978
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

ABA-dependent K+ flux is one of the important features of the drought response that distinguishes Catalpa from two different habitats

, , ORCID Icon, & ORCID Icon
Article: 1735755 | Received 21 Oct 2019, Accepted 24 Feb 2020, Published online: 06 Mar 2020

References

  • Aranda I, Gil-Pelegrín E, Gascó A, Guevara MA, Cano JF, De Miguel M, Ramírez-Valiente JA, Peguero-Pina JJ, Perdiguero P, Soto Aet al. Drought response in forest trees: from the species to the gene. Plant Responses Drought Stress. 2012;1–9. doi:10.1007/978-3-642-32653-0_12.
  • Mahdid M, Kameli A, Ehlert C, Simonneau T. Rapid changes in leaf elongation, ABA and water status during the recovery phase following application of water stress in two durum wheat varieties differing in drought tolerance. Plant Physiol Biochem. 2011;49:1077–1083. doi:10.1016/j.plaphy.2011.08.002.
  • Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53:247–273. doi:10.1146/annurev.arplant.53.091401.143329.
  • De Leonardis A, Petrarulo M, De Vita P, Mastrangelo A. Genetic and molecular aspects of plant response to drought in annual crop species. Adv Sel Plant Physiol Aspects: InTech. 2012. doi:10.5772/31352.
  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol. 2014;21:133–139. doi:10.1016/j.pbi.2014.07.009.
  • Liu S, Lv Z, Liu Y, Li L, Zhang L. Network analysis of ABA-dependent and ABA-independent drought responsive genes in Arabidopsis thaliana. Genet Mol Biol. 2018;41:624–637. doi:10.1590/1678-4685-GMB-2017-0229.
  • Shi H, Ma W, Song J, Lu M, Rahman SU, Bui TTX, Vu DD, Zheng H, Wang J, Zhang Y, et al. Physiological and transcriptional responses of Catalpa bungei to drought stress under sufficient- and deficient-nitrogen conditions. Tree Physiol. 2017;37:1457–1468. doi:10.1093/treephys/tpx090.
  • Wang P, Ma L, Li Y, Wang S, Li L, Yang R, Ma Y, Wang Q. Transcriptome profiling of indole-3-butyric acid-induced adventitious root formation in softwood cuttings of the Catalpa bungei variety ‘YU-1ʹat different developmental stages. Genes Genomics. 2016;38:145–162. doi:10.1007/s13258-015-0352-8.
  • Morgan J. Osmoregulation as a selection criterion for drought tolerance in wheat. Aust J Agric Res. 1983;34:607–614. doi:10.1071/AR9830607.
  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol. 2010;51:1821–1839. doi:10.1093/pcp/pcq156.
  • Rajasheker G, Jawahar G, Jalaja N, Kumar SA, Kumari PH, Punita DL, Karumanchi AR, Reddy PS, Rathnagiri P, Sreenivasulu N, et al. Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. Plant Signaling Mol. 2019;417–436. doi:10.1016/b978-0-12-816451-8.00026-5.
  • Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S. Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut R. 2018;25:33103–33118. doi:10.1007/s11356-018-3364-5.
  • Tuteja N. Abscisic acid and abiotic stress signaling. Plant Signal Behav. 2007;2:135–138. doi:10.4161/psb.2.3.4156.
  • Becker D, Hoth S, Ache P, Wenkel S, Roelfsema MRG, Meyerhoff O, Hartung W, Hedrich R. Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett. 2003;554:119–126. doi:10.1016/S0014-5793(03)01118-9.
  • Maathuis FJM, Sanders D. Mechanisms of potassium absorption by higher plant roots. Physiol Plant. 1996;96:158–168. doi:10.1111/j.1399-3054.1996.tb00197.x.
  • Xiong L, Zhu J-K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 2002;25:131–139. doi:10.1046/j.1365-3040.2002.00782.x.
  • Roberts SK. Regulation of K+ channels in maize roots by water stress and abscisic acid. Plant Physiol. 1998;116:145–153. doi:10.1104/pp.116.1.145.
  • Roberts SK, Snowman BN. The effects of ABA on channel‐mediated K+ transport across higher plant roots. J Exp Bot. 2000;51:1585. doi:10.1093/jexbot/51.350.1585.
  • van den Wijngaard PW, Sinnige MP, Roobeek I, Reumer A, Schoonheim PJ, Mol JN, Wang M, De Boer AH. Abscisic acid and 14-3-3 proteins control K channel activity in barley embryonic root. Plant J. 2005;41:43–55. doi:10.1111/j.1365-313X.2004.02273.x.
  • Jeannette E, Rona JP, Bardat F, Cornel D, Sotta B, Miginiac E. Induction of RAB18 gene expression and activation of K+ outward rectifying channels depend on an extracellular perception of ABA in Arabidopsis thaliana suspension cells. Plant J. 1999;18:13–22. doi:10.1046/j.1365-313X.1999.00423.x.
  • Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205–207. doi:10.1007/BF00018060.
  • Kühtreiber WM, Jaffe LF. Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J Cell Biol. 1990;110:1565–1573. doi:10.1083/jcb.110.5.1565.
