2,169
Views
3
CrossRef citations to date
0
Altmetric
Short communication

Electrical stimulation boosts seed germination, seedling growth, and thermotolerance improvement in maize (Zea mays L.)

, &
Article: 1681101 | Received 28 Aug 2019, Accepted 10 Oct 2019, Published online: 25 Oct 2019

References

  • Sukhov V, Sukhova E, Vodeneev V. Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. Prog Biophys Mol Biol. 2019;146:1–4. doi:10.1016/j.pbiomolbio.2018.11.009.
  • Sukhov V. Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth Res. 2016;130:373–387. doi:10.1007/s11120-016-0270-x.
  • Mikami M, Mori D, Masumura Y, Aoki Y, Suzuki S. Electrical stimulation: an abiotic stress generator for enhancing anthocyanin and resveratrol accumulation in grape berry. Sci Hort. 2017;226:285–292. doi:10.1016/j.scienta.2017.09.005.
  • Dannehl D. Effects of electricity on plant responses. Sci Hort. 2018;234:382–392. doi:10.1016/j.scienta.2018.02.007.
  • Stanković B, Davies E. Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta. 1997;202:402–406. doi:10.1007/s004250050143.
  • Pena-Cortes H, Fisahn J, Willmitzer L. Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. PNAS. 1995;92:4106–4113. doi:10.1073/pnas.92.10.4106.
  • Yudaev I, Mashkov S, Vasilyev S, Syrkin V, Shevchenko S, Sirakov K. Improvement of technology of electrical and magnetic stimulation of seeds and crop plants. In: Kharchenko V, Vasant P, editors. Handbook of research on energy-saving technologies for environmentally-friendly agricultural development. Chicago (US): IGI Global; 2020. p. 365–396.
  • Black JD, Forsyth FR, Fensom DS, Ross RB. Electrical stimulation and its effects on growth and ion accumulation in tomato plants. Canad J Bot. 1971;49:809–1815.
  • Wang ZY, Qin XH, Li JH, Fan LF, Zhou Q, Wang YQ, Zhao X, Xie CJ, Wang ZY, Huang L. Highly reproducible periodic electrical potential changes associated with salt tolerance in wheat plants. Environ Exp Bot. 2019;160:120–130. doi:10.1016/j.envexpbot.2019.01.014.
  • Wang Y, Ye XY, Qiu XM, Li ZG. Methylglyoxal triggers the heat tolerance in maize seedlings by driving AsA-GSH cycle and reactive oxygen species-/methylglyoxal-scavenging system. Plant Physiol Biochem. 2019;138:91–99. doi:10.1016/j.plaphy.2019.02.027.
  • Li X, Liu X, Wan B, Li X, Li M, Zhu H, Hua H. Effects of continuous exposure to power frequency electric fields on soybean Glycine max. J Environ Rad. 2019;204:35–41. doi:10.1016/j.jenvrad.2019.03.026.
  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. Ann Rev Plant Biol. 2012;63:507–533. doi:10.1146/annurev-arplant-042811-105550.
  • Sukhov V, Surova L, Sherstneva O, Vodeneev V. Influence of variation potential on resistance of the photosynthetic machinery to heating in pea. Physiol Plant. 2014;152:773–783. doi:10.1111/ppl.12208.
  • Sukhov V, Gaspirovich V, Mysyagin S, Vodeneev V. High-temperature tolerance of photosynthesis can be linked to local electrical responses in leaves of pea. Front Physiol. 2017;8:763. doi:10.3389/fphys.2017.00763.
  • Sukhov V, Surova L, Morozova E, Sherstneva O, Vodeneev V. Changes in Hþ-ATP synthase activity, proton electrochemical gradient, and pH in pea chloroplast can be connected with variation potential. Front Plant Sci. 2016;7:1092. doi:10.3389/fpls.2016.01092.
  • Surova L, Sherstneva O, Vodeneev V, Sukhov V. Variation potential propagation decreases heat-related damage of pea photosystem I by 2 different pathways. Plant Signal Behav. 2016;11:e1145334. doi:10.1080/15592324.2016.1145334.
  • Surova L, Sherstneva O, Vodeneev V, Katicheva L, Semina M, Sukhov V. Variation potential-induced photosynthetic and respiratory changes increase ATP content in pea leaves. J Plant Physiol. 2016;202:57–64. doi:10.1016/j.jplph.2016.05.024.
  • Sukhov V, Surova L, Sherstneva O, Bushueva A, Vodeneev V. Variation potential induces decreased PSI damage and increased PSII damage under high external temperatures in pea. Funct Plant Biol. 2015;42:727–736. doi:10.1071/FP15052.
  • Sukhova E, Mudrilov M, Vodeneev V, Sukhov V. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea. Photosynth Res. 2018;136:215–228. doi:10.1007/s11120-017-0460-1.
  • Szechynska-Hebda M, Lewandowska M, Karpinski S. Electrical signaling, photosynthesis and systemic acquired acclimation. Front Physiol. 2017;8:684. doi:10.3389/fphys.2017.00684.
  • Choi WG, Miller G, Wallace I, Harper J, Mittler R, Gilroy S. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. Plant J. 2017;90:698–707. doi:10.1111/tpj.13492.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.