hooley R, Whitelam GC, Halliday KJ. Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses. Plant J. 2003;35:57–70. doi:10.1046/j.1365-313X.2003.01779.x.
  • Yamaguchi N, Suzuki M, Fukaki H, Morita-Terao M, Tasaka M, Komeda Y. CRM1/BIG-mediated auxin action regulates Arabidopsis inflorescence development. Plant Cell Physiol. 2007;48:1275–1290. doi:10.1093/pcp/pcm094.
  • Paciorek T, Zažímalová E, Ruthardt N, Petrášek J, Stierhof YD, Kleine-Vehn J, Morris DA, Emans N, Jürgens G, Geldner N, et al. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature. 2005;435:1251–1256. doi:10.1038/nature03633.
  • Haydon MJ, Mielczarek O, Robertson FC, Hubbard KE, Webb AA. Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature. 2013;502:689–692. doi:10.1038/nature12603.
  • Hearn TJ, Marti Ruiz MC, Abdul-Awal SM, Wimalasekera R, Stanton CR, Haydon MJ, Theodoulou FL, Hannah MA, Webb AAR. BIG regulates dynamic adjustment of circadian period in Arabidopsis thaliana. Plant Physiol. 2018;178:358–371. doi:10.1104/pp.18.00571.
  • Richards S, Hillman T, Stern M. Mutations in the Drosophila pushover gene confer increased neuronal excitability and spontaneous synaptic vesicle fusion. Genetics. 1996;142:1215–1223.
  • Sekelsky JJ, McKim KS, Messina L, French RL, Hurley WD, Arbel T, Chin GM, Deneen B, Force SJ, Hari KL, et al. Identification of novel Drosophila meiotic genes recovered in a P-element screen. Genetics. 1999;152:529–542.
  • He J, Zhang RX, Peng K, Tagliavia C, Li S, Xue S, Liu A, Hu H, Zhang J, Hubbard KE, et al. The BIG protein distinguishes the process of CO2-induced stomatal closure from the inhibition of stomatal opening by CO2. New Phytol. 2018;218:232–241. doi:10.1111/nph.14957.
  • Zhang R-X, Ge S, He J, Li S, Hao Y, Du H, Liu Z, Cheng R, Feng Y, Xiong L, et al. BIG regulates stomatal immunity and jasmonate production in Arabidopsis. New Phytol. 2019;222:335–348. doi:10.1111/nph.15568.
  • Tauzin AS, Giardina T. Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front Plant Sci. 2014;5:293. doi:10.3389/fpls.2014.00293.
  • Daloso DM, Anjos LD, Fernie AR. Roles of sucrose in guard cell regulation. New Phytol. 2016;211:809–818. doi:10.1111/nph.2016.211.issue-3.
  • Mishra BS, Singh M, Aggrawal P, Laxmi A. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One. 2009;4:e4502. doi:10.1371/journal.pone.0004502.
  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 2006;140:637–646. doi:10.1104/pp.105.071290.
  • Das PK, Shin DH, Choi S, Park Y. Sugar-hormone cross-talk in anthocyanin biosynthesis. Mol Cell. 2012;34:501–507. doi:10.1007/s10059-012-0151-x.
  • Nunes-Nesi A, Fernie AR, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant. 2010;3:973–996. doi:10.1093/mp/ssq049.
  • Malamy JE, Ryan KS. Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol. 2001;127:899–909. doi:10.1104/pp.010406.
  • Saizfernandez I, De Diego N, Brzobohatý B, Munozrueda A, Lacuesta M. The imbalance between C and N metabolism during high nitrate supply inhibits photosynthesis and overall growth in maize (Zea mays L.). Plant Physiol Bioch. 2017;213–222. doi:10.1016/j.plaphy.2017.10.006.
  • Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol. 2006;140:909–921. doi:10.1104/pp.105.071290.
  • Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? a meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005;165:351–372. doi:10.1111/j.1469-8137.2004.01224.x.
  • Noctor G, Mhamdi A. Climate change, CO2, and defense: the metabolic, redox, and signaling perspectives. Trends Plant Sci. 2017;22:857–870. doi:10.1016/j.tplants.2017.07.007.
  • Zavala JA, Casteel CL, Nabity PD, Berenbaum MR, DeLucia EH. Role of cysteine proteinase inhibitors in preference of Japanese beetles (Popillia japonica) for soybean (Glycine max) leaves of different ages and grown under elevated CO2. Oecologia. 2009;161:35–41. doi:10.1007/s00442-009-1360-7.
  • Wu G, Chen FJ, Sun YC, Ge F. Response of successive three generations of cotton bollworm, Helicoverpa armigera (Hubner), fed on cotton bolls under elevated CO2. J Environ Sci. 2007;19:1318–1325. doi:10.1016/S1001-0742(07)60215-0.
  • Cease AJ, Elser JJ, Ford CF, Hao S, Kang L, Harrison JF. Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science. 2012;335:467–469. doi:10.1126/science.1214433.
  • Guo X, Lu W, Ma Y, Qin Q, Hou S. The BIG gene is required for auxin-mediated organ growth in Arabidopsis. Planta. 2013;237:1135–1147. doi:10.1007/s00425-012-1834-4.
  • Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, Muday G, Estelle M. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell. 1997;9:745–757. doi:10.1105/tpc.9.1.97.
  • Mason MG, Ross J, Babst BA, Wienclaw BN, Beveridge CA. Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci USA. 2014;111:6092–6097. doi:10.1073/pnas.1322045111.
  • Kircher S, Schopfer P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc Natl Acad Sci USA. 2012;109:11217–11221. doi:10.1073/pnas.1203746109.
  • Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol. 2008;179:1004–1016. doi:10.1111/j.1469-8137.2008.02511.x.
  • Belhadj A, Telef N, Saigne C, Cluzet S, Barrieu F, Hamdi S, Mérillon JM. Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Biochem. 2008;46:493–499. doi:10.1016/j.plaphy.2007.12.001.
  • Shan XY, Zhang YS, Peng W, Wang ZL, Xie DX. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J Exp Bot. 2009;60:3849–3860. doi:10.1093/jxb/erp223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.