  • Jian S, Shaoliang C, Songxiang D, Ruigang W, Niya L, Xin S, Zhou X, Lu C, Zheng X, Hu Z, et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol. 2009;149:1141–1153. doi:10.1104/pp.108.129494.
  • Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng XJ, Zhang ZK, et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ. 2010;33:943–958. doi:10.1111/j.1365-3040.2010.02118.x.
  • Rui-Rui X, Sheng-Dong Q, Long-Tao L, Chang-Tian C, Chang-Ai W, Cheng-Chao Z. A DExD/H box RNA helicase is important for K+ deprivation responses and tolerance in Arabidopsis thaliana. Febs J. 2011;278:2296–2306. doi:10.1111/j.1742-4658.2011.08147.x.
  • Jian S, Wang R, Xuan Z, Yu Y, Rui Z, Li Z, Chen S. Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells. Plant Physiol Biochem. 2013;65:67–74. doi:10.1016/j.plaphy.2013.01.003.
  • Jie L, Jingjing Q, Fangfang H, Hong L, Tongxian L, Andrea P, Peng C, Luo Z-B. Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis. Planta. 2013;237:919–931. doi:10.1007/s00425-012-1807-7.
  • Živanović BD, Pang J, Shabala S. Light-induced transient ion flux responses from maize leaves and their association with leaf growth and photosynthesis. Plant Cell Environ. 2005;28:340–352. doi:10.1111/j.1365-3040.2005.01270.x.
  • And WJD, Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol. 1991;42:55–76. doi:10.1146/annurev.pp.42.060191.000415.
  • Bajji M, Kinet JM, Lutts S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 2002;36:61–70. doi:10.1023/a:1014732714549.
  • Chérel I, Gaillard I. The complex fine-tuning of K+ fluxes in plants in relation to osmotic and ionic abiotic stresses. Int J Mol Sci. 2019;20:715. doi:10.3390/ijms20030715.
  • Daszkowska-Golec A, Szarejko I. The molecular basis of ABA-mediated plant response to drought. Kourosh Vahdati Charles Leslie. 2013. doi:10.5772/53128.
  • Tavakol E, Jákli B, Cakmak I, Dittert K, Karlovsky P, Pfohl K, Senbayram M. Optimized potassium nutrition improves plant-water-relations of barley under PEG-induced osmotic stress. Plant Soil. 2018;430:23–35. doi:10.1007/s11104-018-3704-8.
  • Shabala SN, Lew RR. Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol. 2002;129:290–299. doi:10.1104/pp.020005.
  • Chen Z, Shabala S, Mendham N, Newman I, Zhang G, Zhou M. Combining ability of salinity tolerance on the basis of NaCl-induced K+ flux from roots of barley. Crop Sci. 2008;48:1382–1388. doi:10.2135/cropsci2007.10.0557.
  • Vadim D, Cuin TA, Dimitri S, Smith SJ, Miller AJ, Sergey S, Sokolik A, Yurin V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci. 2010;123:1468–1479. doi:10.1242/jcs.064352.
  • Cuin TA, Betts SA, Chalmandrier R, Shabala S. A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot. 2008;59:2697–2706. doi:10.1093/jxb/ern128.
  • Wolf T, Heidelmann T, Marten I. ABA regulation of K(+)-permeable channels in maize subsidiary cells. Plant Cell Physiol. 2006;47:1372–1380. doi:10.1093/pcp/pcl007.
  • Cai K, Gao H, Wu X, Zhang S, Han Z, Chen X, Zhang G, Zeng F. The ability to regulate transmembrane potassium transport in root is critical for drought tolerance in barley. Int J Mol Sci. 2019;20:4111. doi:10.3390/ijms20174111.
  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud J-B, Sentenac H. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell. 1998;94:647–655. doi:10.1016/S0092-8674(00)81606-2.
  • Hu J, Ma Q, Kumar T, Duan H-R, Zhang J-L, Yuan H-J, Wang Q, Khan SA, Wang P, Wang S-M, et al. ZxSKOR is important for salinity and drought tolerance of zygophyllum xanthoxylum by maintaining K+ homeostasis. Plant Growth Regul. 2016;80:195–205. doi:10.1007/s10725-016-0157-z.
  • Johansson I, Wulfetange K, Porée F, Michard E, Gajdanowicz P, Lacombe B, Sentenac H, Thibaud J-B, Mueller-Roeber B, Blatt MR, et al. External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant J. 2006;46:269–281. doi:10.1111/j.1365-313X.2006.02690.x.
  • Liu K, Li L, Luan S. Intracellular K+ sensing of SKOR, a shaker-type K+ channel from Arabidopsis. Plant J. 2006;46:260–268. doi:10.1111/j.1365-313X.2006.02689.x.
  • Gajdanowicz P, Garcia-Mata C, Gonzalez W, Morales-Navarro SE, Sharma T, González-Nilo FD, Gutowicz J, Mueller‐Roeber B, Blatt MR, Dreyer I. Distinct roles of the last transmembrane domain in controlling Arabidopsis K+ channel activity. New Phytol. 2009;182:380–391. doi:10.1111/j.1469-8137.2008.02749.x.
  • Wu C, Ding Z, Chen M, Yang G, Tie W, Yan Y, Zeng J, He G, Hu W. Identification and functional prediction of lncRNAs in response to PEG and ABA treatment in cassava. Environ Exp Bot. 2019;166:103809. doi:10.1016/j.envexpbot.2019.103809.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.